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Abstract

The two Nobel prizes in physiology or medicine of 1995 and 2011 establish Drosophila genetics as 
a signifi cant contributor of genes and signaling pathways relevant to human disease, including innate 
immunity and cancer. Other than providing clues on mammalian gene homologue function, relatively little 
attention has been paid on the translational aspect of Drosophila genes, microbes and environmental 
factors that infl uence homeostasis and disease. This is particularly important for colorectal cancer 
(CRC) prevention, for which molecular diagnostic tools are non-existent. While clinical studies provide 
a wealth of information on genes and microbes linked to infl ammatory bowel disease (IBD) and CRC, it 
is unknown if they can serve as biomarkers in terms of CRC prevention. We discuss the line of research 
showing that many biomarkers of intestinal infl ammation and CRC in humans may be modeled and 
mechanistically tested in fl ies. Vise versa, genes and processes, such as regenerative infl ammation and 
aging-associated DNA damage, found in fl ies to promote tumorigenesis may be tested as biomarkers 
of CRC risk in humans. Thus, modeling human intestinal infl ammation and cancer in fl ies can provide a 
means to assess causality of conserved genes and microbes that can colonize the fl y intestine. Moreover, 
successful modeling in fl ies enables the “treatability” of the pertinent biomarkers via dietary, probiotic 
and pharmacological interventions and paves the way for clinical trials of treatments that may alleviate 
intestinal infl ammation and the risk for CRC.
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Introduction

The genetic and histological suitability of fl ies for basic 
research on CRC 

 During the last two decades Drosophila has become a 
powerful model for exploring the links between infl ammation 
and colorectal cancer (CRC). The fully sequenced genome, the 
high degree of human disease-related gene homology with 
fl ies (up to 75%), the reduced genetic redundancy, the great 
availability of genetic tools enabling spatial and temporal 
manipulation of cells, as well as, the evolutionary conservation 
of signaling pathways controlling vital biological processes 
and immunity, make Drosophila a suitable model host for the 
identifi cation of candidate biomarkers implicated in tumor-
promoting infl ammation [1,2]. In addition, the small size, 
the low cost of maintenance and the easy delivery of orally 
administrated drugs facilitate whole-animal screening 
for molecular compounds affecting stem cell mediated 
carcinogenesis [3,4]. Remarkably, there are at least 60 chemical 
compounds originally known for their activity in human cells 
that demonstrably have the same molecular mechanism of 
action in fl ies [2].  

The intestine is the most rapidly self-renewing tissue of 
the human body. Intestinal epithelium is continuously exposed 
to pathogens and chemicals of the lumen leading to enterocyte 
damage and concomitant regenerative infl ammation 
that completely replenishes the damaged or lost cells by 
asymmetrically dividing intestinal stem cells (ISCs) [5-7]. 
ISCs reside at the bottom of the crypt of Lieberkühn along 
with the secretory Paneth cells. ISCs proliferate to give rise to 
transient cells that amplify and differentiate, while moving 
upwards the crypt. Differentiated cells are found at the rim of 
the crypts and the villi. These are absorptive enterocytes, but 
also secretory cells, namely, Paneth, enderoendocrine or goblet 
cells. Between the villi and the lumen there is a goblet cell 
derived-mucus layer that protects cells from direct bacterial 
contact. The tissue is supported by stromal cells of various 
types and surrounded by visceral muscle. Similarly, Drosophila 
intestine is maintained by ISCs that divide giving rise to new 
ISCs and transient enteroblasts, which normally differentiate 
without further divisions into either absorptive enterocytes or 
enteroendocrine cells [8,9]. Although the mammalian Paneth, 
goblet and stromal cells are absent in fl ies, many of their 
immunity and barrier physiology functions are fulfi lled by 
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highly endoreplicating enterocytes and the visceral muscle [1]. 
The fl y intestine generally lacks crypts that support multiple 
progenitor cells and villi. These appear necessary for maximal 
nutrient absorption in mammals, but in fl ies a monolayer of 
epithelial cells surrounded by two layers of visceral muscle 
suffi ces for homeostasis. In addition to the mucus layer, 
the Drosophila gut lumen is surrounded by a chitin layer, 
the peritrophic matrix that confers extra protection against 
pathogens [10].  

