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Abstract

Cystinosis is a rare autosomal recessive lysosomal storage disorder affecting 1 in 100,000 – 200,000 live births. It is caused by a mutation in the Cystinosin (CTNS) 
gene, a cystine-proton cotransporter, the absence of which results in intra-lysosomal accumulation of cystine. Kidneys are affected fi rst, presenting as Fanconi syndrome 
in infancy, followed by widespread involvement of the eyes, endocrine and neuromuscular system later in life. Cystinosis , having fi rst described in 1903, to the discovery of 
CTNS gene defect in 1998, has proven to be a complex disease. Clinical features are a manifestation of intra-lysosomal accumulation and interruption of cellular metabolic 
pathways in the affected organs. In this review, we explore the various pathophysiologic mechanisms underlying the manifestations of this complex disease.
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Introduction

Cystinosis is a rare autosomal recessive lysosomal 
storage disorder affecting 1 in 100,000 –200,000 live births 
[1]. It is caused by a mutation in the Cystinosin (CTNS) gene. 
Kidneys are the fi rst organs affected, presenting commonly 
in infancy with Fanconi syndrome. Cystinosin is a cystine-
proton cotransporter, the absence of which results in the 
accumulation of cystine in the lysosomes [1,2]. However, intra-
lysosomal cystine accumulation is not limited to kidneys. It has 
widespread distributio, involving the eyes, thyroid, pancreas, 
gonads, muscles, and nervous system [3]. Cystinosis, since 
being fi rst described in 1903 [4], to discovering the genetic 
defect in the CTNS gene  almost a century later in 1998 [5], 
is a very complex disease. Our understanding of its complex 
pathophysiology and genomics over the years has led to better 
treatment options, thereby improving the prognosis of an 
otherwise severe and often a fatal childhood onset disease. 

Cystinosis is a multisystemic disease with severity 
determined by the extent of involvement. Clinical features 
are a manifestation of intra-lysosomal accumulation and 
interruption of cellular metabolic pathways in the affected 
organs. The different subtypes of cystinosis are defi ned based  
on clinical presentation [1,6].

Infantile nephropathic subtype is the most severe and the 
most common subtype with early presentation and rapid 
progression to end-stage kidney disease (ESKD) within the 
fi rst decade (OMIM # 219800). Usually asymptomatic at birth, 
children become symptomatic around 6 - 12 months of life. 
Renal proximal tubule losses of water, sodium, potassium, 
and bicarbonate, along with microelements such as carnitine 
is characteristic. Failure to thrive, polyuria, and polydipsia 
with electrolyte derangements is seen within a year of birth. 
Massive proteinuria is also present. This proteinuria could 
at least be partly explained by the dysregulation of proximal 
tubular megalin/cubilin, SGLT-2, and NaPi-IIa receptors [7]. 
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Atrophic proximal tubules with a swan neck deformity, tubular 
brush border atrophy, and interstitial cystine deposition are 
characteristically seen  on kidney biopsy. Giant multinucleated 
podocytes and parietal epithelial cells are pathognomonic 
[8]. Podocyte effacement is typical in patients with massive 
proteinuria. Progression to end-stage kidney disease ESKD  
is due to interstitial fi brosis, tubular atrophy, collapsing 
glomeruli, and mesangial proliferation [9]. 

Juvenile nephropathic subtype presents in school age or 
beyond with variable presentation ranging from benign 
proteinuria and mild renal involvement to slow progression 
over time  ultimately leading to ESKD (OMIM # 219900). 
Histology is like focal segmental glomerulosclerosis. It can be 
diffi cult to diagnose initially and the diagnosis is often missed 
until later in life. 

Non-nephropathic is the adult subtype of the disease with 
isolated eye involvement from cystine deposition (OMIM 
# 219900). 

Eyes are however affected in all forms of cystinosis due 
to the deposition of cystine crystals in the cornea causing 
photophobia and blepharospasm by adolescence. Cystine  
crystals can usually be detected with slit lamp examination by 
1 year of age,  almost always by  18 months of age, especially 
in patients who did not receive appropriate treatment. Eye 
manifestations can range from superfi cial keratopathy in 
adolescents to severe retinopathy with posterior segment 
complications at older age [3]. 

