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Abstract

Nitric oxide (NO) is an important organizer of the cardiovascular function and is an important mechanism 
in hampering the pathogenesis of the diseased heart. The scenario of bioavailable NO in the myocardium 
is complicated: 1) NO obtain from both endogenous and exogenous NO synthases (NOSs) and the number 
of NO from exogenous sources varies considerably. 2) NOSs are located at separated regions of cardiac 
cells and are organized by varied ways under stress.3) NO arranges various target proteins via different 
ways of post-transcriptional modifi cation which are soluble guanylate cyclase [sGC]/cyclic guanosine 
monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation, S-nitrosylation, and trans-
nitrosylation. 4) the downgradient stabilizers of NO differ from proteins and enzymes in the mitochondria 
and membrane.5) NOS generates several radicals in addition to that NO (varied NO-associated yields) and 
stimulates redox responses. But, NOS inhibits cardiac oxidases to diminish the sources of oxidative stress 
in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under 
pathological stress and NO-dependent mechanisms are better understood in healthy and diseased hearts. 
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Introduction

Nitric oxide (NO) is a primary matter that plays important 
roles in maintaining cardiovascular functions in humans [1–
5]. The NO that argues positions in the myocardium can be 
obtained via exogenous matters or is generated from the 
endogenous NO synthases and alertable NOS by infl ammatory 
cytokines following infection [4–6]. The impacts of NO on 
myocardial functions and the roles for NOS in diseased hearts 
has improved in the last times. Overall approaches have been 
assumed to succeed this outcome, containing manipulation 
of stabilizers of to supplementation of NO mimetics, and 
precise detection of plasma and tissue NO [4,5,7,8]. Even so, 
the practical arguments of NO and its regulators in therapeutic 
strategies in cardiovascular diseases hamper because of the 
compound nature of NO and the array of downstream signaling 
cascades and stabilizations in the myocardium. 

Resource of NO and effect mechanisms

It is affi rmed that NO is varied from the standard L-arginine–
NOS–NO way. Actually, NO that performs functions in the 
myocardium may also be obtained from the other source of NO. 
Nitrate (NO3 −) in many types of green vegetables [9–11], is 
taken up into the plasma to become a safe reservoir and the 
decisive pioneer of NO. Nitrate from this source is taken on by the 
salivary , is secreted in the intensifi ed form in the saliva, and is 
right after diminished to more active nitrite (NO2 −) in the oral 
cavity by nitrate reductases of commensal bacteria. Nitrite is 
decreased to NO in the stomach and is sucked up into the plasma 
in the gastrointestinal system. Many proteins are known to be 