Using fl ies for identifying genetic and microbial biomar-
kers of risk for CRC 

Fly immunity shares evolutionary conserved mechanisms 
with human innate immunity. Drosophila midgut responds 
to uracil from intestinal pathogenic bacteria by inducing the 
p38 mitogen-activated protein kinase (p38 MAPK) signaling 
pathway [11,12], which in turn activates the conserved NAPDH 
oxidase, Duox, leading to the release of reactive oxygen 
species (ROS) [13-15]. The antimicrobial activity of ROS is 
complemented with the production of antimicrobial peptides 
(AMPs). Toll signaling pathway is responsible for the systemic 
AMP response mediated by the nuclear translocation of the 
NF-B-like transcription factor(s) Dorsal and/or Dif. The 
second NF-B-like pathway of Drosophila, named immune 
defi ciency (IMD) pathway, is stimulated by peptidoglycan 
recognition proteins (PGRPs). IMD is induced by bacterial 
peptidoglycan leading to the nuclear translocation of Relish and 
AMPs expression both systemically and in the fl y gut [16,17]. 
Intestinal damage and stress are also capable of stimulating 
particular AMP expression following secretion of the Upd3 
infl ammatory cytokine, an analog of the human interleukin 
(IL)-6, which activates the JAK/STAT signaling in both ISCs 
and the visceral muscle [18,19]. JAK/STAT pathway activation 
leads to the expression of epidermal growth factors and 
consequently induction of EGFR/Ras/MAPK cascade inducing 
ISC proliferation [20,21]. Drosophila stem cells are further 
modulated by the Target of Rapamycin (TOR), Hippo and 
wingless pathways [22-24]. This infl ammation induced tissue 
regeneration process referred to as regenerative infl ammation 
may contribute to tumor initiation and progression and is 
conserved between fl ies and mammals [6,7]. 

Infl ammation is pivotal for host defense, but it can lead 
to pathogenesis when chronic and predispose for cancer. The 
infl ammatory microenvironment facilitates tumor initiation 
and progression, although a direct causality has not been 
established for CRC. Germline mutations account as a driving 
force for the 10% of CRC incidence, whereas the vast majority 
of cases associate with somatic mutations and environmental 
factors, including chronic infl ammation and bacterial 
infections [25,26]. For instance, the chronic infl ammation of 
the gastrointestinal mucosa present in IBD patients is a key 
predisposing factor for developing CRC [27]. Nevertheless, so 
far only Helicobacter pylori infection has been established as a 
causative agent of gastrointestinal infl ammation and cancer 
[28]. In mammals, areas with active infl ammatory responses 
accompanied by a high rate of epithelial cell-turnover and 

sustained DNA damage are suffi cient to drive carcinogenesis 
[29]. This setting of increased predisposition to tumorigenesis 
is also found in the aging midgut of Drosophila [30]. 
Moreover, pathogenic bacterial infection promotes intestinal 
tumorigenesis in genetically predisposed adult Drosophila [31].  

Previous studies have used fruit fl ies as model hosts to 
induce intrinsic and extrinsic oxidative damage that resembles 
the aging associated changes in progenitor cells [32]. Collective 
evidence indicates accumulation of H2AvD foci in ISCs, 
analogous to the mammalian H2AX, a DNA damage marker. 
H2AvD foci correlate with -ray-induced DNA damage in ISCs 
and age-related accumulation of 8-oxo-2′deoxyguanosine. 
Interestingly, age and oxidative stress related DNA damage 
in Drosophila can be alleviated by the chemotherapy drug 
Metformin via downregulation of the insulin-like growth 
factor-I receptor/insulin receptor (IGF1R/IR) and the AKT [33]. 
As ISCs age, they acquire persistent chromatin lesions bearing 
double strand breaks (DSB) and thereby, initiating a continuous 
secretion of infl ammatory cytokines. In mammals, damaged 
ISCs that have entered senescence preserve their capacity to 
secrete different factors and interact with the surrounding 
microenvironment [34]. Similarly, age-related DNA damage 
and JNK-driven dysplasia correlate with barrier failure and 
excessive systemic infl ammatory signaling attributed to 
the bacterial translocation across the Drosophila gut [35,36]. 
Somatic inactivation of Notch tumor suppressor during aging 
in fl ies causes spontaneous neoplasia driven by somatic 
recombination, genomic deletions and rearrangements [30].  