Endocrine involvement in the form of Hypothyroidism due 
to thyroid follicular destruction and male hypogonadism is seen 
in up to 70% of the patients with cystinosis [10,11]. Glucose 
intolerance, diabetes mellitus, and hepatosplenomegaly are  
also seen in these patients, though at an older age.

Neurologic involvement tends to occur more frequently with 
advanced age. However, visual-spatial discordance with the 
deposition of crystals in dorsal and ventral visual pathways has 
recently been noted in children as young as 5 years of age [11]. 
Neurological involvement with motor, speech or coordination 
issues,  neurocognitive and behavioral manifestations can all be 
seen with cystinosis. More severe neurological manifestations 
resulting from cortical atrophy, hydrocephalus, necrosis, and 
demyelination have been noted in some patients [3].

Cutaneous and subcutaneous cystine deposits and melanin 
dysregulation give  the characteristic blond hair and light 
skin in these patients. Additionally Salivary and sweat gland 
involvement can be seen in cystinosis [12]. 

Genetics

Cystinosis is a monogenic autosomal-recessive disorder, 
caused by mutation in the CTNS gene located on chromosome 
17p13.2 resulting in nonfunctional cystinosin [13]. The CTNS 
gene spans 12 exons. More than 150 genetic mutations have been 
identifi ed in patients with cystinosis. The location and extent 
of the mutation on the exon correlate  with disease severity; 
severe disease in those with larger deletions [14]. A majority 

(75%) of Northern European patients have been found to have a 
mutation causing 57 kb deletion in the proximal region of CTNS, 
often extending to involve the upstream Sedoheptulose Kinase 
(SHPK) gene or into the adjacent Transient Receptor Potential 
Vanilloid-1 gene (TRPV1) [15,16]. SHPK and sedoheptulose have 
been implicated in the phosphorylation of NADPH through the 
pentose phosphate pathway, thereby altering the intracellular 
antioxidant milieu [17]. TRPV1 is a sensory receptor that has 
been implicated in preventing salt-induced proximal tubular 
damage in the kidneys [15,18]. However, the precise roles 
of SHPK and TRPV1 gene mutations in the pathogenesis of 
cystinosis are  not very well understood. Regional variation in 
the type of mutations has also been seen. A splicing mutation 
c.681G>A is commonly found in Middle Eastern populations , 
affecting exon 9 in the CTNS gene. A nonsense mutation has 
been discovered affecting about 15% of the patients worldwide 
[19,20]. 

Cystinosin and cystine transport mechanisms

Kalatzis, et al. described the model of cystinosin-mediated 
cystine transport [2] across the lysosomal cell membrane. This 
transport has been identifi ed to proceed as a distinct, L-cystine-
specifi c saturable mechanism through in-vitro studies on human 
leukocyte lysosomes [21] and mouse fi broblasts [22]. Kalatzis, 
et al further looked at pH-mediated transport mechanisms and 
found that cystine transport is strongly affected by disruption 
of the transmembrane pH gradient and that cystinosin operates 
as an H+ symporter. Therefore, acidifi cation of lysosomes 
would positively promote cystinosin mediated effl ux of cystine 
and lower its intra-lysosomal accumulation. Jonas, et al. 
[23] further demonstrated that lysosomal cystine effl ux was 
dependent on the activity of proton pump ATPase. The infl ux of 
H+ by the lysosomal H+- ATPase drives cystine into the cytosol 
via cystinosin [2]. Hydrolysis of exogenous ATP that causes 
effl ux of cystine from lysosomes was absent in cystinotic cells. 
Both the electrical and pH components of the transmembrane 
electrochemical gradient created by the H+- ATPase drives the 
cystine effl ux [24]. Cellular acidifi cation has been linked to 
amino acid production, proteolysis, and cystine effl ux out of 
lysosomes thus preventing cystine accumulation [2]. 

