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Abstract

The histogram and frequency table are fundamental tools for describing continuous variables or discrete variables with many values. Most statistical programs are not 
fl exible, nor do they explicitly state the rules they use to construct histograms or provide guidelines for constructing interval tables. However, by programming or applying 
the appropriate procedures, this can be achieved with Excel, MATLAB, and R. The objective of this methodological article is to provide a script for the R program to calculate 
the number and width of class intervals using eight rules that provide a uniform width (four depending on the sample size and four based on optimal width). The script 
automates the selection of the rule to produce an interval table and a histogram with overlaid density and normal curves. Additionally, symmetry is assessed using the 
D’Agostino test, mesokurtosis with the Anscombe-Glynn test, and normality with the Lilliefors, Anderson-Darling, and Shapiro-Francia tests. Furthermore, three rules are 
calculated that provide variable width: one for samples of 25 to 39 data points (multiple of 5) and two for samples of at least 40 data points (Mann-Wald and Moore). Once 
one of these three rules is chosen, it is applied to the normality check using the likelihood ratio test. Additionally, an optimal histogram provided by R from its basic library is 
computed. The script is applied to two examples and is adapted to the small samples (< 25 data points) in a third example. It is concluded that this script can be of practical 
and didactic use.

Introduction 

Two basic descriptive tools for describing continuous 
variables are the frequency table with class intervals and 
the histogram [1]. There are many rules for determining the 
number of class intervals and their width when constructing a 
frequency table or histogram from a random sample of n data 
points drawn from a continuous quantitative variable or from 
a sample of discrete values when their variability is large [2,3].

The domain of a continuous quantitative variable is 
understood to span the entire real line or a subset of the real 
numbers, while the domain of a discrete quantitative variable 
spans the integers or a subset of the integer numbers [4]. 
Additionally, both types of variables, being quantitative, have a 
unit of measurement, such as the standard deviation when the 
scale is centered on the arithmetic mean [5].

Most programs are not fl exible and do not clearly state the 
rules they use to construct histograms. Moreover, many do not 
provide rules for constructing an interval table [4,6,7]. In this 
regard, the spreadsheet program Excel may be one of the best 
options [8], alongside the mathematical program MATLAB [9]. 
Another option is the statistical program R, developed by the 
mathematical community and available for free since 2000. It 
has undergone continuous updates and improvements, but its 
programmability is often viewed as a drawback [10], leading 
to its underutilization in various scientifi c disciplines [11], 
especially in the social sciences [12].

This methodological article aims to present a script 
developed for the R program [13] to determine the number of 
class intervals (k) and their width, which can be uniform (w) 
or variable (wi). Eleven rules are shown, which can be grouped 
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into three sets [2], along with an optimal histogram provided 
by R [14], and additional inferential information about the 
distribution and randomness of the sample.

Frequency tables with class intervals and histograms are 
fundamental tools in data analysis, offering a structured, clear, 
and insightful way to represent and understand quantitative 
data. They play a critical role in identifying patterns, 
understanding distributions, detecting anomalies, and 
supporting further statistical analysis. However, the problem 
of determining the number and width of the class interval 
arises. Thus, having a script that facilitates these decisions 
and provides the table and histogram is a valuable tool for 
researchers. In addition, the script tests for randomness, 
which is a fundamental assumption for statistical inference, 
and for normality, skewness, and kurtosis, which are key data 
for deciding on which tests to use for hypothesis testing. The 
freely available R program is particularly suitable for these 
purposes with the diffi culty that the scripts must be written by 
the researcher, which is done in the present article. It should 
be noted that the script is developed for samples of at least 25 
data points, but it is also adapted for situations involving small 
samples (n < 25 data points).

Rules for determining the number and width of class in-
tervals included in the script

The fi rst group consists of four rules. In these rules, the 
number of class intervals (k) is established fi rst, and then 
the uniform width (w) is determined by the quotient between 
the range and the number of intervals: a = (max-min) / k. The 
frequency per interval is variable (ni; i = 1, 2, …, k). The four 
rules included in this group are square root [15], Rice University 
[16], Sturges [17], and Doane [18].

The second group also consists of four rules, but these are 
based on algorithms for optimizing a uniform width per class 
interval or bin. First, the uniform width (w) is established and 
from there the number of class intervals (k) is determined by 
the quotient between the sample range and the uniform width, 
rounded up: k = [max - min) / w]. The frequency per interval is 
variable (ni; i = 1, 2, …, k). The four rules included in this group 
are those of Scott [19], Freedman and Diaconis [20], Rudemo 
[21], and Shimazaki and Shinomoto [22].

T he third group consists of three rules that achieve a 
uniform frequency (nI) per class interval when the number of 
class intervals (k) is established, resulting in variable widths 
(wi). These rules were developed for the application of Pearson’s 
chi-square test in normality testing, based on its asymptotic 
approximation to Pearson’s chi-square distribution with k - 3 
degrees of freedom, where k is the number of class intervals 
[23]. This approximation requires that no observed frequency 
be less than 0, no expected frequency be less than 1, and that 
at least 80% of the expected frequencies be greater than 5 [24].