As microbial intestinal load increases with age, it becomes 
challenging to maintain symbiosis between the host and its 
microbes. Alterations within the microbiome structure could 
elicit an acute infl ammatory signaling through the increased 
production of ROS and AMPs and the release of infl ammatory 
cytokines and growth factors that regenerate the intestinal 
epithelium. However, chronic infl ammatory responses 
and the excessive exposure of cells to oxidative stress have 
adverse effects on homeostasis, leading to dysbiosis. Dysbiosis 
is correlated with IBD [37] and cancer [38]. Drosophila is 
characterized by a simple microbiome of less than 30 microbial 
species [35] compared to that of humans, which is composed 
with hundreds of different bacterial species [39]. Lactobacillus 
and occasionally Enterobacteriaceae are part of both the fl y and 
human microbiome. While huge differences exist, symbiotic 
bacteria are critical for host physiology in both species and 
the number of human bacteria that can colonize fl ies is far 
more than those found naturally. They promote growth 
by modulating nutrient metabolism and absorption [40] 
and participate in the shaping of gastrointestinal immune 
landscape [41,42]. Therefore, pinpointing the mechanisms by 
which gut microbiota affects health and disease, may help to 
suggest new therapeutic approaches to alleviate microbiota-
directed infl ammation and CRC incidence. Bacterial mono-
associations or poly-associations with germ-free fl ies would 
provide insights regarding the contribution of symbiotic 
bacteria at the species level in intestinal disease.    
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Mammalian genetic and microbial biomarkers of risk for 
CRC 

Most CRC cases are sporadic, that is, with no known genetic 
component attributed to them (70%-80% of all cases) and 
usually appear at an old age [43,44]. Hereditary forms of CRC 
include familial adenomatous polyposis (~1%), non-polyposis 
hereditary CRC or Lynch syndrome (2%-5%) and MYH-gene 
associated polyposis (<1%) [45]. Interestingly, molecular 
and cellular alterations precede morphological changes of 
the intestinal mucosa, and may predispose for tumorigenesis 
[46,47]. This must be true also for intestinal microbes and their 
balance [48]. Such alterations may be blamed for the recurrence 
of adenomatous polyps after surgical excision [49]. Therefore, 
ongoing efforts turn towards fi nding specifi c genetic and 
microbial markers that will allow the early detection of CRC 
appearance in terms of personalized medicine and treatment.  

A hallmark of transition from normal colonic epithelium 
to neoplastic is genomic instability (GI), which is divided to 
chromosomal instability (CIN), microsatellite instability (MSI) 
and epigenetic instability (EI) [44]. The most familiar form of 
GI is CIN, which is implicated in 80%–85% of colorectal tumors 
[50]. GI is characterized by a) the presence of aneuploidy, which 
involves changes in chromosome number, b) modifi cations 
in the gene structure, such as insertions, deletions or base 
substitutions, which are also caused by MSI, c) chromosome 
rearrangements and d) gene multiplying. The basic concept of 
GI involves the loss of function of tumor-suppressor genes, 
such as adenomatous polyposis coli (APC), p53, SMAD4, and 
tumor-suppressor genes on chromosome 18q the area deleted 
in colon cancer (DCC), or the activation of the K-Ras oncogene 
[51].  

APC is mutated in up to 80% of sporadic CRC cases and 
is involved in the negative regulation of Wingless-Int (WNT) 
signaling pathway. WNT pathway regulates various biological 
processes, such as cell proliferation, differentiation, polarity, 
and movement, and maintains intestinal epithelial cell (IEC) 
homeostasis [52-54]. The canonical WNT pathway is highly 
conserved and initiates with the binding of Wnts to Frizzled 
(Fz) receptors [55-57]. Downstream of Fz, Dishevelled (Dsh) 
the glycogen synthase kinase 3 beta (GSK3) and casein kinase 
I- (CK1) result in the docking of the scaffold protein Axin 
and APC and the stabilization of -catenin. The complex with 
-catenin is disrupted upon ligand signaling and -catenin 
moves to the nucleus where it binds to T-cell factor/lymphoid 
enhancer factor (TCF/LEF) family of transcription factors 
activating specifi c Wnt target genes. In the absence of Wnt, 
the serine/threonine kinases, CK1 and GSK3/, phosphorylate 
-catenin, which is guided by the F box/WD repeat protein 
-TrCP, for degradation to the proteasome. In the absence of 
signaling, TCF/LEF is not activated by -catenin and its targets 
are suppressed by Groucho [58]. The TCF binding sites are also 
similar between vertebrates and Drosophila [59]. The function 
of -catenin as a TCF activator is strictly regulated by the 
multiprotein complex that involves APC, which when mutated 
-catenin is activated to induce tumor-promoting genes, such 
as Myc [60].  

