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Introduction

Molybdenum (Mo) is very important and an essential 
micronutri ent for plants, animals and bacteria [1-3]. A lot of 
soils in the world suffer due to the defi ciency of microelements 
such as Mo [4,5]. Mo is defi cient in more than 44.7 million 
hectares of land and B is defi cient in 33.3 million hectares in 
China [6]. Consequently, the defi ciency of Mo and B of soil is an 
extensive agricultural problem that induces quality and yield 
losses in various crop spe cies worldwide [6,7]. Mo-defi cient 
plants show poor growth [8] and less contents of chlorophyll 
and ascorbic acid [9].

It is seen that itself Mo not so much biologically active but 
mostly occurs as a vital part of a complex organic pterin that 
is also being called molybdenum co-factor (Moco). Including 
plants, prokaryotes and animals, Moco being found to binds 
with molybdoenzyme in the most of the biological systems 
[10]. A lot of different phenotypes starts to develop when 
under the insuffi ciency of molybdenum plant are being grown. 
Due to the reduction of molybdoenzyme activity maximum 
of these phenotypes are associated. Enzymes most of them 
include that are involving in prime N-assimilation like the 
nitrogenase (nitrogen-fi xing enzyme), Nitrate Reductase (NR) 
and those that are present in legumes nodules bacteroids. In 
plants together with xanthine dehydrogenase/oxidase some 
other additional molybdoenzyme also has been recognized 
that have very important role in the ureide biosynthesis and 
purine catabolism. It can be seen that in the legumes, during 
the biosynthesis of ABA the conversion of sulfi te to sulfate may 
be carried by the sulfi te oxidase and Aldehyde Oxidase (AO), 
that is very signifi cant in amino acid metabolism that contains 
sulfur [10]. Current review articles about the molybdenum in 
plants, prokaryotes and animals have shown the wide-ranging 
literature on formation and regulation of Moco and its activity 
with molybdenum-dependent apoenzymes [10-12]. In the 
lower order eukaryotes and prokaryotes, the system about the 
molybdate transport is characterized very well and designed 
at biochemical, genetics and physiological levels [13]. In the 
plant development aldehyde oxidase (AO; EC1.2.3.1) that is 
plant molybdoenzyme, has a very important role in relation to 
the development of plant and stresses in the environment [14-
16]. Xanthine dehydrogenase and molybdenum-hydroxylases 

aldehyde oxidase in plants have distinctive reactive oxygen 
species signatures that are tempted by the abscisic acid and 
drought. Biosynthesis of phytohormones is catalyzed by 
the AO multigene family members in the preceding step, 
such as ABA and IAA by converting abscisic aldehyde and 
indoleacetoaldehyde to their respective phytohormones [12]. 
IAA being the vital member of auxins that are plant hormones 
has a major crucial role in a lot of activities of plants comprising 
abscission, root initiation, phototropism, fruit development, 
gravitropism and apical dominance [12]. The involvement of 
IAA to stress as in salinity and defi ciency of water in plants has 
also been suggested. In response to environmental stress ABA 
also plays a very crucial and important role in plants [17]. 

As molybdenum is vital constitute in the nutrition of plants, 
this review will inspect the transport of Mo within and into 
the plants and will also explore the crucial and comprehensive 
nutrition of Mo in plant growth and development.

Impact of Mo insuffi  ciency on Growth

Molybdenum insuffi ciency resembles nitrogen defi ciency, 
as in the plant metabolism the most signifi cant role of Mo is 
the reduction of nitrate. Plants facing the Mo insuffi ciency, 
the leaves start to become pale, restricted in growth, fl ower 
development and formation may also be affected and 
eventually wither. The most typical visual defi ciency impact in 
dicotyledons is the severe abnormality in size. These are caused 
by the inadequate discrepancy of the vascular bundles at initial 
development stages of leaf and the necrosis in tissue [18].

There is a direct relationship between the molybdenum 
bioavailability in the soil and the molybdenum contents in 
soil. The molybdenum availability will be low if a soil having 
the lower soil pH [18] and the plant that is facing the Mo less 
availability shows the lesions and leaves different morphology 
was 1st time explained by Arnon and Stout, [19] and then in a 
comprehensive way by Hewitt’s group [20]. 

Mo insuffi ciency could also be due to a mutation in the 
Mo-specifi c uptake system [21,22]. In the MOT1, the knockout 
mutants in mitochondrial transport revealed that there is very 
minute change in the growth pattern [23]. As is being seen that 
though, in plant cells there are numerous Mo transporters, 
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but a severe phenotype has not been described yet. Finally, 
when there will be any kind of imperfection of biosynthesis of 
Moco that can cause molybdenum insuffi ciency and by this all 
the activity of Mo-enzyme is highly decreased or can be lost 
pleiotropically that has severe consequences for the cell. The 
loss of Mo-enzyme is most drastic for the plant? 

1) It has been known that the NR-mutants can destruct 
the complete NR-activity

2) If as a solitary N source, with No3
- these mutants 

cultured then loss of NR-activity is lethal [24]. 

3) There is no observable phenotype if a smash in one of 
the two mARC proteins occurs.

4) Although somewhat, but it is not intensely altered 
plant phenotype as the XDH1 loss has no such as lethal 
consequence. 

5) For AO, in AAO3 only communicated a mutation, so any 
disorder or loss of AAO3 will ultimately cause a wilty 
phenotype and it will cause a severe effect on plant 
growth and development as when abscisic aldehyde 
converted into ABA, in this AAO3 has a very crucial and 
important role [25,26]

6) High sulfur dioxide to an atmosphere has not challenged 
as no phenotype seen provided if there is loss of SO [27].