In the latter group, there are three rules: the multiple of 5 
for sample sizes from 25 to 39, and those of Mann-Wald [25] 
and Moore [26] for sample sizes of at least 40. The multiple 
of 5 rule is developed in this script to complement the Mann-

Wald and Moore rules. Additionally, the script does not use 
the chi-square test, but the likelihood ratio test as it is more 
powerful [27], and the Williams’ [28] correction is optionally 
applied, as suggested not only for 2 × 2 tables [29] but also for 
one-way goodness-of-fi t tests when the degrees of freedom 
are small [30].

T h e script also includes the R program’s automatic option 
for optimal bins. The computational algorithm to obtain this 
histogram minimizes the squared error among the values of 
each class interval or bin and the average of the bins (default) 
or minimizes the mean squared error by dividing the squared 
error by the width of the bin [14].

The eleven rules previously mentioned and executable 
with the script are briefl y described below. This is followed 
by a presentation of the script, which is structured into three 
parts and applied to two random samples of 51 participants: 
one drawn from a normal distribution and the other from 
an unknown distribution. Finally, some aspects of the script 
are discussed, conclusions are drawn, and suggestions for 
application are provided.

Ru les for establishing k-class intervals with uniform 
width and variable frequencies: Th e square root rule was 
introduced in 1892 [15] by the English mathematician and 
father of contemporary statistics, Karl Pearson (1857-1936). 
The number of class intervals or bins is obtained by taking 
the square root of the sample size and then rounding up 
([√n]). This method has no distributional assumptions and 
is recommended for small samples, typically those smaller 
than 100 [31]. Its advantage is the ease of calculation and 
distributional universality, particularly recommended for the 
arcsine distribution, but its disadvantage is that it provides a 
very large number of class intervals when the sample size is 
very large. Refer to Equation 1, in which x represents a sample 
of size n drawn randomly from a quantitative variable X.

     x X;  x x /1
n

x k n w max min ki i
          

 
       
                  (1)

The R i ce University rule was developed in the statistics 
department of William Marsh Rice University, a private 
university based in Houston, Texas [16]. The number of class 
intervals or bins is obtained by doubling the cube root of the 
sample size and rounding it up (Equation 2). This method has 
no distributional assumptions, can be used with any sample 
size, and is based on the rules of David Warren Scott [19] and 
Freedman and Diaconis [20], where the cube root of the sample 
size is used as the denominator to determine the width of the 
class intervals or bins [2]. Interestingly, David Warren Scott 
was a professor in the statistics department of this university, 
where he served as department head from 1990 to 1993, and was 
recognized as professor emeritus by the university in 2021 [32]. 
Like the square root rule, its advantage is ease of calculation 
and distributional universality, especially recommended for 
the arcsine distribution. However, its disadvantage is that it 
does not work well with very large samples compared to the 
rules of optimized width.
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   32 x x /k n w max min k                      (2)

The St u rges rule was developed by the German-born 
American statistician Herbert Sturges (1882-1958) in 1926 [17]. 
The number of class intervals or bins is obtained by adding 1 
to the logarithm base 2 of the sample size, and then rounding 
up (see Equation 3). This method assumes symmetry and is 
based on expressing the sample size as a binomial expansion 
with parameter p = ½ (constant probability of success in n 
independent trials with two possible outcomes: 1 = success and 
0 = failure or no success). Its advantage is that it is simple to 
calculate and is the default option in the ‘hist’ function of the R 
program. Its disadvantage is that it assumes symmetry and an 
underlying distribution that converges to normality.

     1 log x x /2k n w max min k                      (3)

Doane’s   rule was developed by the American statistician 
David Patrick Doane [18], Professor Emeritus of Economics 
at Oakland University. The number of class intervals or bins 
is defi ned based on the Sturges rule, with an additional 
term introduced as a skewness correction (Equation 4). This 
additional term is determined by the logarithm base 2 of the 
sum of one and the skewness coeffi cient, derived from the 
standardized third central moment in absolute value (Equation 
5), divided by its asymptotic standard error (Equation 6). 
Similar to previous rules, the result is rounded up. Doane’s rule 
does not require a symmetric distribution and is recommended 
as an alternative to the Sturges rule when the symmetry 
assumption is not met [33]. This is a more complex calculation 
rule than Sturges’ rule, with the advantage that it does not 
assume symmetry or convergence to normality. Although it 
corrects for symmetry, it does not take kurtosis into account.

   
 

   x x x11 log log 12 2 x1

b max min
k n w

EE b k


     
  
        

 
       
                     (4)
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 
 

 

                  (5)

   
  

6 2
x1 1 3

n
EE b

n n




 
                  (6)

Rules for establishing uniform width, determining k class 
intervals with varying frequencies: Scott’s rul e was developed 
by the American statistician David Warren Scott, professor 
emeritus of the Department of Statistics at Rice University, 
as previously mentioned [32]. The uniform width of the class 
intervals or bins is determined by the quotient of 3.49 times 
the sample standard deviation and the cube root of the sample 
size (Equation 7 ). This rule assumes a normal distribution and 
is based on minimizing the integrated mean square error when 

estimating the density per interval [19]. The formula is derived 
by approximating the density estimation using a Gaussian 
kernel function [34]. However, it performs well with various 
distributions other than the normal distribution, except for the 
arcsine distribution [2]. Scott’s rule is recommended for large 
sample sizes [33] and improves with increasing sample size 
[2]. Its advantage is that it uses an optimization algorithm and 
is simple to calculate, but its disadvantage is that it assumes a 
normal distribution and works poorly with small samples.

