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Abstract

The purpose of this study was to investigate changes of the effective and shear stresses level on 
the surface of atherosclerotic plaques in comparison with the healthy vessel wall, as well as distribution 
of the hemodynamic forces. Two software modules were used: ANSYS CFX for simulating blood flow, 
and Structural (Mechanical) for simulating the stress-strain state of the walls. Geometric models of 
vessels were built on basis of healthy and diseased vessels casts in the CAD system SolidWorks. We 
discovered the phenomenon of stress-strain state of atherosclerotic plaques: soft plaque is different 
from the rigid, which creates conditions for plaque rupture under the influence of blood pressure and 
shear stress. The stress difference between rigid and unchanged vessel with carotid stenosis creates 
additional flows and vortexes, growing in proportion to the increase of the plaque size. In addition, 
such state can be directly related to the development of mural thrombosis. Analysis of the blood flow 
velocities vector field and pattern of streamlines in the external carotid artery demonstrates a complete 
blockage of the vessel. Vortex and congestion area formation in the ampoule of internal carotid artery 
creates conditions for further plaque progression.

on the vessel, causing the weakening of the wall and subsequent 
development of atherosclerotic deposits. Therefore, this area of the 
carotid bifurcation has the tendency to AD and different proliferative 
processes development. On the contrary, the inner wall of the carotid 
bifurcation has a higher wall shear stress and the blood flow is 
unidirectional, and so at this location there is less intimal thickening 
and atherosclerotic plaques (AP) appearing. Thus, proliferating 
intimal thickening developing focally in those areas where the 
geometric features change the blood flow to reduce wall shear stress. 
Tang [9], concluded that both low and high shear stresses lead to the 
formation of thrombosis. There is an opinion [16], that AD arises 
because of fatigue in the areas of stress concentration. It is assumed 
that the AD localization explained by changes in the wall shear 
stresses and equivalent stress in the vessel wall [17,18].

One can assume that the changes in the level of effective and shear 
stresses in conjunction with the level of oscillating stress may be used 
as a criterion for predicting the behaviour of different AP types.

Purpose
The purpose of this study was to investigate changes of the effective 

and shear stresses level on the surface of atherosclerotic plaques in 
comparison with the healthy vessel wall, as well as distribution of the 
hemodynamic forces.

Materials and Methods
In this paper the fluid-structure interaction problems were solved. 

In the simulation, it was assumed that the blood is incompressible, 
homogeneous viscous Newtonian fluid, and the blood flow is 
described by the Navier-Stokes equations [19].

The closed system of Navier-Stokes equations (three equations of 

motion and the continuity equation) is as follows:

Introduction
Damage of the endothelium in response to hemodynamic stress 

is a major issue in the development of atherosclerosis disease (AD). 
Wall shear stress (WSS) is one of the most significant mechanical 
factors affecting on AD appearance [1-3]. Scientists [4-7], are used to 
associate WSS with intimal hyperplasia of the vascular wall.

High shear stresses can cause damage to the endothelial layer 
of the wall, activation and aggregation of platelets, formation of 
thrombosis [8,9] and plaque rupture [10]. 

In present time most researchers considered low wall shear stress 
is directly associated with AD [3, 4, 10-13]. Younis [14], notes that the 
wall shear stresses below 1.5 Pa stimulating atherogenic phenotype 
and is usually seen in areas prone to atherosclerotic deposits. 
Particular geometries in the arteries, such as bifurcations, bindings 
and anastomoses can create focal areas of reduced wall shear stress and 
stimulate the proliferation of smooth muscle cells. The most specific 
area of wall shear stress localized significant reduction is a bifurcation 
of the carotid artery [15]. A feature of the carotid bifurcation is the 
presence of sinus in the first segment of the internal carotid artery 
(ICA). This local extension of the lumen with a branch and various 
outflow resistance in the internal and external carotid arteries leads to 
the formation of a complex flow system. Flow separation occurs along 
the outer wall of the ICA sinus situated opposite the flow divider, and 
leads to velocity profile offset toward the inner wall of the ICA. These 
characteristics of the flow conduct the formation of large areas of 
low shear stress along the outer wall of the carotid artery. They also 
lead to the reverse flow periods within each pulse cycle formation. 
The highest value of the effective stress is detected in the apex of the 
bifurcation. It is in this section the blood flow is dividing, causing 
such stress state.

Effective stress in the wall is another mechanical factor affecting 
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This system can be written in vector form:
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basis. 

Blood viscosity was assumed to be 0.004 Pa s and density was 
1050 kg / m3. In [20], it was shown that the non-Newtonian blood 
properties must be taken into account only in the small vessels 
simulations (diameter less than 0.1 mm), when the flow velocity and 
the shear stresses are small. The wall was considered incompressible, 
isotropic, linearly elastic and homogeneous. Mechanical 
characteristics (Young’s modulus and Poisson’s ratio) of the wall and 
AP were taken from the literature [21].