The KRAS oncogene is an activated form of the endogenous 
gene and present in up to 43% of human CRC tumors. It 
encodes the guanosine diphosphate (GDP) and guanosine 
triphosphate (GTP) binding proteins. Wild type KRAS is induced 
by the epidermal growth factor receptor (EGFR) pathway, but 
the KRAS oncogene is constitutively active independently 
of such stimulation [61]. Activation of EGFR promotes an 
excessive mitogenic signaling cascade through the activation 
of numerous pathways, including the RAS – RAF – mitogen-
activated protein kinase (MAPK), the phosphatidylinositol 
3-kinase (PI3K) – Akt, and the phospholipase C pathway 
[62, 63]. BRAF V600E (involved in 10-15% of CRC tumors), 
which encodes a guanosine triphosphate (GTPase), is also 
involved in the EGFR pathway activation [64]. PIK3CA gene of 
PI3K pathway is mutated in 15% of CRCs [65], while some 
cases include mutations in PTEN, a tumor suppressor, which 
normally inhibits PI3K [66]. Additional mutations present in 
CRC tumors include FBXW7, TCF7L2, NRAS, FAM123B, CTNNB1 
and SMAD2 [67] (Table 1). Mutations in the MSI pathway are 
primarily due to the loss of function of DNA repair proteins, 
MLH1, MLH3, PMS1, PMS2, MSH2, MSH3, MSH6 and Exo1 
[68]. MSI also affects cell mitosis (TGF-, GRB1, TCF-4, WISP3, 
activin receptor-2, IGF-2 receptor, axin-2, and CDX), apoptosis 
(BAX, caspase-5, RIZ, BCL-10, PTEN, hG4-1, and FAS), and 
additional DNA repair genes (MBD-4, BLM, CHK1 and RAD50) 
[69, 70]. The most known, clinically evaluated MSI markers 
are mononucleotide (BAT-25, BAT-26, NR-21, NR-24 and 
MONO-27) exhibiting high sensitivity and specifi city [64] 
(Table 2). Two kinds of EI have been mostly described in CRC: 
CpG island methylator phenotype (CIMP), and global DNA 
hypomethylation. Both mechanisms cause silencing of gene 
expression. Known biomarkers for CIMP-positive tumors are 
CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 and methylation 
must occur in at least 3 of them [71]. Indicative lists of mouse 
and fl y homologs of human genetic and epigenetic biomarkers 
of infl ammation and CRC are provided in Tables 1, 2. 

Genetic biomarkers linked to infl ammation (IBD) may 
also be linked to CRC. Chronic infl ammation and tissue 
damage induce cell proliferation and aberrant differentiation 
of macroscopically normal-appearing colonic mucosa, which 
may lead to crypt enlargement and potentially to cancer 
initiation and progression [72-74]. The most used marker for 
cell proliferation during infl ammation and cancer is KI67 [75-
80]. Additional markers used to estimate colorectal tumor cell 
mitosis are MCM7 and its negative regulator Geminin, which 
are involved in the DNA replication [81-83], as well as, Aurora 
kinase A (AURKA), which plays a critical role in cell cycle 
regulation [84], and proliferating cell nuclear antigen (PCNA), 
which is necessary for DNA synthesis during replication [85,86]. 
Infl ammation responses involve the recruitment of tissue-
resident macrophages and mast cells, which produce a variety 
of infl ammatory mediators, including cytokines, chemokines, 
proteases, matrix metalloproteinases, TNF-, interleukins 
(IL), interferons (IFN), and enzymes such as cyclooxygenase-2 
(COX-2), 5-lipoxygenase (5LOX), and phospholipase A2 
(PLA2) responsible for eicosanoid formation [87]. Many other 
cytokines may be pro-tumorigenic, including IL-4, IL-6, IL-
8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-, and VEGF 
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[88]. These mediators could serve as prognostic biomarkers 
for CRC appearance. Additional processes and genes affecting 
susceptibility to intestinal infection, stress or infl ammation in 
human, mice and fl ies are described in table 2 [89]. 

Bacteria have been linked both positively and negatively to 

infl ammation (IBD) and CRC. Major disruption of the healthy 
microbiota caused by extensive and prolonged antibiotic use, 
especially in neonates and children, can result in life-threatening 
necrotizing enterocolitis. In this case intestinal dysbiosis 
results in excessive infl ammation, mucosal injury and cell death 
without regeneration [90]. Shifting the balance of intestinal 

Table 1: Genomic Instability and Epigenetic Instability related genes and their homology in human, mice and fl ies.