   

2

1
3.49

x x1
3

n
x xii

max minnw k
wn


 


  

 
 
 

 
 
 

 
       
       
                     (7)

The Freedman -Diaconis rule was developed by the 
American statisticians David Freedman of the University of 
California and Persi Diaconis of Stanford University. The 
uniform width of the class intervals or bins is determined by 
the ratio of twice the interquartile range to the cube root of the 
sample size [20]. Refer to Equation 8, where sample quartiles 
are denoted by qp(x), and p represents the order of the quantile, 
which, in the case of quartiles, is 0.25 (lower), 0.5 (middle), 
and 0.75 (upper).

          2 x x2 x x x0.75 0.25
3 3

q qIQR max min
w k

wn n

  
   

 
 
 

 
       
       
                   (8)

Quantiles can  be estimated using rules 6, 7, and 8 in R [35]. 
The most widely used rule for calculating sample quantiles is 
rule 6. This rule is based on expressing the order of the quantile 
p as the arithmetic mean of the statistic of order i in a sample of 
size n drawn from a standard continuous uniform distribution, 
which serves as a non-informative prior distribution when 
estimating a probability in Bayesian inference. Rule 7 is the 
default in the R program and is based on expressing the 
order of the quantile p as the mode of the statistic of order 
i in a sample of size n drawn from a standard continuous 
uniform distribution. Rule 8 is especially recommended 
when the distribution of the variable is unknown [36,37], as 
indicated by the simulation study of Hyndman and Fan [38] 
and the exploratory data analysis of Tukey [39]. It is based 
on expressing the order of the quantile p as the median of the 
statistic of order i in a sample of size n drawn from a standard 
continuous uniform distribution.

It should be noted that the Freedman-Diaconis rule 
does not require any distributional assumptions [20]. It is 
recommended for large sample sizes [33] and improves with 
increasing sample size [2]. It performs well with various 
distributions, although it yields the worst results with the 
arcsine distribution, similar to Scott’s rule. For such bimodal 
leptokurtic distributions, the square root and Rice University 
rules are recommended [2]. Therefore, its advantage is that it 
uses an optimization algorithm, is simple to calculate, and has 
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no distributional assumptions, but its disadvantage is that it 
works poorly with small samples.

Rudemo’s rule was developed by the Danish mathematician 
and engineer Mats Rudemo in 1982 [21], adopting Scott’s 
optimized bin-width approach without assuming a normal 
distribution. The uniform width of the intervals or bins is 
determined by minimizing the integrated mean square error 
using a leave-one-out cross-validation procedure. Refer 
to Equation 9, where ni represents the density per interval 
using kernel estimation, and h is the bandwidth used in this 
estimation. This bandwidth corresponds to the uniform width 
of the k-class intervals or bins when estimating the density per 
interval, which is the sum of the densities of the data points 
within the interval.

   x x2 1 2arg min 2( 1) ( 1) 1

k max minn
n a kih h n wn h n i


   

  

   
   

  
 

                (9)

The most commo nly used kernel function is the Gaussian 
or normal function (Equation 10), which has a bandwidth 
given by Silverman [40] derived from the minimization of the 
integrated mean square error. The value of this bandwidth 
(h) is 0.9 times the minimum between the sample standard 
deviation (sn-1) and the sample interquartile range divided by 
the interquartile range of the standard normal distribution (IQR 
/ 1.34), with this weighted minimum divided by the fi fth root 
of the sample size [41]. See Equation 11. However, the kernel 
function that optimizes the integrated mean square error most 
effectively is Epanechnikov’s parabolic function [42,43]. See 
Equation 12. In this case, to determine the bandwidth, one can 
apply the method of Sheather and Jones [44], which is based 
on the minimization of the asymptotic integrated mean square 
error [45,46].

   

21^ 1 2
x X; 1 2 1

x xinn h
x f x ehi i nh i

 
  
 




   


              (10)
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                 (11)
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2^ 3

1
4

x h x i
f xh

nh hi x k

 
 

 

       
             (12)

The Shimazaki-Shi nomot o rule was developed by Japanese 
physicist Hideaki Shimazaki and Japanese systems engineer 
and neuroscientist Shigeru Shinomoto in 2007 [22]. It is based 
on fi nding the optimal uniform width per interval or bin from 
the loss function. See Equation 13, where m represents the 
arithmetic mean, sn

2 symbolizes the uncorrected variance of 
bias, ni is the density per interval obtained by kernel estimation, 
Δ denotes the bandwidth in the kernel estimation of the point 
density, n constitutes the sample size, and the product ∆ × n 

is the bin width (w). By default, the Gaussian kernel with the 
bandwidth of Silverman [40] is used, as shown in Equation 10 
[47].