7) A wilty phenotype can be observed if the absence of AO 
activities occurs because basically ABA reduction was 
observed due to the insuffi ciency of Moco-sulfarase 
(ABA3) [28]. 

So, Moco has very important role in plant growth and 
development and plant will come toward the death situation 
if Moco is lost.

Molybdenum in soils

Mo generally exists in highly soluble form, and is rare 
in the soils building it liable to leaching. Though, usually 
consider that in the acidic soils the molybdenum is attached 
to mineral surface, it may avoid the leaching, but it may also 
obstruct uptake by microbes. Usually contents of Mo between 
0.6 and 3.5 ppm exist in the most of the agricultural soils with 
about 2.0 ppm an average Mo and 0.2 ppm, average available 
molybdenum. As an oxycomplex (MoO4

2-), Mo largely occurs 
in the soil. Because of this, in its behavior in the soil, Mo 
more resembles to the phosphate or sulfate. By soil minerals 
and colloids molybdate is adsorbed in related way to these 
two anions. This adsorption is very closely dependent on the 
soil pH [29]. It increases as the pH falls but at the neutrality 
it is very low. On acid soil availability of Mo for the plants is 
the poorest and can be upgraded by foliar application, seed 
priming, seed coating pelleting and with liming, in case soil is 
not characteristically lacking in molybdenum [18].

Molybdenum adsorption in soils

The pH dependency of Mo adsorption on the soil resembled 

the one found for clay and oxides minerals. pH is a very dominant 
factor in the availability of nutrients [30-32]. It controls many 
processes occurring in the soil system [33-35]. Absorption 
demonstrated a peak in the range of pH 3-4, and then declined 
with the increasing pH above 4. With temperature, there is an 
little increase in the adsorption of Mo on surface of soil [36]. 
Carroll, et al. [37], to examine the transport of Mo in soil with 
and without biosolid amendment employed the miscible-
displacement and batch-equilibrium experiments. Sorption of 
the Mo was revealed to be greater for the biosolid-amended 
soil. Though, Mo related with biosolid-amended soils is 
comparatively mobile and bioavailable. Adsorption of Mo was 
probed in California on 5 arid zone and the results showed that 
adsorption of molybdenum from pH 4-8 salinity solution was 
independent as a function of pH of solution [37]. By using soil 
chemical properties Mo adsorption was predicted: iron oxide 
content, organic carbon content, cation exchange capacity and 
inorganic carbon content. Generally, in the acidic oxidizing 
soils, trace metals are readily available and are less available 
in neutral reducing or alkaline soil )[38,39]. Moreover, not like 
the other trace metals, with increasing soil pH, there is always 
increase in availability of Mo in higher plants [40]. In generally, 
in its anionic form (MoO42-) mainly, Mo becomes accessible 
to plants and soluble in soils having alkaline properties. By 
contrast, Molybdenum obtainability in acidic soils declines as 
the adsorption of anion increases to soil oxides (pH<5.5) [41] 
Figure 1.

Montmorillonite < nontronite < metahalloysite and illite < 
kaolinite < kaolinite,the relative adsorption on the clay minerals 
increased in this order. Goldberg, et al. [43], determined the 
magnitude of adsorption of Mo following as increasing order: 
kaolinite < illite < montmorillonite. Though, comparability 
is diffi cult about the adsorption affi nity per unit surface 
area or per unit mass, since between adsorbents in different 
experiments the suspension density varies. They reported that 
on clay mineral Mo adsorption near the pH 3 was more and 
then rapidly declined by the increase in pH up to the adsorption 
become almost zero near pH of 7. The kaolinite point of zero 
charges of was moved to a high acid pH value for Mo adsorption 
on kaolinite, demonstrating mechanism an inner-sphere 
adsorption for the Mo on such surfaces. Including adsorption at 
inner or outer-sphere complexes and precipitation, adsorption 
can occur through a variety of mechanisms. 

Figure 1: Rational Graphs; soil Mo, pH and available Mo [42].
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To study the mechanism of Mo adsorption with iron oxides, 
Lang, et al. [44] used pressure-jump relaxation in order to 
evaluate the special effects of aging on complex Mo/goethite 
formed during Mo chemisorptions and to explain Mo/goethite 
interaction. They concluded that the within suspension 
Mo transport resulted the slow relaxation, which does not 
depend on temperature and the fast relaxation represents 
Mo chemisorptions to the goethite, which decreases with 
increasing temperature. Understanding the surface speciation 
in subsurface and surface environment bioavailability is critical 
to calculating on mineral surfaces. Arai [45] to investigate 
in-situ Mo surface speciation on goethite applied near edge 
structure analysis the X-ray absorption. Experimental results 
showed that with a decline in pH Mo (VI) coordination 
environment changes from the tetrahedral to octahedral. The 
inner-sphere surface species formed by the predominant 
tetrahedral molecules of Mo (VI), near-neutral pH however at 
pH 3–4, comprising octahedrally and tetrahedrally a surface 
specie mixture are present. In the soil-water environment, 
Prediction of processes of Mo transport, the surface speciation 
of Mo (VI) the Ph dependent multinuclear may be important. 

In sulfi dic environments, thiomolybdate species, MoOxS4−x 
2−, are formed in conditions, anoxic (i.e., DO < 1 mg l−1) [46]. 
This conversion of goethite could be due to the reduction 
facilitated by the activities of microbial [47]. Impact in the 
acidic soil is due to the strong adsorption in relation between 
the pH and molybdenum that can not be ignored. Some other 
soil properties may also effect on the availability of Mo. A 
detail of factors that infl uence the availability, leaching and 
adsorption process are shown in Figure 2.