Intracellular cystine is produced by the oxidation of two 
molecules of cysteine. The infl ux of extra-cellular cystine and 
lysosomal proteolysis of proteins also contribute to intracellular 

Figure 1: Proposed pathophysiologic Mechanisms in cytinosis.
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cystine accumulation [16]. The exact mechanism and extent of 
each mechanism contributing to the accumulation is yet to be 
determined. Intracellular cystine contributes to the synthesis 
of glutathione (GSH), a major cellular antioxidant, through 
the glutamyl cycle. This glutathione-mediated antioxidant 
pathway  is responsible for reducing cystine into free cysteine 
by the glutathione [GSH/GSSG] redox coupling [25]. Cystine 
can enter the lysosomes via cystine-containing proteins or 
enter the cell via apical membrane transporters. After protein 
degradation, cystine effl ux from the lysosomes via CTNS is 
mediated by a proton gradient as described above. 

Proposed mechanism of cystine-mediated cell injury

1. Decreased ATP-mediated injury: Impaired ATP 
production and likely defective mitochondrial 
oxidative phosphorylation has been hypothesized and 
demonstrated in Cystine Dimethyl Ester (CDME) treated 
renal tubular cells or other cell lines [26,27]. This 
presu mably affects ATP-dependent sodium transport 
(Na-K-ATPase) in the proximal tubules causing 
Fanconi syndrome. CDME has been used traditionally to 
increase intracellular cystine to replicate cystinosis in 
in-vitro cell line models of cystinosis. However, CDME 
itself can be toxic to the cells and may not refl ect the 
exact mechanism of cystine effl ux impairment as seen 
in cystinosis [28]. Additionally, the ATP production 
pathway varies between in-vivo (glycolytic pathway) as 
opposed to in-vitro models (mitochondrial oxidation) 
[16,29]. Even though impaired or defective ATP 
production is demon strated in various in-vitro studies, 
it may not be the most plausible explanation for  all the 
pathology of cystine injury [16].

2. Apoptosis-mediated injury: Autophagy and apoptosis have 
been postulated to be one of the primary pathogenic 
effects of excessive intra-lysosomal cystine [16,30]. 
This theory is supported by the demonstration of 
elevated levels  of caspase-4, increased apoptosis due to 
pro-apoptotic stimuli, and the presence of autophagic 
vacuoles and autophagosomes in cystinotic fi broblasts 
and renal tubular cells [9]. Caspase-4 is a cysteine 
protease that regulates programmed cell death and 
causes a decrease in the tubular cells of glomeruli [31]. 
Leaky lysosomal membranes release cytosine in the 
cytoplasm triggering protein kinase C in the presence of 
pro-apoptotic stimuli [32]. These mechanisms together 
could lead to increased oxidative stress in mitochondria 
and progressive cell death and renal failure. 

3. Glutathione-mediated injury: Cysteine is a substrate 
for glutathione synthesis in the cell and excessive 
cystine theoretically decreases the cysteine pool for 
glutathione synthesis. Glutathione is a powerful 
intracellular antioxidant, decreased levels, or lack of 
which would predispose cells to oxidative stress and 
increased reactive oxygen species. However, there 
have been confl icting studies on this pathway’s role in 
pathogenesis. The theory of glutathione-induced injury 
is supported by oxoprolinuria, a marker of impaired 

glutathione pathway, in cystinosis. It is a nonspecifi c 
marker but is also seen in other genetic disorders of 
glutathione metabolism [33,34]. While some studies 
have shown decreased levels of glutathione in cystinotic 
fi broblasts and renal tubular cells [25,35], others have 
demonst rated decreased levels only with stress or even 
comparable levels [36,37]. Thus, even though a plausible 
pathogenesis, this mechanism has not been replicable 
depending on the type of cell lines and in-vivo v/s in-
vitro studies.