   
 

   
22 x x

arg min ;2 w

  
        

 
   
  

m n s n max minni i a n k
n

 
       

                  (13)

The advantage of the Rudemo and Shimazaki-Shinomoto 
rules is that they use an optimization algorithm and do not rely 
on distributional assumptions. However, their disadvantage is 
that they require software for computation and perform poorly 
with small samples.

Rules for establishing k with uniform frequency and 
variable widths: The Mann-Wald rule is applied in the context 
of normality testing through either the chi-square goodness-
of-fi t test or the likelihood ratio test [23]. These two American 
Jewish statisticians of Austro-Hungarian origin propose that 
the number of class intervals (k) falls within an interval [kmin, 
kmax]. The lower bound (kmin) is determined by applying Equation 
14, and the upper bound (kmax) is obtained using Equation 15 
[25]. Once the number of intervals is established, the uniform 
frequency (nI) is calculated by dividing the sample size by k.

  
22

2 ; ;21Ö

n nk n n n k nexcmin min min minkmin

 
     

   

 
 
  
 

 

                  (14)

  
22

4 ; ;21Ö

n nk n n n k nmax max exc max maxkmax

 
     

   

 
 
  
 

 

               (15)

If the quotient is a whole number, all intervals have the 
same frequency. If the quotient is a number with decimal 
places, it is rounded down to yield the common frequency. In 
this case, an excess frequency (nexc) arises, which is distributed 
by adding an element to the central intervals. Therefore, the 
presence of a surplus means that the n - k × nI central intervals 
contain nI + 1 elements.

In principle, the value of k must be a divisor of n for the 
quotient to be an integer, and it must be greater than or equal 
to 5; therefore, the sample size must be at least 40. To meet 
these requirements, n can be decomposed into prime factors, 
and the product of factors chosen should fall within the interval 
[kmin, kmax], be as close as possible to the lower limit (≥ kmin), and 
be greater than or equal to 5.

To construct the k class intervals, the n data are sorted in 
ascending order. The minimum value becomes the lower limit 
of the fi rst interval. The next nI - 1 elements are included, with 
the last of these values becoming the upper limit of the fi rst 
interval. The subsequent value becomes the lower limit of 
the second interval, and the process continues until the k-th 
interval, where the upper limit is the maximum value in the 
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sample. If there is a surplus, the n - k × nI central intervals 
contain nI + 1 elements. If k is odd, one element is added to 
the center interval, alternating between left and right for the 
placement of the surplus. If k is even, there are two center 
intervals. The process begins with the left-center interval 
and continues with the right-center interval when placing the 
surplus, alternating from left to right for the placement of one 
element per interval. Ideally, a value for k that does not result 
in a surplus is sought. It is important to note that with this 
rule, the width per interval or bin always varies.

If the signifi cance level of the goodness-of-fi t test (α) is 
set to 0.05, the kmin is [1.88 × n0.4] and the kmax is [3.77 × n0.4]. 
Because the number of class intervals (k) that provides the 
best adequacy to the goodness-of-fi t test is close to the lower 
limit, Moore [26] recommends using 2 × n0.4, rounded to the 
nearest integer, to obtain the number of class intervals. Once k 
is defi ned, the uniform frequency (nI) and the excess frequency 
(nexc) are determined, resulting in the variable width of the bins 
(wi). See Equation 16.

 0.42 ; / ;k n n n k n n k nexcI I
                     (16)

What to do with a sample smaller than 40? If the sample size 
is at least 25 but less than 40, you can apply what is referred 
to in this article as the “rule of the multiple of 5”. Divide the 
sample size by 5 and round down to obtain the uniform or 
common frequency per interval: nI = [n / 5]. The number of 
class intervals is determined by dividing the sample size by the 
uniform frequency: k = [n / nI]. If the quotient n / 5 results in 
an integer, all intervals have the same frequency (nI), which 
happens when n ends in 0 or 5. If a decimal is obtained, the 
integer part (rounded down) represents the common frequency 
of the k intervals, and there is an excess frequency: nexc = n - k 
× nI, which is distributed by incrementing one element in each 
of the n - k × nI intervals at the center.

The advantage of these last three rules is that they are 
designed for calculating the chi-square test or likelihood ratio 
from a class interval table, ensuring adequate convergence of 
the test statistic to the chi-square distribution. However, their 
disadvantage is that they produce an uninformative histogram 
that resembles a uniform distribution, so its representation is 
omitted in the script.

Method

First, the script is developed usi ng the R programming 
language [13]. The script is structured into three parts: 1) 
uniform amplitude rules, from which a frequency table and 
histogram are derived; 2) the optimal histogram of Kreider 
[14]; and 3) uniform frequency rules, from which a frequency 
table and the likelihood ratio test for normality are derived.

It should be noted that the developed script can be executed 
using the R or RStudio programs, with the eight required 
libraries (DEoptim, pracma, ggplot2, randtests, modeest, 
moments, scales, and nortest) installed on the personal 
computer. This way, the fi rst high-resolution histogram is 

obtained as a JPEG fi  le, and the second plot can be saved as 
a high-quality JPEG fi le. Another option is to run the script 
online at the following address: https://rdrr.io/snippets/. This 
method is more convenient, but the two graphics are of low 
resolution.