A role of tetrathiomolybdate (MoS4
2−) in the chemical 

pathway may be in anoxic sediments, fi xation of Mo. Its 
incorporation was adsorption on or co-precipitation with iron 
sulfi des [48-50]. It forms relatively stable complexes when 
once MoS4

2− reacts with pyrite that are engaged as Mo-Fe-S 
“cubane” structure irreversibly [29,51,52]. Cuboidal Mo-Fe-S 
clusters are formed by Mo on pyrite that has been shown by 
X-ray spectroscopy [51]. The adsorption of the MoO4

2− and 
MoS4

2, goethite and pyrite onto these two main iron minerals, 
has been talked to explain the probable mechanisms of the 
immobilization of Mo in the anoxic conditions [29], and have 
concluded that even in the existence of, sulfate, silicates and 
phosphate, the MoS4

2− may be an eventual pool and may also 
regulator Mo enhancement in sediments,. The results of the 
experiment presented that adsorption of MoO4

2− and MoS4
2− 

is a sturdy function of surface loading and pH. The retention 
of molybdate, in μmol/g, with the iron minerals followed the 
increasing order of the MoO4

2−–pyrite < MoS4
2− –pyrite < MoO4

2− 
–goethite < MoS4

2− –goethite. Helz, et al. [50], recommended 
that FeS ion activity products may control the molybdenum 
concentrations, as well as the pH in euxinic basins. On the 
Mo adsorption, some of other anions showed little effect; i.e., 
selenite adsorption onto  -Al2O3 [53,54], arsenate adsorption 
onto clay minerals [43] and silicate onto goethite and pyrite 
Figure 3 [29].

Oxidation and redox behavior of Mo species 

Molybdenum resembles tungsten and vanadium, in its 
chemical properties, the Group 5th fi rst number, rather than Cr. 
Molybdenum, chemically is tremendously versatile, forming 
compounds in array of the freely interconvertible states of 
oxidation. Molybdenum shows all the oxidation states from 
2− to 6+ in its compounds, among which the lowest oxidation 
states, ranges from 2−-1+, found in the complexes with the 
ligands acceptor, primarily cyclopentadiene, C-monoxide 
and related compounds, P, nitric oxide and Ar-donor ligands. 
Molybdenum the short oxidation states (2− to 2+) are unlikely 
be to arise in enzymatic processes or encountered in biological 
systems. In its oxidation states the Mo in its oxidation 3+ to 
6+ forms the majority of complexes with S-, O-, halogens and 
N-donor ligands. Mo (IV) can also be stabilized by S in which 
the most stable sulfi de is disulfi de and in complex ion [Mo(CN) 
8]4−, Mo (IV) is powerfully stabilized by cyanide. By the oxo 
molybdenum species, Mo(V) and Mo(VI) in oxidation states 
are dominated. Bard, et al. [55], have reported that molybdates 
are less powerful oxidants in acidic solutions than chromates 
and vanadates where the oxidation potential decreases with the 
increasing pH. These species of molybdenum are coordinated 
with hydroxide, oxygen, sulfate, water and chloride, with 
respect to their oxidation and the reduction [56]. However, 
lower oxidation states of Mo than 3+ and 4+ are not obtained by 
reduction, while in alkaline and neutral solutions by dithionite 
molybdates (Mo VI) may be reduced to molybdenum(V) and 
oxo molybdenum(IV) complexes, except that weak reducing 
agents, including, sulfi de and hydrogen make Mo blue. 
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Figure 2: Mo leaching, adsorption and infl uencing factors.

Figure 3: Simplifi ed schematic diagrams of possible molybdate adsorption 
complexation modes on metal oxides. Legend: ( ) Oxygen, ( ) Molybdenum, ( ) Metal 
atom (i.e., Al or Fe)[126].
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Mo chemistry in the soils is very complex because the Mo 
oxidation state differs from II to VI. Molybdenum concentrations 
within the soil profi le and species vary depending on the 
nature of the soil adsorptive complexation and with the 
chemical characteristics of soil solution [57]. Under anoxic 
conditions Mo is predicted to be in the IV oxidation state [58]. 
Predominantly Mo is found as Mo (Vl) oxyanions (MoO4

2−) 
with a pH of 4–8 in oxic soils. The chemistry of Mo in soils 
is further complicated by the complexation of Mo with metals 
(e.g., CaMoO4

0, MgMoO4
0) [59]. In natural water Molybdenum 

forms molybdate Mo(VI) oxyanions. Mo(VI) anions’ adsorption 
in acidic soils and sediment typically control the fate and 
transport of Mo(VI) anions in the natural environment of 
water-soils-sediments.

Plants, enzymes need Mo and Mo cofactor

In order to have biological activity, Mo is complexed with 
pterin compound thus making the prosthetic group named 
Moco, [15,60,61]. As anion MoO4

2-, Mo is abundant in oceans. 
Moreover, molybdate ion is the form that is only available for 
bacteria and plants in soil. If the plant takes too much high 
Mo, it may have toxic effects on it [62]. On the opposite side 
its insuffi ciency is lethal for the plant. Only a handful of 
Molybdenum-enzymes were found among eukaryotes while, 
most they are of bacterial origin.

To scavenge Mo in the existence of competing anions 
molybdenum needs specifi c systems oof uptake. Mainly, 
transport follows from up to down to the stem and roots 
signifying when molybdate applied solely to leaves, that the 
molybdate is very mobile translocated among numerous tissues 
of the plant. Moreover, the result displays that an effective 
inhibitor of molybdate uptake is sulfate pioneered speculations 
on the nature of molybdate transporters [63]. 