PROCESS 
HUMAN 

SNPs/GENES [136] 
MOUSE 

SNPs/GENES [137] 
FLY GENES HOMOLOGY 

Chromosomal Instability 

APC APC APC-like [138] Human-mouse: 90% 

TP53 Trp53 p53 [139] Human-mouse: 77% 

SMAD4 Smad4 Med [140] Human-mouse: 98% Human-fl y: 78% 

KRAS Kras Ras85D [141] Human-mouse: 96% Human-fl y: 85% 

MYC Myc dMyc [142] Human-mouse: 87% 

RAF1 Raf1 D-raf [143] Human-mouse: 98% 

PIK3CA Pik3ca PI3K [144] Human-mouse: 99% 

BRAF Braf Raf [145] Human-mouse: 86% Human-fl y: 45% 

PTEN Pten Pten [146] Human-mouse: 99% Human-fl y: 47% 

FBXW7 Fbxw7 Archipelago [147] Human-mouse: 95% 

TCF7L2 Tcf7l2 dTCF [59] Human-mouse: 97% 

NRAS Nras NRas [148] Human-mouse: 99% 

AMER1 Amer1  Human-mouse: 77% 

CTNNB1 Ctnnb1 arm [149] Human-mouse: 99% Human-fl y: 67% 

SMAD2 Smad2 Smad2 [150] Human-mouse: 99% 

Microsatellite Instability MLH1 Mlh1 Mlh1 [151] Human-mouse: 88% Human-fl y: 58% 

MLH3 Mlh3  Human-mouse: 70% 

PMS1 Pms1  Human-mouse: 75% 

PMS2 Pms2 Pms2 [152] Human-mouse: 77% 

MSH2  Msh2 spel1 [153] Human-mouse: 93% Human-fl y: 45% 

MSH3 Msh3  Human-mouse: 82% 

MSH6 Msh6 Msh6 [152] Human-mouse: 85% Human-fl y: 44% 

Exo1 Exo1  Human-mouse: 73% 

TGFB1 Tgfb1 Dlk1/Pref-1 [154] Human-mouse: 90% 

PIK3R1 Pik3r1 Pi3K21B [155] Human-mouse: 96% 

TCF-4 Tcf4 dTCF [59] Human-mouse: 96% 

WISP3 Wisp3 Ccn [156] Human-mouse: 79% 

ACVR2A Acvr2a put [157] Human-mouse: 99% Human-fl y: 47% 

IGF2R Igf2r DInR [158] Human-mouse: 81% 

AXIN2 Axin2 Daxin [159] Human-mouse: 88% 

CDX Cdx1  Human-mouse: 84% 

BAX Bax  Human-mouse: 92% 

PRDM2 Prdm2  Human-mouse: 81% 

BCL10 Bcl10  Human-mouse: 91% 

PA2G4 Pa2g4 CG10576 [160] Human-mouse: 99% Human-fl y: 56% 

FAS Fas  Human-mouse: 49% 

MBD4 Mbd4  Human-mouse: 96% 

BLM Blm  Human-mouse: 75% 

CHEK1 Chek1 grp [161] Human-mouse: 93% Human-fl y: 47% 

RAD50 Rad50 rad50 [162] Human-mouse: 92% Human-fl y: 29% 

Epigenomic Instability 

CACNA1G Cacna1g Ca-α1T [163] Human-mouse: 94% 

IGF2 Igf2 Igf [164]  Human-mouse: 82% 

NEUROG1 Neurog1 Atonal [165]  Human-mouse: 77% 

RUNX3 Runx3 Runt [166] Human-mouse: 89% 

SOCS1 Socs1 SOCS36E [167] Human-mouse: 92% 
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Table 2: Processes and genes affecting susceptibility to intestinal infection, stress or infl ammation in humans, mice and fl ies, per Vaiserman, 2015 [89].

PROCESS HUMAN 
SNPs/GENES [136] 

MOUSE 
SNPs/GENES [137] FLY GENES HOMOLOGY 

Autophagy 

ATG16L1 Atg16l1 CG31033 [168] Human-mouse: 94% Human-fl y: 38% 

IRGM1 IRGMI  Human-mouse: 57% 

ULK1 ATG16L1 Atg1 [169] Human-mouse: 89% 

MTMR3 Mtmr3 CG3632 (Myotubularin-like) [170] Human-mouse: 84% 

VAMP3 Vamp3 n-Syb, Syb/dVAMP [171] Human-mouse: 94% 

DAP Dap  Human-mouse: 96% 

LRRK2 Lrrk2 dLRRK [172] Human-mouse: 87% 

CUL2 Cul2 Cul-2 [173] Human-mouse: 97% Human-fl y: 51% 

PARK7 Park7 dj-1beta [174] Human-mouse: 92% Human-fl y: 56% 

Innate Immunity 

NOD2 Nod2 PGRPs [6] Human-mouse: 79% 

RIPK3 RIPK3 Imd homolog of RIPK2 [6] Human-mouse: 59% 

Nf-KB Nf-KB NF-κΒ-like transcription factor(s) 
Dorsal and/or Dif [6] Human-mouse: 86% 