This script is applied to two samp les of 51 data points each. 
The fi rst sample is highlighted in blue at the beginning of the 
script. For practical signifi cance, the data correspond to scores 
on a visual attention capacity test on a D scale (with a mean of 
5.5 and a standard deviation of 2). It was created using Excel’s 
random number generator by drawing a random sample of 51 
data points from a normal distribution with a location parameter 
μ = 5 and scale σ = 2. The second sample was generated from 
the same normal distribution, seeking an output away from the 
Gaussian bell, slightly modifi ed to increase its abnormality, not 
by outliers, as would be the case with a contaminated normal 
distribution, but by depression at its center, as could a mixture 
of two truncated normal distributions with different location 
parameters [48]. This modifi cation aims to create a random 
sample of the same size but with an unknown, non-normal 
distribution.

The script developed is for a sample of at least 25 data 
poi nts, but a simplifi ed script for small samples (n < 25) is 
shown at the end of the Results section. This script is applied 
to a random sample of 16 data points generated from an arcsine 
distribution modifi ed to provide a larger mode on the left and a 
smaller mode on the right at the extremes of a bounded range.

Result

The script for R for a sampl e of at  least 25 data points

In the fi rst part, the four previou s ly seen rules for 
establishing the number of class intervals (k) with a uniform 
width (w), determined by k, and with  a variable frequency 
(ni) are calculated, as well as the four previously shown rules 
for establishing the uniform width (w) with the number of 
intervals (k) determined by w and with a variable frequency 
(ni). These eight rules are summarized in a four-column 
table: rule, number of class intervals (k), uniform width (w), 
and frequency per interval (n_IC). Using the ‘mlv’ function 
of the ‘modeest’ library to obtain the mode by the value with 
the highest frequency, k, and w are selected. If there is no 
unique modal value for k and the hypotheses of symmetry, 
mesokurtosis, and normality at a 5% signifi cance level hold, 
Scott’s rule is adopted. If there is neither a unique mode nor 
normality, the Freedman-Diaconis rule is chosen. However, if 
the distribution shows a U-shaped profi le corresponding to an 
arcsine distribution, it is recommended to use the square root 
or Rice University rules instead of the Freedman-Diaconis rule. 
It appears in the script as non-executable code (due to the # 
symbol before it).

The testing of symmetry is done using  D’Agostino’s test 
[49] and that of mesokurtosis using the Anscombe-Glynn test 
[50]. For this purpose, it is necessary to load the ‘moments’ 
library. In addition, using the ‘nortest’ library, normality is 
tested by at least one of three tests: Lilliefors’ test [51], based 
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on the maximum linear distance between the empirical and 
theoretical cumulative distribution functions; Anderson-
Darling’s test [52], based on the standardized quadratic 
distance between the two functions; and Shapiro-Francia test 
[53], based on the shared variance between the empirical and 
theoretical quantiles. These three tests were chosen because 
they are recommended for their power and adequacy [54-
56]. Statistical power is calculated for all inferential tests. It 
is obtained through a bootstrap simulation procedure, except 
in the case of the likelihood ratio test or G-test. For this test, 
the complementary cumulative distribution function of a non-
central chi-square distribution is used.

The quantiles for the Freedman-Diacon is rule are calculated 
using rule 8, as recommended by Hyndman and Fan [38] and 
Tukey [39]. In contrast, rule 9 is used for the Shapiro-Francia 
test to obtain the quantiles, since these are the theoretical 
quantiles for a sample randomly drawn from a normal 
distribution [53]. Additionally, the sample’s randomness is 
tested using the Wald-Wolfowitz runs test [57], which requires 
the ‘randtests’ library.

It should be noted that the signifi ca nce level of 0.05 can be 
modifi ed, for example, to 0.1 for small samples of 20 to 30 and 
to 0.01 for large samples of 1000 or more data points. It is not 
recommended to use the script with a sample smaller than 20; 
preferably, the sample should be at least 25. Once the script has 
selected the number and uniform width of the class intervals by 
the convergence of results or other conditions, it automatically 
produces the interval table and histogram with the overlaid 
density and normal curves. The plot is of high resolution as it 
is created using the ‘ggplot2’ library. The ‘scales’ library is also 
necessary for this plot.

Rudemo’s rule [21] in this script is  not available in any 
statistical program. Its code requires the ‘DEoptim’ library to 
fi nd the optimum in the presence of multiple local minima. By 
default, a range between 0.001 and the sample maximum for 
the function being minimized is used. However, in the case of 
a very large amplitude that determines a very low number of 
intervals compared to the Shimazaki-Shinomoto rule [22] and 
other optimization rules, a range between 0.001 and a quarter 
of the sample maximum is provided as an option. Here, we 
are considering a value close to the semi-interquartile range, 
as an approximation to the standard deviation [58,59], which 
represents a distance four times larger than that proposed 
by Fisher [60] for the uniform width per class interval. The 
Shimazaki-Shinomoto rule is indeed programmed in R and 
requires the ‘pracma’ library.

The second part of the script is very  short. It allows the 
creation of an optimal histogram using Kreider’s algorithm 
[14], which is available among the basic functions of R. This 
plot is of low resolution. If the script is run with the R program 
installed on the computer, the R graphics device (ACTIVE), 
when expanded, offers a “save as” function in its toolbar under 
“File”. Among the saving options is the high-quality JPEG 
format, which overcomes this limitation.