Table 1. In higher plants components of molybdenum 
metabolism (Arabidopsis thaliana). In fact, molybdate 
and sulfate as they are alike in size, have a high grade of 
resemblance, both possess the structures tetrahedral and 
the double negative charge (MoO4

2-, SO4
2-,). Biosynthesis of 

Moco is the only process known to need molybdenum straight 
by plants that is fi nalized in the cytosol and initiated in the 
mitochondria [16,64]. Only little knowledge is present about 
the enzymatic regulation and genetics of Moco biosynthesis 
in the plants, even though the biosynthesis of Moco is 
well understood. The information that is existing only in 
this reverence concerns in the Arabidopsis MOT1 mutant, 
molybdenum metabolism-related genes expression that was 
developed to induce the defi ciency of molybdate endogenous 
by the supply additional molybdate was grown without it. [65]. 
In fact, under molybdate defi ciency, the genes CNX2 and CNX6 
Moco biosynthesis were revealed to be the up-regulated, which 
was similarly true for the Moco sulfurase ABA3, the molybdo 
enzymes NR2 and NR1 , and transporter MOT2.Molybdenum 
cofactor (Moco). In plants Mo-enzymes to this end known 
are fi ve in number.: mitochondrial amidoxime reductase 
(mARC), xanthine dehydrogenase (XDH), N-reductase (NR), 
S-oxidase (SO) and aldehyde oxidase (AO). There is another 
type of Mo-containing cofactor, in addition to the pterin type 

of the cofactor, another type of cofactor having Mo, calling 
in bacterial nitrogenase which is found only once in nature, 
developing the cofactor iron-molybdenum, FeMoco. Biological 
nitrogen fi xation in the biosphere is a vital step in the cycle of 
N, nitrogenase is required for Biological nitrogen fi xation. All 
other containing Mo, considered to this end have the pterin-
type cofactor Table 2 [66].

Generally, the transmission of an oxygen atom to is 
catalyzed by all the Mo-enzyme or to from a substrate (Hille, 
2002). Each reaction, by transfer of two electrons either 
oxidation or reduction, is also characterized by this, which 

Table 1: In higher plants components of molybdenum metabolism (Arabidopsis 
thaliana).

Protein names Agi code Known / proposed function

MOT1/SULTR 
5;2

AT2G25680 Molybdate transport

MOT2/
SULTR5;1

AT1G80310 Molybdate transport/export from the vacuole

CNX1 AT5G20990 Moco biosynthesis step 3

CNX2 AT2G31955 Moco biosynthesis step 1

CNX3 AT1G01290 Moco biosynthesis step 1

CNX5 AT5G55130 Moco biosynthesis step 2

CNX6 AT2G43760 Moco biosynthesis step 2

CNX7 AT4G10100 Moco biosynthesis step 2

Nia1/NR1 AT1G77760 Nitrate reductase (Minor form)

Nia2/NR2 AT1G37130 Nitrate reductase (Main form)

SO AT3G01910 Oxidation/elimination of cytotoxic sulfi te

mARC1/
MOSC1

AT4G44720 Unknown

mARC2/
MOSC2

AT1G30910 Unknown

AAO1 AT5G20960 Unknown

AAO2 AT3G43600 Unknown

AAO3 AT2G27150 ABA biosynthesis

AAO4 AT1G04580 Synthesis of benzoic acid

AtXDH1 AT4G34890 Purine degradation

AtXDH2 AT4G34900 Unknown

ABA3/LOS5 AT1GI6540
Mocosulfuration and activation of AO and XDH 

proteins

ATM3/ABCB25 AT5G58270
Transporter involved in cytosolic Fe-S assembly 

and Moco synthesis

Table 2: Mo enzyme in the plant (Arabidopsis thaliana), subcellular location and their 
function.

Mo enzyme
Number of 

genes
Subcellular 

location
Function

ROS/RNS 
side product

Nitrate reductase 2 Cytosol Nitrate assimilation NO

Sulfi te oxidase 1 Peroxisome
Sulfi te 

detoxifi cation
H2O2

Xanthine 
dehydrogenase

2 Cytosol
Purine degradation, 

NADH oxidase
Superoxide 

anions

Aldehyde oxidase 4 Cytosol
Synthesis of ABA 

(Auxins)

H2O2, 
Superoxide 

anions
Mitochondrial 

amidoxime 
reductase

2 Mitochondria Detoxifi cation (?) n.d
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imposes to fl uctuate between IV and VI, its oxidation state 
of Mo atom. Mo-enzymes are the homodimeric proteins that 
are present in eukaryotes which are functioning solitary as 
a dimer, but not as monomer. On the monomer of enzyme 
isolated domain are identifi ed that are bound to it, different 
prosthetic groups are involved by some harbor an electron 
transport chain. Figure 4, point out the fi ve Mo-enzymes of 
plants domain structure where by the regions that are very 
much capricious in the order, the domains are linked as a result 
clearly serving as inter-domain joint regions. It is evident that 
Mo-enzymes into two classes can be subdivided: XO oxidase 
family is symbolized by AO, and XDH while Mo-enzyme’s 
SO-class is formed by the NR and SO both classes sharing 
the domains. From GTP to cPMP the conversion starting, in 
mitochondria basic steps of Moco biosynthesis are shown, 
entirely in cytosol succeeding steps continue. Moco-binding 
proteins (MoBP) and Moco biosynthesis enzymes (named Cnx) 
have been represented in blue. By Cnx5, consisting of Cnx6 
and Cnx7 MPT-synthase is sulfurated, with sulfur donor that 
is primary (X-S) militarized by Cnx5 (RLD) rhodanese-like 
domain being unidentifi ed. For adenylation and activation of 
the small MPT synthase subunit Cnx7, the adenylation domain 
of the Cnx5 (AD) is required. It is supposed that after dithiolene 
formation, copper (Cu) is inserted directly. Moco can be either 
bound to these Mo-enzymes NR, SO, XDH, mARC and AO, 
to a MoBP (Moco-binding protein), or to the MBD (Moco-
binding C-terminal domain) of Mocosulfurase ABA3. ABA3 
C-terminus is sulfuration platform for Moco. ABA3 domain like 
NifS makes the persulfi de protein-bound, which bound to its 
C-terminus is transferred to the Moco that for the sulfurated, 
Moco exchanges the non-sulfurated. In the fi gure, Mo-enzyme 
monomers domain structure is given. It is obvious that Mo-
enzymes of eukaryotes are interrelated to each other: A pair is 
formed by the AO and XDH, from ABA3-MBD, mARC arose and 
forms NR a pair with SO Figure 5 [16].