TNFa Tnfa Eiger [6] Human-mouse: 79% 

COX-2 Ptgs2 COX-like [6] Human-mouse: 87% 

TLR1-10 Tlr1-11 toll [53] Human-mouse: 74% 

TLR-4 Tlr4 toll [53] Human-mouse: 67% 

IL18RAP Il18rap  Human-mouse: 67% 

Β-defensins Β-defensins defensins [175]  

JAK 2,3 Jak 2,3 hop [176] Human-mouse: 94% 
Human-mouse: 83% 

TYK2 Tyk2 Tyk2 [177] Human-mouse: 78% 

IL-1 Il1 Human-mouse: 98% 
Human-mouse: 68% 

SLC11A1 Slc11a1 Nramp [178] Human-mouse: 89% 

FCGR2A  Fcgr3 Human-mouse: 60%

FCGR2B Fcgr2b  Human-mouse: 56% 

REL Rel Rel [179] Human-mouse: 70% 

CARD9 Card9  Human-mouse: 86% 

MIF Mif  Human-mouse: 90% 

FOXO3 Foxo3 dFOXO [180] Human-mouse: 94% 

Adaptive Immunity 

PRDM1 Prdm1  Human-mouse: 87% 

LSP1 Lsp1  Human-mouse: 68% 

SMAD3 Smad3  Smox [181] Human-mouse: 100% Human-fl y: 81% 

SMAD7 Smad7 MAD [182] Human-mouse: 98% 

TGF-β Tgfb1  Human-mouse: 90% 

TNFRSF6 Fas  Human-mouse: 49% 

TNFRSF9 Tnfrsf9  Human-mouse: 57% 

TNFRSF14 Tnfrsf14  Human-mouse: 46% 

IL4 Il4  Human-mouse: 41% 

IL6 Il6 Upd [6] Human-mouse: 40% 

IL10 Il10  Human-mouse: 73% 

IL12A Il12a  Human-mouse: 59% 

IL12B Il12b  Human-mouse: 66% 

IL13 Il13  Human-mouse: 58% 

IL17A Il17a  Human-mouse: 62% 

IL18 Il18  Human-mouse: 65% 

IL22 Iltifb  Human-mouse: 78% 

IL1R Il1r  Human-mouse: 69% 

IL7R Il7r  Human-mouse: 63% 

IL8R Cxcr2  Human-mouse: 71% 

IL17AR Il17ar  Human-mouse: 70% 

IL23R Il23r  Human-mouse: 67% 

IFNG Ifng  Human-mouse: 41% 

VNN1 Vnn1  Human-mouse: 76% 
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TNFSF8 Tnfsf8  Human-mouse: 70% 

TNFSF11 Tnfsf11  Human-mouse: 84% 

TNFSF15 Tnfsf15  Human-mouse: 65% 

CCR3 Ccr3  Human-mouse: 70% 

CCR9 Ccr9  Human-mouse: 86% 

CXCR3 Cxcr3  Human-mouse: 86% 

CXCR4 Cxcr4  Human-mouse: 89% 

CXCL1 Cxcl1  Human-mouse: 73% 

IL5 Il5  Human-mouse: 72% 

GATA3 Gata3 Pannier [183] Human-mouse: 96% 

DENND1B Dennd1b  Human-mouse: 83% 

LNPEP Lnpep  Human-mouse: 88% 

Regeneration 

Wnt Wnt  
Wnt [184]  

Notch Notch Notch [185] Human-mouse: 90% Human-fl y: 49% 

APC APC APC-like [138] Human-mouse: 90% 

STAT3 Stat3 Jak/Stat [19] Human-mouse: 99% 

STAT4 Stat4 Jak/Stat [19] Human-mouse: 95% 

STAT5 Stat5 Jak/Stat [19] Human-mouse: 96% 

JAK2 JAK2 Jak/Stat [19] Human-mouse: 94% 

KRAS Kras Ras85D [141] Human-mouse: 96% Human-fl y: 85% 

PIK3CA Pik3ca PI3K [144] Human-mouse: 99% 

Oxidative stress 

NOS2 Nos2 dNOS [186] Human-mouse: 81% 

DUOX2 Duox2 Duox [187] Human-mouse: 84% Human-fl y: 38% 

ADO Ado CG7550 [188] Human-mouse: 86% Human-fl y: 31% 

SLC22A4 Slc22a4 Orct [189] Human-mouse: 85% 

GPX1/4 Gpx1/4 GTPx-1 [190] Human-mouse: 93% 

UTS2 Uts2  Human-mouse: 50% 

PEX13 Pex13 Pex13 [188] Human-mouse: 91% Human-fl y: 36% 

PARK7 Park7 DJ-1alpha [191] Human-mouse: 92% Human-fl y: 53% 

DLD Dld Dl [192] Human-mouse: 88% Human-fl y: 49% 

BACH2 Bach2  Human-mouse: 89% 

LRRK2 Lrrk2  Human-mouse: 87% 

PRDX5 Prdx5 Prx5 [188] Human-mouse: 93% Human-fl y: 57% 

CARD9 Card9  Human-mouse: 86% 

SLC23A1 Slc23a1  Human-mouse: 89% 

NOX1 Nox1 Nox [193] Human-mouse: 84% 

Epithelial Barrier 

MUC1 MUC1 Mucin-like [194]  