contained in the NO metabolite cycle and nitrite’s reduction to 
NO, including xanthine oxidase [12,13], deoxyhemoglobin and 
deoxymyoglobin [14–16], neuroglobin [17], respiratory chain 
enzymes [18], cytochrome P450 [19], aldehyde oxidase [20], 
carbonic anhydrase (21) and NO synthase [22,23].Indepth, 
up to 25% of nitrate re-uptake by the salivary and generates 
NO in the circulation; the rest of the nitrate is secreted in the 
urine. The number of NO from exogenous can be as high as the 
number that is generated from NOS in the tissues, indicating 
the importance of this pathway in supplementing local NO 
in the tissue. The effectiveness, food derived functional NO 
is oxygen independent [10,11]. Accordingly, NO from this 
source becomes more important in ischemic conditions, like 
myocardial infarction. NO can undergo an oxidative process via 
nNOS and generate decisive nitrate, which can be diminished 
back to nitrite and NO by nitrate reductases, such as xanthine 
oxidoreductase or aldehyde oxidase [10,11]. Consequently, 
there is a fi xed of NO metabolites, and NO that maintains 
exogenous NO in the body. The respective additives of the 
endogenous versus exogenous NO to intracellular signaling 
and function in hearts in vivo remain to reveal. Some tissues 
are the active sites for NO production from constitutive NOS. 
Lately, it has demonstrated that muscle is a nitrate store up 
that gains plasma NO because of the wideness of the tissue in 
the body [24]. nNOS in the skeletal muscle promotes to the 
supply because it is the isoform in the skeletal muscle [25]. 
But, the NO from the specifi c sources that promote to the 
bioavailable NO in the myocardium. eNOS is the main isoform 
of NOS that plays signifi cant roles in NO regulation of functions 
in the majority of tissues, including the heart [4,5,7,8]. In 
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the myocyte, eNOS is located in the plasma membrane, golgi 
apparatus, nucleus, and mitochondria [8,26]. eNOS exhibits 
the highest activity at the membrane, followed by outer layers 
of the cis-Golgi and little activity in the cytosol, nucleus, and 
mitochondria [26,27]; therefore, localization is the primary 
determinant of eNOS activity for specifi c biological functions. 
Conversely, mislocalization of eNOS has been demonstrated to 
diminish its capacity to produce NO in cells [26–28]. The last 
consensus is that nNOS is the isoform that plays the major role 
in cardiac tissue because nNOS is showed in all heart [7,8]. As 
such, nNOS is well placed to fi ll primary roles in modifying 
sympathetic and parasympathetic tones.nNOS is localized in 
the sarcoplasmic reticulum (SR) [6], and is contained in the 
Ca2+ handling processes of cardiac excitation-contraction 
coupling in the myocardium [7,8]. Lately, A study has 
demonstrated that nNOS is upregulated in the myocardium 
from the disease progression [29-32], and facilitates lusitropy 
through myofi lament Ca2+ desensitization [32,33]. Until 
now, most of the responses of nNOS attributed nNOSα or 
nNOSμ [7,8]. But, the existence of many splice variants of 
nNOS (nNOSβ, nNOSγ, and nNOS2) suggests that lie variants 
of nNOS may be contained in generating NO and organizing a 
contractile function in the heart. Recently, we have presented 
new evidence to demonstrate that nNOSβ, which does not have 
the PDZ domain, is stated in the cardiac myocytes from the 
hearts of rats [34]. These results indicate that nNOSβ may play 
the major roles in myofi lament. It has been reported in skeletal 
muscle that nNOSβ is stated in the Golgi apparatus and mediates 
myofi lament regulation during exercise [25]. An overall 
understanding of nNOS and its tie various in the organelles 
and their roles in cardiac function in the hearts. Remarkable, 
the co-existence of eNOS and, nNOS and their many ties in 
the myocardium [7,8,35]. A confl ictive leaning presents this in 
protein activities of eNOS and nNOS in the frailty heart; namely, 
eNOS expression is diminished considerably, while nNOS 
activity is enhanced [30–32,36]. Otherwise, nNOS to protect 
the myocardium from Ca2+ oxidative stress [7,31,37], and both 
eNOS and nNOS infl uence intracellular Ca2+ in the cells, and 
eNOS enhanced Ca2+ transients in myocytes in response to 
increased preload [38]. Contrary, nNOS induced spontaneous 
Ca2+ [39]. Spatial redistribution of NOSs is related to both the 
changes of activity and the removal of the primary targets. 
Virtually, the nNOS may be useful in protection its business to 
apply for myocardial protection. 

NO synthase

Many mechanisms correlator the impacts of nitric oxide 
synthase. It approves that soluble guanylate cyclase (sGC)/
cyclic guanosine monophosphate (cGMP) are the primary 
mechanisms that intercede the effects of NO in the body. 
The previous mechanism contains in post-translational 
modifi cation of thiol in proteins by NO [40,41]. Protein-
protein transfer of NO is known to present the most important 
mechanisms of NO [42]. In this process, the SNO proteins are 
referred to as nitrosyl asses. Trans- S-nitrosylation possesses 
advantages for effi cient interactions between proteins [43].
Furthermore, trans-nitrosylation is important when NO 
bioavailability is limited in an oxidative and nitrosative 