Mo crucial role in biological nitrogen fi xation

Specifi cally for plants, Mo is a micronutrient that with 
nitrogen-fi xing bacteria form root nodules, however trace 
amounts of Mo are also used in a protein involved with 

nitrogen metabolism and uptake plants that do not form 
nodules [67]. Its signifi cance to the N2 fi xation is vibrant, 
given that Mo in ‘FeMoCo’ cofactor is at heart of the nitrogen 
reduction process - at least for the most of the nitrogenases. 
Two atoms of molybdenum contained by the Mo–Fe protein 
and has two distinct types of oxidation-reduction centers: 
four Fe-S centers and two iron-molybdenum cofactors called 
FeMoco. The active site of Mo-containing nitrogenase protein 
constitutes by the FeMoco of the nitrogenase in the N2-fi xing 
organisms [68]. Although at low supply, into the nodules 
molybdenum is preferentially transported. [69], molybdenum 
defi ciency-induced nitrogen defi ciency is widespread in 
legumes depend on N2 fi xation, predominantly in acid mineral 
soils of the subhumid and humid tropics. It is also described 
that an impaired nitrogen fi xation activity showed by B. 
japonicum strain defi cient in Mo transport when inoculated 
to the soybean roots. More dramatic signs of defi ciency in 
laboratory conditions showed by the several different legumes 
that were sternly starved of Mo [70,71]. There are reports that 
in the fi eld conditions foliar applications of the molybdenum 
to grain legumes increase the levels of nodule mass and N2 
fi xation, consequentially in higher seed yield and N Figure 6 
[72,73].

Soybean growing without Mo fertilizer on a Mo-defi cient 
soil in the upper left. Soybeans were a normal green color, 
indicating adequate N. Soybean without Mo but with N fertilizer 
as shown in the upper right. Soybean growing without N in 
the lower-left fi g. and with Mo caused in superior growth and 
effectively nodulated soybean plants while nodulated soybean 
roots from plants growing on Mofertilized soil in the lower 
right [74]. Figure 4: In plants biosynthesis, maturation and distribution of Moco [16].

Figure 5: Formation of molybdoprotein and insertion of sulfur, conversion of GTP to 
precursor Z, the formation of Moco and insertion of molybdenum. According to the 
Cnx nomenclature the protein involved is named.
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Molybdenum uptake, storage and transport into the cells

By the sulfate transporters or related systems, it is being 
proposed that molybdate distribution and import are facilitated 
[75]. In contrast to the homeostasis of bacterial molybdate, 
the transport of Mo in eukaryotes is less understood. Protein 
MOT1that belongs to the family that is large sulfate carrier 
and that was revealed to transport molybdate by the ultrahigh 
affi nity across the cellular membranes [23,76,77]. In the 
plasma membrane surprisingly, it was not found to reside. 
Confl icting reports localized it to the mitochondrial envelope 
or to endomembrane system [23,77]. As in the cytosol, into 
the Moco-backbone the insertion of Mo occurs both suggested 
the subcellular locations are questionable. Another molybdate 
transporter of sulfate transporter family, in addition to MOT1, 
it is being described the vacuole provide functional evidence 
for MOT2 that is confi ned to the tonoplast and as an important 
molybdate store [21,22], and low content of Mo in the leaves 
while in seed by the accumulation of Mo contents, the plants 
that are defi cient in MOT2 are characterized. Still for Mo 
cellular importer is missing, but it is being expected that this 
task is carried not only in animals but also in autotrophs by 
the additional transporters. It can be assumed, in addition 
to a high-affi nity system, non-specifi cally molybdate can 
also move in the cell by sulfate uptake system that has been 
revealed for a sulfate transporter [78-80].

In the wildtype and MOT2 mutant leaves, however, it is 
found total molybdenum contents with the levels of Moco were 
to correlate, which indicates molybdate at cellular levels, Moco 
synthesis is adjusted by the plant.