In the third part of the script, three   rules are computed to 

defi ne the number of class intervals with uniform frequency 
and variable width. The Mann-Wald [25] and Moore [26] 
rules are computed, which require a sample of at least 40 data 
points. For the Mann-Wald (MW) rule, its lower bound, upper 
bound, and an additional value are computed. This additional 
value appears only if there is an integer, the closest to the lower 
limit without exceeding the upper limit, which gives a uniform 
frequency of at least 5 cases and no excess. Otherwise, the 
message “NC = condition not met” appears. Additionally, these 
two rules are complemented by a third one, called the multiple 
of 5, for samples between 25 and 39 data points. Therefore, it 
is recommended that the minimum size of the random sample 
should preferably be 25 to use the script.

These three rules are presented in a fo ur-column summary 
table: rule, number of class intervals (k), variable width 
(w_i), and uniform frequency per interval (n_IC). The user 
then chooses the rule (multiple of 5, Mann-Wald, or Moore) 
by assigning values to three parameters: k = number of class 
intervals, nI = uniform frequency per interval, and nexc = excess 
frequency. Under these parameters, the frequency table and 
the likelihood ratio test for normality [61] with the continuity 
correction of Williams [28] and a signifi cance level of 5% are 
calculated. Modifi able parts of the script are highlighted in 
blue.

# Replaces the vector of scores with it s sample, with the 
data separated by commas.

x <- c(8.89, 2.36, 7.98, 8.25, 8.05, 5,  3.85, 4.69, 4.7, 5, 5.97, 
7.36, 5.88, 7.94, 1.82, 5.47, 5.33, 7.54, 3.97, 7.54, 4.57, 5.83, 
3.97, 5.01, 8.47, 2.09, 4.85, 6.05, 2.56, 3.63, 7.91, 6.43, 1.85, 
6.69, 0.8, 6.73, 5.02, 6.31, 3.7, 8.48, 6.59, 7.42, 2.8, 9.93, 2.52, 
5.93, 10.29, 6.76, 6.01, 4.28, 4.43)

# Square root rule (Pearson, 1892)

n <- length(x)

k_sqrt <- ceiling(sqrt(n))

R <- max(x) - min(x)

w_sqrt <- R / k_sqrt

if (k_sqrt == 1) {n_sqrt <- n} else {n_sqrt <- “variable”}

# Rice University Rule (Lane, 2015)

k_Rice <- ceiling(2 * n^(1/3))

w_Rice <- R / k_Rice

if (k_Rice == 1) {n_Rice <- n} else {n_Rice <- “variable”}

# Sturges’ Rule (1926)

k_Sturges <- ceiling(1 + log2(n))

w_Sturges <- R / k_Sturges

if (k_Sturges == 1) {n_Sturges <- n} else {n_Sturges <- 
“variable”}
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# Doane’s Rule

b1 <- mean((x - mean(x))^3) / sqrt(mean((x - 
mean(x))^2))^3

se_b1 <- sqrt((6*(n - 2)) / ((n + 1)*(n + 3)))

k_Doane <- ceiling(1 + log2(n) + log2(1 + abs(b1) / se_b1))

w_Doane <- R / k_Doane

if (k_Doane == 1) {n_Doane <- n} else {n_Doane <- 
“variable”}

# Scott’s Rule

sd <- sd(x)

w_Scott <- 3.49 * sd / n^(1/3)

k_Scott <- ceiling(R / w_Scott)

if (k_Scott == 1) {n_Scott <- n} else {n_Scott <- “variable”}

# Freedman-Diaconis Rule

IQR <- quantile(x, probs = 0.75, type = 8) - quantile(x, 
probs = 0.25, type = 8)

w_FD <- 2 * IQR / n^(1/3)

k_FD <- ceiling(R / w_FD)

if (k_FD == 1) {n_FD <- n} else {n_FD <- «variable»}

# Rudemo’s Rule

set.seed(123)

minimize_function <- function(h, x) {n <- length(x)

xi <- sort(x)

di <- density(xi, kernel = “gaussian”)

range <- max(x) - min(x)

k <- ceiling(range / h) + 1

interval_densities <- rep(0, k)

for (i in 1:k) {interval_min <- min(x) + (i - 1) * h

interval_max <- min(x) + i * h

interval_densities[i] <- sum(di$y[xi >= interval_min & xi 
< interval_max])}

result <- 2 / (h * (n - 1)) - (n + 1) / (n^2 * h * (n - 1)) * 
sum(interval_densities^2)

return(result)}

library(DEoptim)

control_params <- DEoptim.control(trace = FALSE, 
itermax = 100, NP = 50)

result <- DEoptim(fn = minimize_function, lower 
= 0.001, upper = max(x), x = x, control = control_
params)$optim$bestmem

#result <- DEoptim(fn = minimize_function, lower 
= 0.001, upper = max(x)/4, x = x, control = control_
params)$optim$bestmem # In case of a very small number of 
class intervals

w_Rudemo <- result

k_Rudemo <- ceiling((max(x) - min(x)) / w_Rudemo)

if (k_Rudemo == 1) {

n_Rudemo <- n} else {n_Rudemo <- “variable”}

# Shimazaki-Shinomoto Rule

library(pracma)

k <- ceiling(4 * (max(x) - min(x)) / sd(x))