MUC3 A630081J09Rik Mucin-like [194] Human-mouse: 64% 

MUC4 MUC4 Mucin-like [194]  

MUC5B Muc5b Mucin-like [194] Human-mouse: 76% 

HNF4A Hnf4a HNF4a [195] Human-mouse: 96% 

CDH1 Cdh1 Cdh1 [196] Human-mouse: 81% 

CDH2 Cdh2 CadN2 [197] Human-mouse: 97% 

CDH3 Cdh3  Human-mouse: 82% 

LAMB1 Lamb1 LanB1 [198] Human-mouse: 93% 

GNA12 Gna12 Cta [199] Human-mouse: 94% 

CDH11 Cdh11 Cadherin domain CG11059 [200] Human-mouse: 97% 

ERRFI1 Errfi 1  Human-mouse: 82% 

ITLN1 Itln1  Human-mouse: 81% 

MMP1 Mmp1 dm1- and dm2-MMPs [201] Human-mouse: 59% 

MMP3 Mmp3 dm1- and dm2-MMPs [201] Human-mouse: 77% 

MMP7 Mmp7 dm1- and dm2-MMPs [201] Human-mouse: 70% 

MMP9 Mmp9 dm1- and dm2-MMPs [201] Human-mouse: 81% 

MMP10 Mmp10 dm1- and dm2-MMPs [201] Human-mouse: 76% 
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microbiota from a pathogenic to a protective complement of 
bacteria can protect the gut from infl ammation and subsequent 
injury [91]. Accordingly, broad-spectrum antibiotics destroy 
the fl ora leading to intestinal infl ammation and damage that 
can be prevented with oral administration of microbiota-
derived molecular patterns, such as lipopolysaccharide (LPS) 
that induce a steady state of infl ammatory cytokines and prime 
the epithelium again pathogens [92]. From the immunological 
perspective evidence reveals various properties of intestinal 
bacteria that distinguish them as commensals vs. pathogens 
[93]. Nevertheless, for the most part microbiota is just linked 
to the healthy or the diseased state with only a few clear cases 
of bacterial pathogens presented as causal for the disease. 
Reduced abundance of potentially benefi cial bacteria has been 
reported for patients with IBD and CRC (Table 3). Some of these 
belong to the family Lachnospiraceae, which produce short chain 
fatty acids, such as the anti-infl ammatory butyric acids [94] 
and include the genera Lachnospira [95-97], Blautia [95,98-
102], Anaerostipes [95] and Roseburia [103-106], even though 
some reports indicate increase abundance in CRC [107,108]. The 
genus Lactobacillus was negatively correlated with CRC [109-
115]. Lactobacillus strains have been well characterized for their 
probiotic properties including production of butyrate, which has 
an antiinfl ammatory function [94], as well as, the antibacterial 
lactic acid and bacteriocins. In addition, Lactobacilli reduce the 
secretion of virulence factors from enterovirulent pathogens 
alleviating their deleterious effects on the host [116]. Similarly, 
Clostridia members of clusters XIVa, IV and XVIII, have been 
reported to reduce infl ammation [117] and have decreased 
abundance in IBD [117-122]. Moreover, some reports have 
found reduced amounts of Bifi dobacteria in CRC patients [95], 
while others the opposite [123]. 

Translational studies for identifying “treatable” biomar-
kers of risk for CRC using Drosophila 

Deciphering the right infl ammatory status in the intestine 
is necessary for designing clinical trials against IBD and maybe 
CRC. Mucosal healing in IBD patients has shown promise as 
it correlates with remission of ulcers in Crohn’s disease and 
erosions and ulcers in ulcerative colitis [7,124]. Transcriptomic 
studies in humans have led to the identifi cation of genetic 

and microbial associations with IBD and CRC. Here, we 
emphasize the use of Drosophila as a whole-animal model to 
validate the effectiveness, causality and toxicity of identifi ed 
“treatable” biomarkers in intestinal disease. Examples include 
the “humanized” Drosophila strains, which are genetically 
engineered to express human orthologs [2,125]. Notably, tens 
of chemicals originally selected to target human proteins, 
such as Rapamycin, BEZ235, SP600125 and DAPT, have been 
shown to have the same mechanism of action in Drosophila 
i.e. inhibition of PI3K/mTOR, JNK and -secretase/Notch 
signaling, respectively [125-130]. Thus, accumulating evidence 
suggests that Drosophila could fi ll the gap between in vitro and 
mammalian model host testing (Figure 1).  