Molybdenum effi  cacy enhancement techniques

Seed coating, treatment and pelleting with Molybdenum: 
Numerous studies have shown the effi cacy of the Mo seed 
coating [81,82]. Seeds were treated by the Mo (80 g/ha) causing 

in improved comparative grain yield, chlorophyll index, seed 
weight and pod number. It shows the better results when 
soybean seeds with ferrous sulfate 500 mg/kg and ammonium 
molybdate 250 mg/kg were pelleted were highly effective 
for the improvement of dry matter production, yield, plant 
height, growth rate and area index of leaves [81,82]. Similarly 
in fi eld experiments, to increase yield of soybean and cowpea 
on acidic soils, benefi ts from the Mo applied together with 
the rock phosphate or alone, were greater or comparable than 
liming evaluating the effectiveness of a number of pelleting 
materials [83]. Though, from Mo seed-coating, several reports 
indicating no toxicity or improvement. Burton and Curley [84] 
reported that bacterial survival, N fi xation and nodulation were 
strappingly suppressed when seed with sodium molybdate was 
pelleted. By inoculant and Mo nearly inoculated bacteria 99% 
died just after seed treatment in four days. As groundnuts 
kernel yield is increased due to seed dressing nearly more than 
300 kg ha-1 in Senegal by applying 28 g ammonium molybdate/
ha ([85]. In Sierra Leone on groundnuts grown on an upland 
soil seed pelleting with 0.2, 0.4 and 0.8 g inoculation with 
rhizobia plus sodium molybdate/100 g seed was tested. Where 
sodium molybdate was applied at 0.2 g/100 g was applied to 
seeds, by this it is seen an increased protein content by 4.21%, 
DM yield by 17.2% , 14.0% grain yield and N uptake 38.5% 
[86]. Rhodes and Nangju [83] led fi eld trials in increasing 
yields of cowpea and soya bean to estimate the effi ciency of 
the numerous pelleting materials on an acid soil in the Sierra 
Leone. Mo increased yield and the growth of the cowpeas when 
it is applied combined with the rock phosphate or either alone, 
but on soya bean it had no signifi cant effect on the yield and 
growth, even though per plant number of nodules increased 
signifi cantly. It is reported by the Rhodes and Kpaka [87], by 
application of Mo, it boosted dry matter, seed yield and pod 
weight of cowpeas. At rate of 0.4 g/100 g seed treatment, yield 
increased by pelleting seed with nitro-molybdenum by 21%, 
over control or 1.39 t ha-1 (Table 3). Applying Mo by this method 
may show attraction to the small landholding farmers as it is 
cheap, simple, is less subject to the vagaries of wind and rain 
and does not require any spraying equipment.

Some other researchers also observed on bradyrhizobium, 
salts suppressive effects used as molybdenum sources [88,89]. 
But there is also reports present that indicates in improving 
crop performance Mo seed coating is effective, from the 
bacterial strains used for inoculation, it may have toxic effects. 
So, before using Mo seed coating, it must be evaluated the seed 
coating effi cacy of Mo with bacterial strains.

 

Figure 6: Note the apparent N-defi ciency symptoms exhibited by the leaves. 
Soybean growing without Mo fertilizer on a Mo-defi cient soil in the upper left. 
Soybeans were a normal green color, indicating adequate N. Soybean without Mo 
but with N fertilizer as shown in the upper right. Soybean growing without N in the 
lower-left fi g. and with Mo caused in superior growth and effectively nodulated 
soybean plants while nodulated soybean roots from plants growing on Mofertilized 
soil in the lower right [74]. 

Table 3: Effects of Mo on cowpea performance [86]. 

Teatment
Dry matter (g/

plant)

Nodule 
weight

(mg/plant)

Pod weight weight 
(t/ha)

Seed yield (t/ha)

No Mo 10.47a 144.0a 1.445a 1.15a

Mo 
sprayed

13.09b 146.3b 1.519a 1.15a

Mo 
pelleted

13.56b 179.0a 1.892b 1.39b

LSD (0.05) 2.08 49.3 0.22 0.18
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Seed priming with molybdate

Numerous studies pointed out that for Mo application, seed 
treatment is a more effective method than soil application. For 
instance, in eastern India 48 trials conducted, mean yield was 
increased by 17%–22% by application of Mo as compared to 
the control where Mo was not applied and when it is applied 
to soil the increase was 20%–25% ( [90,91]. Similarly, over 
the no application control, Mo through the seed treatment (4 g 
kg-1 seed) application was more economical and effective for 
increasing the yield by 15.79%; 10.53% with1.5 kg/ha the soil 
application [92]. 0.1 or 1% sodium molybdate solution, priming 
of Trifolium subterraneum L. (Subterranean clover) seeds in 
improving yield and growth was as alike effective as through 
the soil application, in soil that is defi cient in Mo. Donald and 
Spencer [90] reported that in grains high N and Mo content 
resulted in the seed priming than soil application as the 
application levels increases for the maximum yield. Mohandas 
[93] reported that improved nitrogen fi xation, dry matter 
accumulation, yield and nodulation was seen when common 
bean seeds primed in sodium molybdate. It has been reported 
that a yield increase of compared with Mo soil application 
27% by seed priming in a pot study on chickpea, with Mo for 
8 h at 0.5 g/L solution of sodium molybdite, while in the fi eld 
experiment, increase in the yield of chickpea from the same 
treatment was 20% [94,95]. In Bangladesh, over untreated 
control yield an increase was 37%–90% and was up to 50% 
more than the water-soaked control in trials at farmers’ 
fi elds at different locations [96]. By adding rhizobium in the 
priming solution, the effi cacy with Mo seed priming could be 
enhanced. Similarly, in Vigna radiata L. (Green gram), priming 
with the rhizobia and sodium molybdate ominously enhance 
the nutrient uptake, nodulation, crop yield, nitrogen fi xation 
and growth of the plant. In fulfi lling the Mo requirements of 
various crops, the Mo application by the priming of seed is 
highly economical and more effective as compared to the soil 
application, however with rhizobia its amalgamation needs to 
be the more investigated and modifi ed. Pattanayak, et al. [97], 
indicated that fertilizer application effi ciency is also increased 
by combining the seed treatments that indicate the better use of 
the resources. Even though in the priming media incorporation 
of rhizobial strains was synergistic, the protocol should be 
modifi ed for micronutrient requirements and individual crops 
Table 4. 