The equations of motion for an elastic body movements satisfying 
Hooke’s law in the case of small deformations are called Lame 
equations or the Navier-Lame. They are derived from the equations 
of continuous medium motion by substituting the expressions for 
components of stress tensor and components of small strains tensor

( ) 2 ,ij 1 ij ijp = I +λ ε δ µε , as well as the Cauchy equations linking 

components of the small deformations tensor and displacement 

vector components 1 .
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 Where λ, µ  are Lame 

elastic constants, ( )1I ε  is the first invariant of the small deformations 
tensor.

Lame equations are:

( )+ grad div u + u + F = a,λ µ µ∆ ρ ρ

Where a  - acceleration.

In a Cartesian coordinate system they can be written as follows:
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Where u, v, w are displacement vector components, and Fx, 
Fy. Fz - components of the external volume forces, which were not 
considered in this study?

The system of Lame equations for dynamic problem becomes 
closed, if we add the definition of acceleration 

.i
i

dv v v dua = = + v , v =
dt t x dt

∂ ∂
∂ ∂

Lame equations are derived under the condition of small 
deformations, but displacement, velocity and acceleration can be 
finite.

Solving basic system of equations [19], was carried out 
numerically using the finite element method in the finite element 
software ANSYS. Two software modules were used: ANSYS CFX for 
simulating blood flow, and Structural (Mechanical) for simulating the 
stress-strain state of the walls.

Geometric models of vessels were built on basis of healthy and 
diseased vessels casts in the CAD system SolidWorks. The carotid 
arteries were removed from cadavers during autopsies on the level of 
separation from aorta to the level of entry into the skull. Based on these 
vessels corrosive preparations (casts of the common carotid, internal 
and external carotid arteries) were made. Then they were imaged and 
outlined. Cross sections of healthy blood vessels considered circle. 
Figure 1 shows an image of a cast with cross-section of the internal 
lumen.

Next, the same method was used to create a geometric model of 
arterial wall. The wall of healthy blood vessels are also considered 
circular cross-section. Figure 2 shows the model of a healthy carotid 
artery.

During the simulation at the inlet of the common carotid artery 
linear time-dependent blood flow velocity was determined. The 
simulation was performed for two cardiac cycles within 2 seconds. 
Analysis of the results was held for a second cardiac cycle from 1 to 
2 second.

For the AP analysis a model of carotid artery plaque in the area 
of the bifurcation area was created (Figure 3). The narrowing of 
the vessel lumen was 50% of the original diameter. This model was 
chosen because of the most frequent localization of the carotid AD in 
this area according to the literature [15].

Results and Discussion
AP configuration significantly reduced the rate of blood flow in 

the external carotid artery (ECA). Blood flow in the ECA is practically 
stopped after the bifurcation. This AP configuration leads to almost 
complete blockage of the vessel, both in systole and diastole (Figures 
4,5).

Analysis of the streamlines is also confirms blocking of the ECA: 
there is no significant blood flow in vessel both in the case of soft and 
hard plaque (Figures 6,7). In addition, in the ICA ampoule in case of 
both soft and hard AP significant vortex flow and the formation of the 
congestion zone were observed. At this point there is a possibility to 
further formation and progression of AP.
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The maximum effective stress values were observed at the 
boundary between the healthy part of the common carotid artery 
(CCA) and the section with AP. In the case of soft plaque maximum 
values were much higher than in the case of hard plaque (Figure 
8). This may cause soft plaque detachment and further thrombus 
formation. Meanwhile in the case of the soft plaque there is minimal 
stress in plaque itself, while a rigid plaque stress value order coincides 
with the maximum stress.

The lowest shear stresses both in the case of soft and tough 
plaques appeared on the inner wall of ICA on the site after the 
bifurcation junction (ampoule). EСA in this case was also subjected to 
a minimum shear stresses. This can be explained by the peculiarities 
of hemodynamic pattern: there was no active blood flow in the vessel. 
The highest shear stresses on AP were observed in apex bifurcation 
point. This is due to a significant narrowing of the artery in this area 
and the significant increase in the flow rate. A similar pattern was 
observed throughout the whole cardiac cycle with both types of AP 
(Figure 9).

Thus, for both types of plaques stress-strain state of the vessel 
matched in general. The highest stress occurs at boundary between 
the healthy part of the CCA and AD affected part. The lowest shear 
stresses observed in the ICA ampoule. The main difference is in the 
distribution of the effective stress on the plaque at the bifurcation 
node due to varying plaques hardness.

Figure 1: Cast of the carotid artery with cross-sections.

Figure 2: Model of healthy carotid artery.

Figure 3: Model of the vessel with the plaque in bifurcation area.

Figure 4: Velocity field in systole. Left – soft plaque, right – tough plaque.

Figure 5: Velocity field in diastole. Left – soft plaque, right – tough plaque.

Figure 6: Streamlines (systole). Left – soft plaque, right – tough plaque.

Figure 7: Streamlines (diastole). Left – soft plaque, right – tough plaque.
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In case of the affected vessel volume blood flow was very small 
at the outlet of the ECA. In case of the affected vessel there was 
almost 30% increasing of blood flow in ICA in comparison to healthy 
artery. This will certainly have a negative effect on the hemodynamics 
(Figure 10).