stress environment, such as during ischemia reperfusion. 
S-nitrosylation can be ceased by the action of nitrosylates, with 
NADH and NADPH serving as electron donors to regenerate 
glutathione and thioredoxin [44,45]. Many types of proteins 
are targeted by NO e.g. inhibition of protein phosphatase 2A/ 
protein phosphatase one by NO causes protein kinase A (PKA) 
and phospholamban (PLN) [46], while sGC activation by NO 
in the myocardium of rats [32]. Contrary, phosphodiesterase 
5 (PDE5) reactivation by NO system limits cytosolic cGMP, 
a negative feedback mechanism of NO regulation of cGMP 
in cardiac myocytes [47]. Additionally, by targeting cardiac 
oxidases, such as xanthine oxidoreductase [48], NADPH 
oxidase [49,50], and mitochondrial reactive oxygen species 
(ROS) production [51], nNOS-derived from NO controls in 
the myocardium. Cysteine residues are the targets of ROS 
to cause S-glutathionylation in the proteins [52,53]; thus, 
S-nitrosylation by NO may block cysteine residues from 
irreversible oxidation under the conditions. Eventually, post-
transcriptional terms downstream of NO change the proteins, 
altering their activity, and function, as well as, nNOS has 
been showed to generate H2O2 in the endothelium of arteries, 
for example, the aorta, and H2O2 mediates endothelium-
dependent vascular relaxation (54,55). Contrary, blight of 
endothelial has been demonstrated to worsen endothelial 
function in some diseases [56-58], likewise, both eNOS and 
nNOS promote to acetylcholine stimulation of vasodilatation 
[55], by regulating protein kinases and phosphatases [59–
61]. Conversely, uncoupling of eNOS and nNOS [48,62–64], 
results in the production of superoxide (O2 −) in return for 
NO; eNOS and nNOS occur the oxidative stress for pathological 
progression in the heart. nNOS performs its cardiac protection 
via the ion channels, modulating abnormal Ca2+ homeostasis, 
and mitochondrial function for the pathological process [7,8]. 
nNOS organizes ion channels and Ca2+-handling proteins.
Specially, nNOS has permanently been demonstrated to 
diminish Ca2+ infl ux via the L-type Ca2+ channel (LTCC) [65]. 
In support of this, nNOS enhances the vulnerability of the 
LTCC for Ca2+-dependent inactivation in hypertension [66] 
where intracellular Ca2+ transient is increased secondary 
to nNOS-dependent myofi lament Ca2+ desensitization 
(34). Variation of the LTCC by nNOS may prohibit extreme 
intracellular Ca2+ in myocytes under pathological situations. 
The ryanodine receptor (RyR) by nNOS has been contained 
in diminishing diastolic Ca2+ leak [67], increasing RyR open 
probability, and growing contraction in cardiac myocytes [74].
Thus, nNOS protects against arrhythmogenesis by modulating 
Ca2+ transients [68-70].Besides, nNOS activity at the plasma 
membrane causes more signifi cant Na+ infl ux via voltage-
gated sodium channels via S-nitrosylation and increases the 
susceptibility of the myocardium for long QT and arrhythmias 
(34). Potassium channels are also potential targets of nNOS 
through S-nitrosylation and/or cGMP/PKG-dependent 
phosphorylation [71–73], which may play signifi cant roles in the 
formation of cardiac function in hearts. NNOS-derived NO can 
cause S-nitrosylation of the SR calcium ATPase (SERCA) both 
under basal conditions [70,74]. Inhibition of nNOS decreases 
S-nitrosylation of SERCA at baseline level, and this is related 
to reduced Ca2+ uptake in the SR and decreased relaxation [74]. 
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But, the functional important of this formation under disease 
situations survives to be detected. These results consider that 
the modes of post-transcriptional modifi cation that underlie 
the specifi c impacts of nNOS are excessively dynamic, and this 
may optimize its formation of the target proteins under many 
stimuli, containing pressure overload. 