4. mTORC1 pathway: More recently, the role of CTNS in 
the mammalian target of the rapamycin complex 1 
(mTORC1) pathway was explored by Andrzejewska, 
et al. [38]. Cysteamine is the only treatment available 
for cystinosis that decreases intra-lysosomal cystine 
levels but does not reverse all the pathology of 
cystinosis, including Fanconi syndrome. While looking 
at alternative pathways of CTNS effects, Andrzejewska, 
et al. found that the mTORC1 pathway is downregulated 
in mice-derived proximal tubular cells in cystinosis 
[38]. mTORC1 stimulates metabolic pathways, likely 
a ctivated by amino acids via the H+ ATPase pump 
at the lysosomal membrane [39]. mTORC1 pathway 
promotes anabolic processes via protein synthesis 
and decreased autophagy. It regulates growth factors  
and nutrient  uptake and release. Stressful states like 
starvation cause inhibition on mTORC pathway thereby 
causing increased autophagy and release of nutrients 
as compensatory mechanism for starvation. [38-40]. 
CTNS was found to play a role in all the components of 
mTORC1 activation specifi cally the H+ ATPase-mediated 
activation by amino acids. This mTORC1 pathway was 
shown to be downregulated in the absence of cystinosin. 
Moreover, decreasing the levels of intra-lysosomal 
cystine by cysteamine did not alter this mechanism 
and thus CTNS itself and not cystine is likely to be 
respo nsible for the activation of this pathway [38]. This 
cou ld also explain the partial response of renal disease 
as well as extra-renal organs to cysteamine. It has also 
been hypothesized that gradual loss and decreased 
expression of megalin and cubulin in kidney proximal 
tubules could result from defective mTORC1 signaling 
due to dysfunctional cystinosin, leading to proteinuria 
[7,38].

5. Cystinosin-mediated infl ammatory response: Lobry, et 
al. put forth a newly discovered interaction between 
galectin-3 (Gal-3) and cystinosin to explain the 
selectivity of  renal tubular cells and the inability of 
cysteamine to halt the progression of kidney disease 
[41]. Gal-3 inhibition has been shown to slow the 
progression of renal injury and chronic disease in 
high-risk models like hypertension and in decreased  
proinfl ammatory marker expression and renal fi brosis 
[42-44 p.3]. Lobry, et al. made a similar observation 
wherein they found that cystinosis knock-out mice had 
increased monocyte chemoattractant protein –1 (MCP-
1) that stimulates monocyte & macrophage infi ltration. 
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Additionally, they noted overexpression of Gal-3 
mRNA in cystinosis knock-out mice, and the inability 
to clear Gal-3 effi ciently. Cystinosin likely helps  in the 
degradation of intra-lysosomal Gal-3 and consequently  
decreases the infl ammatory response and further injury 
[41]. This pathway, therefore, could potentially be a 
target for newer drug therapies

6. Endo-lysosome dysregulation: Endo-lysosomes are the 
organelles responsible for degradation and the disposal 
of cellular waste via endocytosis and autophagy. 
Additionally, endo-lysosomes regulate cellular 
metabolism and growth in times of health and stress 
like starvation and nutrient defi ciency via autophagy 
and mTORC1 pathways. The role of autophagy and endo-
lysosomes during the development of kidneys to mitigate 
cell and genetic damage has also been proposed. Lack of 
cystinosin and consequent accumulation of cystine in 
lysosomes disrupts the endo-lysosome system. This in 
turn results in proximal tubular injury and urinary loss 
of nutrients [45]. 

Summary

As outlined here, Cystinosis is an extremely complicated 
disease with an even more complex pathophysiology. Despite 
being recognized a century ago, the underlying mechanism/s 
are still not fully understood. While cysteamine has changed 
the outlook of the disease and has been instrumental in the 
management of the disease, it still is not the answer to all 
the questions. While intra-lysosomal cystine accumulation 
explains the origin of the disease, not all the features and 
course of cys tinosis are reversible or preventable solely with 
cysteamine. 

Alternative mechanisms and the role of cystinosin are 
being looked at to explain the ongoing cellular injury, either 
independently or in conjunction with cystine deposition. As 
elucidated by the many studies described here, there might 
be an independent role of cystinosin in keeping intracellular 
homeostasis, the defi ciency of which could be the missing part 
of the puzzle in cystinosis. Cystinosin defi ciency leading to 
dysregulation of intracellular milieu via the mTORC-1 pathway, 
monocyte-macrophage mediated infl ammatory pathway, and 
cellular endocytosis are some of t he proposed mechanisms. 
Further studies, however, are needed to understand and fully 
explore  and develop targeted therapies.
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