Foliar application 

Katyal and Randhawa [99] indicated that a spray solution 
may be comprised of 0.1%-0.3% of soluble Mo. With the 
increasing soil pH, the Mo availability increases, and acid 
soils that have a pH <5.2, Mo available amount to plants 
is very low, i.e., 0.10 mg/kg-0.25 mg/kg [18]. Since in the 
phloem and xylem Mo is highly mobile, and this Mo by seed 
treatment can be provided or may be by the foliar application 
as the crops require it in low amounts. Foliar sprays of Mo are 
more effective often than the applications to soils, principally 
for the acidic soils, and if it is applied at early stages of plant 
development it may be of supreme effectiveness [100]. Foliar 
spray effectiveness depends on nutrient its translocation into 
the plant and uptake rate by the leaves [101]. Mo applied by 
leaf spray, the leaves rapidly absorb it. Campo and Hungria 
[102] found that to the soybean nodules translocation of the 
Mo was very rapid, and after application of fi ve days reported 
the highest concentration of molybdenum in nodules. 

On enhancing plant yield the effect of Mo fertilization is 
often related to an improved capability of the plant to consume 
nitrogen. Biscaro, et al. [103] confi rmed that grain yield of 
common bean enhances when there is the Mo and N combined 
leaf supply. By plants Mo status the activities of nitrate 
reductase and nitrogenase are affected, and in the plants that 
are suffering from the defi ciency of Mo their activities are often 
suppressed [104]. After 25 days plant emergence Mo application 
through the foliar application (40 g/ha–1) greatly improved the 
NR and activities of nitrogenase that results in increase in 
total nitrogen accumulated in the shoots of common bean [73]. 
calengo, et al. [105] reported that in common bean defi ciency of 
Mo results in low effi ciency of N assimilation of plants. 

Lombin, et al. (1985) [106] considered the effect of 
molybdenum i.e,30 g ammonium molybdate/ha, in 1971, 1972 
wet and dry year respectively, sprayed on groundnut three 
weeks after sowing at the Samaru, northern Nigeria Table 5.

It has been found that Mo in the dry year is more likely to 
increase kernel yields of the groundnut short-season varieties. 
The groundnuts kernel yield by 200 kg ha-1 increased by the 
foliar application of Mo [107]. After 10 days emergence100 

Table 4: Effect of molybdenum seed treatment in different crops on yield of grain and grain enrichment.

Source App. mode App. rate Crop
Increase in grain yield 
over untreated control 

(%)

Increase in nodule number 
over untreated control (%)

Increase in grain mineral 
content over untreated 

control (%)
Reference

Sodium molybdate
Seed 

treatment
0.2g/100g 

seed
Groundnut 14 Haque and Amara [86]

Sodium molybdate
Seed 

treatment
0.4g/100g 

seed
Soyan bean 154 Haque and Bundu [98]

Nitro-molybdenum
Seed 

treatment
0.4g/100g 

seed
Cowpea 21 Rhodes and Kpaka [87]

Sodium molybdate Seed soaking 1 mg L-1, 1h Common bean 12.66 122.73 - Mohandas [93]

Sodium molybdate Seed soaking 2 mg L-1, 1h Common bean 53.68 272.73 - Mohandas [93]

Sodium molybdate Seed soaking 5 mg L-1, 1h Common bean 11.61 90.91 - Mohandas [93]

Sodium molybdate Seed priming 0.0026 M, 8h Chickpea - 7400 Johnson, et al. [122]

Sodium molybdate Seed priming 0.0026 M, 12h Lentil - 0 Johnson, et al. [122]
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g sodium molybdate/ha foliar sprays applied to maize that 
eliminated the Mo-defi ciency symptoms in Zimbabwe. Though, 
when the spray was applied at the same rate after 4 weeks of 
emergence, that proved ineffective. While it has been seen that 
on maize crop when we use the foliar application at 100 g /
ha sodium molybdate after 10 days of emergence, it was seen 
that was adequate to raise Mo content in seed above (0.08 ppm 
Mo) critical concentration [108]. In leaf tissue of sunfl ower, the 
increase of N and NH4

+ and concentration with Mo rates shows 
that N assimilation improved by this Mo that is, reduction of 
NO3

− to NH4
+ and consequently transformed in proteins, other 

compounds that are organic and amino acids in plants. Firstly 
all the nitrogen should be reduced to NH4

+ when it is taken up 
by plant, because for assimilation into the N carrying amino 
acids, the only reduced nitrogen form that is available to plants 
[109,110].

Soil application

There are many crops, that need Mo fertilizers [111]. High 
nitrogen application and under the low pH conditions with the 
Mo, oilseed rape should be fertilized. The Mo uptake by oilseed 
rape can also be decreased by the sulfur application [112]. 
Usually, 70-200 g Mo ha-1 for the forage legumes is adequate 
and for the other fi eld crops. In soil in absence of molybdenum, 
the plant molybdoenzymes can be broken down and brutally 
obstruct the nitrogen fi xation by the soil bacteria [22].