A recent study has demonstrated that nNOS enhances 
cGMP/PKG-dependent phosphorylation of cardiac troponin 
I and cardiac myosin binding protein C and contributes 
myocyte relaxation in hypertension via cGMP/PKG-dependent 
myofi lament Ca2+ desensitization (30) (Figure 1). Myofi lament 
proteins are the targets of nNOS that mediate relaxation in 
cardiac myocytes to decrease the myocardium in hypertensive 
heart. Exogenous NO donors ease myocardial relaxation through 
sGC and cGMP/PKG-dependent phosphorylation of cTnI and 
myofi lament Ca2+ desensitization [75]. A recent report has 
shown that NO mimetics diminish myofi lament Ca2+ sensitivity 
and contractility by causing the S-nitrosylation of many 
myofi lament proteins containing actin, myosin, and troponin 
C (cTnC) [76]. These results suggest that phosphorylation and 
the myofi lament proteins are the fundamental mechanisms 
that mediate the effects of nNOS in the heart. nNOS is 
considered as the isoform that is stated in the mitochondria 
to organize cardiac metabolism [76]. NO inhibits cytochrome 
c oxidase activity by competing with O2 and inhibits electron 
transfer of complex III or NADH-dehydrogenase function at 
the level of complex I and enhances mitochondrial formation 
of O2 −. Eventually, NO inhibits the mitochondrial respiration 
chain and diminish mitochondrial oxygen consumption [77-
83]. In this respect, NO has been approved as a regulator of 
mitochondrial activity and metabolism. Even so, conditional 
overexpression of nNOS in the myocardium has related to 
enhanced nNOS in the mitochondria and a reduction in oxidative 
stress following myocardial infarction [51]. The modulation of 
oxidative stress by endogenous nNOS in diseased hearts can 
be a protective mechanism. Emerging evidence demonstrates 
that nNOS-derived NO plays leading roles in mitochondrial 
biogenesis [84,85], to maintain or enhance mitochondrial 
integrity and activity. For example, nNOS has been shown to 
be distributed to the nucleus through α-syntrophin via its 
PDZ domain in a variety of cells, containing myocytes [33,86]. 
Enhanced S-nitrosylation of nuclear proteins, containing cAMP 
response element-binding protein (CREB), in interacts with 
the promoter of the gene encoding peroxisome proliferator-
activated receptor γ coactivator (PGC)-1α promoter, a central 
component of biogenesis and nuclear respiratory factor 1 
[33]. NO has also included in cardiac energetics by impressing 
carbohydrate metabolism of mitochondria (Figure 2).

Clinical usage

Nitroglycerin has been used clinically in the treatment of 
CVD for more than 150 years. Enhanced acknowledgment of 
the mechanistic insights into NO signaling, the decomposition 
of NO, and the properties of NOSs modern technology allows 
different attitudes to enhance NO bioavailability in tissues 
for the desired responses as well. In principle, enhancement 
of NO and its signaling can be succeeded via three ways: 
enhance sources to contribute NO production, reduce NO 