SS <- histss(x, n = 10, plotting = FALSE)

k_SS <- length(histss(x, n = k, plotting = FALSE)$counts)

w_SS <- R / k_SS

if (k_SS == 1) {n_SS <- n} else {n_SS < - “variable”}

# Testing the randomness of the sample sequence using the 
Wald-Wolfowitz runs test

library(randtests)

runse <- runs.test(x, alternative = “two.sided”, threshold = 
median(x), pvalue = ‘exact’)

runsa <- runs.test(x, alternative = “two.sided”, threshold = 
median(x), pvalue = ‘normal’)

alpha <- 0.05

ww_power <- function(x, alpha, B = 1000) {n <- length(x)

p_values <- numeric(B)

for (i in 1:B) {bootstrap_sample <- sample(x, replace = 
TRUE)

result <- runs.test(x, alternative = “two.sided”, threshold = 
median(x), pvalue = ‘exact’)

p_values[i] <- result$p.value}

power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- ww_power(x, alpha)

cat(“Wald-Wolfowitz runs test. Criterion: median”, “\n”)

cat(“Number of runs: r =”, runse$runs, “\n”)
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cat(“n_0 = #(x_i < mdn(x)) =”, runse$parameter[“n1”], 
“and”, “n_1 = #(x_i > mdn(x)) =”, runse$parameter[“n2”], 
“\n”)

cat(“n = n_0 + n_1 =”, runse$parameter[“n”], “\n”)

cat(“Two-tailed exact probability: p =”, round(runse$p.
value, 4), “\n”)

cat(“Mean: M(R|n_0, n_1) =”, runse$mu, “and”, “Standard 
deviation: SD(R|n_0, n_1) =”, round(sqrt(runse$var), 4), 
“\n”)

cat(“Standardized number of runs: z_r =”, 
round(runse$statistic, 4), “\n”)

cat(“Two-tailed asymptotic probability: p =”, 
round(runsa$p.value, 4), “\n”)

cat(“Statistical power for the Wald-Wolfowitz runs test 
using bootstrap simulation: ϕ =”, power, “\n”)

# Statistical data for the calculation of the eight uniform 
width rules

cat(“Statistical data for calculation of uniform width 
rules”, “\n”)

cat(“Sample size: n =”, n, “\n”)

cat(“Sample range: R(x) = max(x) - min(x) =”, R, “\n”)

cat(“Sample interquartile range (quartiles by rule 8): 
IQR(x) =”, round(IQR, 4), “\n”)

cat(“Skewness coeffi cient based on the standardized third 
central moment: b_1(x) = m_3 / (m_2)^(3/2) =”, round(b1, 
4), “\n”)

cat(“Asymptotic standard error of b_1: se(b_1) =”, 
round(se_b1, 4), “\n”)

cat(“Sample standard deviation (with Bessel’s correction): 
sd(x) =”, round(sd, 4), “\n”)

# Testing for symmetry

library(moments)

c at(“Testing for symmetry”, “\n”)

agostino.test(x, alternative = “two.sided”)

agostino_power <- function(x, alpha, B = 1000) {n <- 
length(x)

p_values <- numeric(B)

for (i in 1:B) {bootstrap_sample <- sample(x, replace = 
TRUE)

result <- agostino.test(bootstrap_sample)

p_values[i] <- result$p.value}

power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- agostino_power(x, alpha)

cat(“Statistical power for the D’Agostino skewness test 
using bootstrap simulation: ϕ =”, power, “\n”)

agostino <- agostino.test(x, alternative = “two.sided”)

is_symmetric <- agostino$p.value > alpha

# Testing for mesokurtosis

cat(“Testing for mesokurtosis”, “\n”)

anscombe.test(x, alternative = “two.sided”)

ag_power <- function(x, alpha, B = 1000) {n <- length(x)

p_values <- numeric(B)

for (i in 1:B) {bootstrap_sample <- sample(x, replace = 
TRUE)

result <- anscombe.test(bootstrap_sample, alternative = 
“two.sided”)

p_values[i] <- result$p.value}

power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- ag_power(x, alpha)

cat(“Statistical power for the Anscombe-Glynn kurtosis 
test using bootstrap simulation: ϕ =”, power, “\n”)

ag <- anscombe.test(x, alternative = “two.sided”)

is_mesokurtic <- ag$p.value > alpha

# Testing for normality

library(nortest)

cat(“Testing for normality by three tests with different 
rationales”, “\n”)

lillie.test(x)

lillie_power <- function(x,  a lpha, B = 1000) {n <- length(x)

p_values <- numeric(B)

for (i in 1:B) {bootstrap_sample <- sample(x, replace = 
TRUE)

result <- lillie.test(bootstrap_sample)

p_values[i] <- result$p.value}
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power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- lillie_power(x, alpha)

cat(“Statistical power for the Lilliefors normality test using 
bootstrap simulation: ϕ =», power, «\n»)

ad.test(x)

ad_power <- function(x, alpha, B = 1000) {n < - length(x)