Up to 400 g/ha caulifl ower may need molybdenum but 
among the crops and soils, optimum dose for Mo varies. 
Katyal and Randhawa,1983 reported that caulifl ower may need 
Mo application every year but one application on fodder and 
pasture plants may create for several years, residual effects. 
For about 1 to 15 years residual effects may last in Australia and 
New Zealand, where arable crops and pasture are receiving with 
super-phosphate molybdenum-enriched giving Mo 20-60 g/
ha, [113]. Parish, et al. [114] indicated the signifi cantly improved 
sugar-cane growth were to a low humic Latosol Mo applied in 
Mauritius. In the West African semi-arid zone Molybdenum 
applications on sandy aeolian soils had positive effects on N 
fi xation, growth, seed yield, nodulation of groundnuts [85]. A 
positive response toward the growth of cowpea with Mo in an 
experiment was seen on acidic Shante soil at Ogbomosho, which 
was typical of soils that are sandy in nature in the transition 
zone of the Nigerian forest/ savanna and at Ibadan on Adio soil. 
Mo application at the rate of 0.05 ppm shows the more effi cient 
response, with up to 4ppm Mo smaller responses occurring at 
this application rates. To the Mo defi ciency in acid soils maize 
appears to be relatively susceptible.

On very acidic soils in Australia, some research conceded 
out that indicated that when fertilization of Mo applied it was 
possible to attain higher yields of wheat.In the seed material 
the actual Mo concentration shows the increment in yield. 
Better the yield; lower the Mo content in seeds, stimulating 
Mo fertilization effects [111]. Mo rates between 35 and 140 g/ha 
had a noteworthy effect. Towards seed molybdenum increasing 
concentration in common bean has been examined by applying 
the Mo rates at high level, between 90 and 720 g/ha, applied 
to leaves [115].

In Zimbabwe greenhouse experiments indicated on a clay-
loam red soil Mo defi ciency as a major growth-limiting factor. 
Field experiments show that when we apply Mo in the maize, 
then early growth of maize increased on the soils having a pH 
between 4.4 and 4.8 [116-127]. 

Conclusion

Our considerate of the function and the biological role of 
the molybdenum is progressing rapidly. Moco as it occurs in 
CNX mutants the complete loss of it is lethal and when they 
are grown in the soil leads to the death of plants. However 
in the cell culture, when grown on the media these mutants 
could be retained alive with the reduced N as N-source. As well 
as Moco biosynthesis proteins the crystallization of further 
molybdenum enzymes is under way. Though Moco on ABA 
levels have an important effect in the plant cells, Moco is also 
uniquely takes part in ABA synthesis and as a result a role in 
transpiration rates and water relations through in the stress-
related responses and stomatal control. In crops the practices 
which optimize the fertilization of Mo have signifi cant scope in 
exploring where the predominant available N source is No3

- or 
in N fi xing legumes. To predict the Mo geochemical transport 
in subsurface and surface environments, the distribution and 
sources of the Mo species of MoS4

2−and MoO4
2− in an aqueous 

solution are critical information. The signifi cant components, 
comprising clay, oxides, Fe, iron sulfi de, Al, , organic matter 
and manganese oxides in soils and bed sediments, show 
different adsorption capacity to Mo. 

In our understanding, in plants functions and role of Mo, 
recent years have conveyed rapid improvement. Obviously, 
the research concentrates both on the studying relationships 
of structure-function of the Mo-enzymes and on detailed 
enzymology of the Moco biosynthesis.

Future prospects

For NR there is a lot of physiological data, but not for SO, 
AO and XDH and there are, yet, a number of open questions. 

I.  By member of the AO family what the additional 
metabolic reactions are catalyzed?

II.  Why SO localized in the peroxisomes? 

III.  What is the exact role of SO? 

IV.  For the MPT synthesis what protein donates the copper? 

V.  In the plant defense and reactive oxygen metabolism, 
what is the role of XDH? 

Table 5: Effect of Mo application on groundnut yield.

Year Variety Plant part
Pod yield(Kg/ha

No Mo With Mo Difference

1971 S.61
Kernel 1718 1894 +176
Haulm 2078 2892 +814

1972 S.61
Kernel 1416 1293 -123
Haulm 2992 3633 +614

1972
Spanish 205 Kernel 1893 2298 +405

MK 374 Kernel 1922 2095 +173
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VI.  Will by the molybdopterin ligand metals other than 
tungsten or molybdenum be found to be coordinated? 

VII. After its release during the Moco formation what 
protein accepts copper? 

VIII. The CnX4 role is not so much clear, what key roles 
it has? The molybdate transporter how it is organized? 
what gene code for molybdate transporter? 

IX.  For the Moco biosynthesis organized how is the 
multienzyme complex?

X.  For the Moco to meet with regards to changing demands 
of the cell, how Moco biosynthesis is being regulated? 

XI.  For the Moco insertion, what is the mechanism behind 
this that is involved in apo-enzymes? 

XII. In some enzymes, what factors infl uence the 
incorporation of the tungsten instead of the 
molybdenum? 

XIII. What role is being played by the Cu in the synthesis 
of Moco? 

XIV. Furthermore, about factors very diminutive is known 
that are regulatory the interaction of proteins and 
expression of genes involved in the homeostasis of 
molybdenum, thus needing advanced comprehensive 
analysis on metabolome, transcriptome, ionome level, 
proteome and interactome.

Requires further investigation, the involvement of each 
cofactor scaffold to the complete chemistry of given enzyme, 
that the numerous scaffolds represent corridors generating 
sulfur-containing chelators that can control, trap and activate 
the transition elements as catalysts. With specialized functions 
in the eukaryotes some of proteins are the precursors of 
these, such as ubiquitin-like protein conjugation 64 and the 
G-protein-based signaling; others, such as the gephyrin, that 
is crucial for synaptogenesis, have gathered the additional 
functions.

The coming years perhaps into these will bring deep 
insight into innovative molybdenum aspects within the 
physiological and metabolic network of cells. In the fi eld of 
molybdenum enzymes future research is likely to focus on 
detailed mechanistic of the functions of cofactors, the cofactor 
biosynthesis and cofactor allocation in specifi c enzymes.
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