 Moreover, fl ies could be used to examine the association 
between identifi ed intestinal disease-related microbiota 
and host. For instance, the commensal microbe of Drosophila 
Acetobacter pomorum was found to modulate insulin pathway 
via acetic acid production and subsequently promote ISC 
proliferation and overall animal growth [131]. Also, a positive 
correlation between Enterococcus spp. and IBD patients has been 
also reported. Enterococcus strains that form better biofi lms, 
adhere strongly on intestinal cells and possess antioxidant 
defense mechanisms are mostly found in IBD patients versus 
healthy people [132]. Therefore, dissecting host-microbiome 
interactions of overrepresented in IBD and CRC bacterial 
strains, such as Bacteroides, Escherichia, Enterococcus and 
Enterobacter in gnotobiotic fl ies could give insights regarding 
bacterial pathogenicity. This is more feasible nowadays due to 
the increasing number of human microbiota species that we 
are able to culture and thus test in model organisms, such as 
fl ies [133]. Similarly, Drosophila could be used to determine 
the benefi cial impact of bacteria underrepresented in CRC like 
Clostridia and Lactobacillus.  

Accumulated evidence in Drosophila highlights the role of 
diet in intestinal disease. Nutrient deprivation and reduced 
insulin pathway correlate with reduced ISC proliferation and 
number, a phenotype that is reversible upon feeding [134]. 
Dietary L-glutamate also stimulates intestinal cell proliferation 
and growth via regulation of Ca2+ signaling [135]. This 
plasticity of ISC to nutrient availability could be used to target 

MMP12 Mmp12 dm1- and dm2-MMPs 
[201] Human-mouse: 62% 

MMP13 Mmp13 dm1- and dm2-MMPs 
[201] Human-mouse: 86% 

MMP14 Mmp14 Mmp1 [202] Human-mouse: 97% Human-fl y: 39% 

TIMP1 Timp1  Human-mouse: 74% 

TIMP2 Timp2  Human-mouse: 98% 

TIMP3 Timp3 dN-TIMP [201] Human-mouse: 96% 

DLG5 Dlg5 Dlg5 [203] Human-mouse: 92% 

MLCK Mylk3 Strn-Mlck [204] Human-mouse: 68% 

Additional 
Pro-tumorigenic 

 

IL11 Il11 
 
 
 

Human-mouse: 88% 

IL23 Il23  Human-mouse: 74% 

IL33 Il33  Human-mouse: 52% 

VEGF Vegf Pvf1/3 - VEGF-related factor 1/3 [66] Human-mouse: 88% 
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the aberrant proliferation of dysplastic lesions. Given that 

CRC is a multifactorial disease, a sophisticated combination 

of probiotic, chemical and dietary interventions might be 

required to effi ciently prevent the disease. In this regard, 

tumor-initiating infl ammation may be successfully targeted 

by sequestration of regenerative chemokines/cytokines and 

selective inhibition of signaling molecules that promote tumor 

survival and growth [25].  

Limitations 

The use of animal models provides the ability to 

study the effects of biomarkers of fundamental signaling 

pathways, microbes and environmental factors and suggest 

therapeutic interventions against intestinal infl ammation and 

tumorigenesis. A practical limitation of using Drosophila in 

translational studies on IBD and CRC is the inability to assess 

the disease promoting properties of human anaerobes that 

are highly sensitive to the presence of oxygen. An additional 

limitation of the fl y model is the lack of adaptive immunity 

and the absence of lamina propria in which immune cells 

reside and infi ltrate. Thus, alternative animal hosts such as 

mouse models should be used to validate and complement the 

assessment of biomarkers, especially those related to adaptive 

immunity and highly sensitive to oxygen microbes. Regardless, 

advantages such as the short lifespan of the fl y facilitate 

assessments of drug-diet-microbial interventions against 

sporadic intestinal cancer during ageing that is impractical to 

perform in mice. Thus, Drosophila can be an attractive model 

host for studying well-conserved genetic, microbial, and 

environmental components of intestinal homeostasis and 

disease, the analogous features of which might play a pivotal 

role in human health.
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