The distribution patterns of effective strain in the vessel wall with 
tough and soft plaques did not differ much. Strain orders are also 
coincided (Figure 11).

The maximum deformation was observed in the CCA, which is 
caused by geometric features of the AP. This feature may lead to a 
further weakening of the CCA wall and AD progression.

 Anatomically realistic simulation of blood flow is important for 
understanding the role of hemodynamic factors in the development 
and prognosis of atherosclerotic disease. Studies have shown that 
the genesis and progression of atherosclerosis is directly correlated 
with the distribution of the hemodynamic forces and contributes to 
atherogenesis [4,9,22]. The mechanics of blood flow in the arteries 
of a person, the relationship between the geometry of the vessel and 
the progression of atherosclerotic plaques has been proven by various 
authors [3,8,14,17,19]. 

Our study proves once again the important role of hemodynamics 
and wall shear stress in the development and progression of carotid 
atherosclerosis. Our work complements and extends the idea of 
carotid atherosclerosis as the main risk factor for stroke. To date, the 
basic research carried out by means of computer modeling techniques 
based on ultrasonographic examination of the carotid arteries. 
Sousa L. et al., in their research presented a noninvasive approach 
for simultaneously quantifying subject-specific flow patterns and 
wall shear stress distributions of human carotid bifurcation using 
a combination of US data and computer fluid dynamics (CFD) 
modeling. Application of this approach to a normal volunteer and five 
subjects with atherosclerosis demonstrated WSS-based descriptors to 
be correlated and extremely sensitive to variation in geometry and 
able to capture flow disturbances due to stenotic plaques [23,24]. 
In their opinion, one interesting area for further research is to 
develop a diagnosis procedure incorporating medical video and 3D 
ultrasound images, because multiple views given by medical video 
allow an improved 3D reconstruction of the carotid artery [23,25]. 
Computer fluid dynamics based on ultrasonographic research is 
expected to contribute towards pathologic findings. Hemodynamic 
CFD parameters such as WSS are extremely important since plaque 
ulceration is related to the existence of high WSS at the upstream 
region of the plaque and on the contrary, regions exposed to low 
WSS are most prone to develop atherosclerotic plaques [23]. Surgical 
planning and therapy outcomes for atherosclerotic carotid bifurcation 
would benefit from a US based diagnosis assistance platform [26]. 

Another interesting approach is method of video segmentation of 
the carotid artery. This method may be used to estimate the motion, 
find and track the boundaries of the plaque, classifying the motion 
of the plaque in normal or abnormal, and thus finding normal 
and abnormal plaques. Since disturbed hemodynamics might be 
important in assessing the prognostic of further progression of the 
atherosclerotic disease, the hemodynamic modeling incorporating 

Figure 8: Effective stress in the wall near the bifurcation. Left – soft plaque, 
right – tough plaque.

Figure 9: Wall shear stress. Left – soft plaque, right – tough plaque.

Figure 10: Volume flow at the outlet of ICA.

Figure 11: Deformations of the model with soft (left) and rigid (right) plaques.
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non-rigid walls will be better suited at evaluating the tensile stresses 
within a vulnerable plaque. Subject specific identification of the link 
between hemodynamic behavior and stenosis pathophysiology might 
allow testing hypotheses and to address important clinical vascular 
problems, improving diagnostic and therapy treatment or surgical 
planning [27]. In contrast to the above work, we conducted studies 
on autopsy material, taken at autopsy of patients of different age 
groups. Production of corrosive carotid method allowed us to create 
a realistic anatomical model of the vessel, which allowed to carry out 
an objective atherogenesis modeling using finite element methods of 
forecasting (ANSYS). In the future we plan to expand the study due to 
application of the method ANSYS CFX in ultrasonographic research 
of the carotid arteries.

Conclusion
We discovered the phenomenon of stress-strain state of 

atherosclerotic plaques: soft plaque is different from the rigid, which 
creates conditions for plaque rupture under the influence of blood 
pressure and shear stress. The stress difference between rigid and 
unchanged vessel with carotid stenosis creates additional flows and 
vortexes, growing in proportion to the increase of the plaque size. 
In addition, such state can be directly related to the development of 
mural thrombosis. Analysis of the blood flow velocities vector field 
and pattern of streamlines in the external carotid artery demonstrates 
a complete blockage of the vessel. The increase of volume blood flow 
in ICA by about 30% leads to negative changes in hemodynamics 
and increased manifestations of cerebrovascular insufficiency. 
Vortex and congestion area formation in the ampoule of ICA creates 
conditions for further plaque progression. Increased level of effective 
stresses at the junction of the health sector and the vessel affected by 
atherosclerosis in the case of soft plaque creates the conditions for the 
plaque rupture and further thrombus formation.

The ultrasound data on the plaque structure can be used to 
predict future behaviour of different plaques types in the carotid 
atherosclerosis. Analysis of the distribution of hemodynamic forces 
shows weaknesses in the ampoule and bifurcation node of the carotid 
arteries, which should be considered during reconstructive surgery.
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