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availability of a variety of lipids and to accommodate different types 
of antigens/immunomodulators [2,6]. While liposomes have initially 
reached the market as drug carriers, their potential as potent vaccine 
adjuvants has been demonstrated against several diseases such as HIV 
[7] tuberculosis [8], malaria [9] and leishmaniosis [10] indicating 
that liposomal systems have promising future as vaccine adjuvant. 
Various liposome based products viz. hepatitis A vaccine have been 
licensed and some are in various phases of clinical trials [11,12]. 

Conventional liposomes (CL) find limited applications as they are 
inert or non-stimulatory (requires tagging with immunostimulants) 
and due to endocytic modes fail to deliver antigen to the cytosol 
for MHC I presentation and subsequent induction of a cytotoxic 
T cells (CTLs) response [13]. Several bacterial cell wall/membrane 
components or pathogen associated molecular patterns (PAMPs) have 
been widely exploited as immunepotentiators/ immunomodulators 
[14,15]. Liposomes composed of total polar lipids (TPL) isolated 
from various non-pathogenic and/or attenuated bacteria have shown 
to be very potent adjuvant/antigen delivery vehicles that can induce 
strong immune response correlating to significant level of protection 
against various infection in animal models [16-19]. These liposomes 
being immunostimulatory and fusogenic (IFL) were able to activate 
both innate and adaptive immune responses simultaneously. The 
simultaneous induction of both humoral and CMI by IFLs may due 
to their ability to be phagocytosed and target antigen to endosomes 
for MHCII presentation and fusion with APC to deliver antigen in 
cytosol for MHCI presentation leading to activation of CMI (Figure 1). 
Although much success has been shown by liposomes, the mechanism 
of their stimulating effect on innate immunity has been studied 
inadequately. In particular their global effects on gene transcription 
and the complex regulatory machinery in the cell that leads to 
enhanced immune responses are poorly understood. Liposomes 
are considered to be a sensitive adjuvant. Small changes in their 
properties (lipid composition, size, charge) lead to great differences 
in immune responses. Thus, availability of immunological profile of a 
liposome with a particular charge, size and lipid composition would 
enable rational retro-design of liposomal vaccine adjuvants. While 
the mechanism of most of the currently used adjuvants like alum, 
MF59, CpG are being explored by exploiting transcriptional gene 
profiling, only a few studies have reported the adjuvant mechanism 
of liposomes [20,21]. We have explored the adjuvant mechanism of 
immunostimulatory and fusogenic liposomes in mice by applying 
microarray-based transcriptional profiling. Our results have shown 
that injection of conventional (CL) or immunostimulatory/fusogenic 
liposomes (IFL) at mouse. Muscle or peritoneum induced distinct 

Editorial
The current generation vaccines are mainly composed of highly 

purified antigens and tend to be poorly immunogenic, requiring 
potent adjuvants for their success. The adjuvants currently available 
suffer from various drawbacks such as low potency (inability to 
activate strong humoral and cell-mediated immune response) and 
extreme toxicity for routine clinical use in humans. In addition, not 
all adjuvants are effective for all antigens. The compromise between 
the requirement for strong adjuvant activity and an acceptable low 
level of toxicity has left us with limited choice of adjuvants. Although 
alum adjuvant has been used for decades, it is associated with severe 
local reaction and is unable to activate cell-mediated immunity, 
hence has proven unsuccessful against intracellular infections [1]. 
Therefore, it is very important to identify new adjuvants or improve 
the existing ones. The ideal adjuvant would be one that apart from 
activating strong humoral and cell-mediated immune response, has 
negligible toxicity to the host. 

The success of traditional vaccines (killed and live attenuated) 
have been attributed to two features; their ability to stimulate innate 
immunity and ability to invade antigen presenting cells (APCs), 
thereby delivering antigen in cytosol for induction of adaptive 
immune response. The modern vaccines based on subunit antigens, 
although better defined and tend to be safer lack these two features 
resulting in their inability to activate strong immune response [2]. 
Therefore, these vaccines must include both immune potentiators 
and delivery systems as adjuvants for their success. Liposomes (lipid 
vesicles) seem to fulfill these criteria and have been widely studied 
as adjuvant/antigen delivery systems against various infections and 
have shown better performance than Freund’s adjuvant or alum 
[3,4]. Liposomes can facilitate in vivo migration of antigens and 
deliver encapsulated antigen into cytosol of the antigen presenting 
cells for both cell-mediated as well as humoral immune responses [5]. 
The type and degree of immunogenicity enhancement by liposomes 
depends on its composition, size, charge and the type of antigens 
[6]. The success of Liposomes in enhancing the efficacy of subunit 
antigens is mainly due to protection (preventing degradation in 
vivo) enhanced targeting to professional APCs viz. macrophages and 
DCs, slow and controlled release of antigen (depot effect) leading 
to long lasting and sustained immune response, nontoxicity and 
biodegradability. The major advantage is in their versatility in the 
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differences in magnitude and quality of innate immune responses. 
The innate response generated also correlated to the adaptive immune 
response (unpublished data). 

In conclusion, immunostimulatory and fusogenic liposomes are 
effective and promising vaccine adjuvants which can be engineered 
to produce desired immune response against the particular pathogen. 
Exploiting new technologies to understand molecular mechanism of 
liposome action will pave way for the development of novel liposome-
based therapeutics and prophylactics.
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