metabolism/degradation, and stimulate downstream signaling 
of NO. Delivering nitrate and nitrite to step up systematic 
or local NO via nitrate–nitrite–NO and the nitrate–nitrite–
NO–fatty acid pathways are arguably the most active area 
under investigation experimentally and in the clinic [10]. So 
far, some putative precursors of NO have been described and 
are developing. Dietary consumption of NO precursors is an 
effi cient way of nitrate delivery; programming of a suitable 
diet regime for vulnerable populations will be necessary to 
diminish the cardiovascular risks the economic burden on 
national healthcare systems as well. The correlation between 
the daily consumption of nitrate and cardiovascular events is 
notable. For instance, high vegetable units received in Japanese 
historically recognised have low rates of CVD is related to 
greater circulating nitrate and nitrite [87], contrasted to those 
in the western world, where average daily nitrate intake ranges 
from 40–100 mg and 30–180 mg, respectively, and the rates 
of CVD are high [88,89]. Moreover, the use of “healthy” fats, 
as in the Mediterranean diet, in the form of unsaturated fatty 
acids, is useful in preventing the development of CVD and 
decreases the risk factors [90]. Especially, nitrite reduction to 
NO happens in the presence of hypoxia and acidosis, during 
physical exercise, at the time when the cardiac muscle needs 
NO. In rotation, supplementation of NO substrates, e.g. 
arginine, L-citrulline, and BH4, and inhibition of arginase and 

Figure 1: Demonstrated by Effect mechanisms of NO.

Figure 2: Demonstrated by Effective enzymes.
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asymmetric dimethylarginine are the strategies to enhance 
NO via promoting NOS activity [11]. Statins and nebivolol 
or carvedilol exert antiadrenergic responses through the 
stimulation of the beta3-adrenergic receptor and increasing 
NOS production of NO [91–94]. Waning the generation of 
ROS use blockers of angiotensin-converting enzyme (ACE), 
angiotensin I type 1 receptor (AT1R), or NADPH oxidases 
(NOXs) or decreasing ROS by use antioxidants and scavengers 
are the assumed mechanisms to diminish NO “sink” and thus 
maintain or increase NO level [11]. As such, it is wrong only to 
assume that NO level can be enhanced by use ACE and AT1R 
inhibitors. The development of NOX inhibitors and specifi c ROS 
manipulating drugs that do not affect NOS protein should follow, 
and the effect of NOX and ROS on nNOS protein expression 
in the myocardium should be considered. Stimulation of the 
downstream signaling pathway of NO is a recovered strategy 
to target the effector proteins. The oral sGC stimulators, 
and atrial, brain, and C-type natriuretic peptides are in 
using to enhance cellular Cgmp [11]. Inhibition of a negative 
regulator of cGMP, PDE5 is another therapeutic approach to 
stimulate cGMP/PKG signaling [95-97]. Stimulation of the 
PKG-dependent pathway has been demonstrated to exert 
potent protective effects in a broad range of cardiovascular 
disease models, including hypertension, PAH, heart failure, 
hemolytic anemia, and infarct-reperfusion injury [95-99]. 
But, the application of the drugs in a large cohort of patients 
with CVD demonstrate responses to the treatment. Some 
validated ways have been developed to enhance systemic and 
local NO levels and are promising in mediating the benefi cial 
effects in CVD. But, to translate the research innovations 
into the application to a large population, more research is 
necessary, with particular attention to the effectiveness of 
the diet and strategies of increasing nNOS and improving 
NO-effector interactions in CVD settings. The NO and NOSs 
regulate myocardial contraction, relaxation, and pathological 
signaling are advanced, but the changing paradigm in the 
myocardium is not offered. NO from sources supplying the 
NO in the myocardium, and effectiveness of NO is confi rmed 
by regulation mechanisms containing daily consumption of 
NO precursors, nitrate from skeletal muscles, NO production 
through the entire salivary NO pathway and from NOSs as well 
as the abundance of target proteins. In general, NO regulates 
downstream effector proteins through three mechanisms (sGC/
cGMP/PKG-dependent phosphorylation, S-nitrosylation, and 
trans-nitrosylation) and the numbers and types of effectors 
regulated by NO are diverse. As such, modifi cation of these 
effectors by NO subsequently triggers an array of signaling 
cascades that lead to different physiological and pathological 
consequences. By and large, NO and its downstream signaling 
pathway exert high cardiovascular protection; but, research of 
NO and NOS that are feasible for CVD and therapeutic effi ciency 
using an NO-dependent regime are still far from satisfactory 
[11].
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