p_values <- numeric(B)

for (i in 1:B) {bootstrap_sample <- sample(x, replace = 
TRUE)

result <- ad.test(bootstrap_sample)

p_values[i] <- result$p.value}

power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- ad_power(x, alpha)

cat(“Statistical power for the Anderson-Darli ng normality 
test using bootstrap simulation: ϕ =», power, «\n»)

sf.test(x)

sf_power <- function(x, alpha, B = 1000) {n <- length(x)

p_values <- numeric(B)

for (i in 1:B) {bootstrap_sample <- sample(x, replace = 
TRUE)

result <- sf.test(bootstrap_sample)

p_values[i] <- result$p.value}

power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- sf_power(x, alpha)

cat(“Statistical power for the Shapiro-Francia normality 
test using bootstrap simulation: ϕ =”, power, “\n”)

lillie <- lillie.test(x)

ad <- ad.test(x)

sf <-  sf.test(x)

is_normal <- lillie$p.value > alpha | ad$p.value > alpha | 
sf$p.value > alpha

if (is_symmetric && is_mesokurtic && is_normal) 
{normality <- 2

} else if (is_symmetric && is_me sokurtic) {normality <- 1

} else {normality <- 0}

interpretation <- c(“No, at 5% signifi cance lev el”, 
“Ambiguous. The hypotheses of symmetry and mesokurtosis, 
but not normality, hold at 5% signifi cance level.”, “Yes, at 5% 
signifi cance level.”)

cat(“Normality:”, normality, “=”, interpretation[normality 
+ 1], “\n”)

# Summary table of the eight uniform width rules

rule_table1 <- data.frame(Rule = c(“Square roo t”, “Rice 
Univer sity”, “Sturges”, “Doane”, “Scott”, “Freedman-
Diaconis”,”Rudemo”, ”Shimazaki-Shinomoto”),

k = c(k_sqrt, k_Rice, k _Sturges, k_Doane, k_Scott, k_FD, 
k_Rudemo, k_SS),

w = c(round(w_sqrt, 4), round(w_Rice, 4), round(w_
Sturges, 4), round(w_Doane, 4), round(w_Scott, 4), round(w_
FD, 4), round(w_Rudemo, 4), round(w_SS, 4)),

n_IC = c(n_sqrt, n_Rice, n_Sturges, n_Doane, n_Scott, 
n_FD, n_Rudemo, n_SS))

cat(“Table 1: Summary of number, width, and frequency 
per class interval”, “\n”)

print(rule_table1)

cat(“Note. k = number of cl ass intervals, w = u niform width 
per interval, and n_IC = absolute frequency per interval.”, 
“\n”)

#Selection of the number and uniform width of t he intervals 
by convergence of the results

cat(“Rule selection by convergence of results (Table  1)”, 
“\n”)

library(modeest)

Table 1:  Summary of number, width, and frequency per class interval.

Rule k W n_IC

Square root 8 1.1862 variable

Rice University 8 1.1862 variable

Sturges 7 1.3557 variable

Doane 7 1.3557 variable

Scott 5 2.0738 variable

Freedman-Diaconis 6 1.8274 variable

Rudemo 3 3.8400 variable

Shimazaki-Shinomoto 3 3.1633 variable

 Note. k = number of class intervals, w = uniform width per interval, and n_IC = 
absolute frequency per interval.



031

https://www.agriscigroup.us/journals/annals-of-environmental-science-and-toxicology

Citation: De la Rubia JM (2024) Determination of the number and width of class intervals using R. Ann Environ Sci Toxicol 8(1): 022-042. 
DOI: https://dx.doi.org/10.17352/aest.000077

mod_k <- mlv(rule_table1$k, method = “mfv”)

mod _w <- mlv(rule_table1$w, method = “mfv”)

mode_k <- as.numeric(mod_k)

mode_w <- as.numeric(mod_w)

if (length(mode_k) == 1) {cat(“Most frequent number of 
class intervals: k =”, mode_k, “\n”)

cat(“Most frequent class interval width: w =”, mode_w, 
“\n”)

} else if (length(mode_k) > 1 && normality == 2) {mode_w 
<- w_Scott

mode_k <- k_Scott

cat(“Since there is no unique mode, but the distribution 
is normal, Scott’s rule is used: k =”, mode_k, “and w =”, 
mode_w, “\n”)

} else if (length(mode_k) > 1 && normality < 2) {mode_w 
<- w_FD

mode_k <- k_FD

cat(“Since there is neither a unique mode nor normality, 
the Freedman-Diaconis rule is used: k =”, mode_k, ”and w =”, 
mode_w, “\n”)}

#cat(“Since the samp le was drawn from an arcsin e 
distribution, square root rule is used: k =”, k_sqrt, “and w =”, 
w_sqrt, “\n”)

#mode_k <- k_sqrt

#mode_w <- w_sqrt

# Frequency distribution table (convergence of  uniform 
width rules)

intervals <- seq(min(x), max(x), mode_w)

if (max(intervals) < max(x)) {intervals <- c(intervals, 
max(intervals) + mode_w)}

interval_labels <- paste0(“[“, round(intervals[-
length(intervals)], 3), “, “, round(intervals[-1], 3), “)”)

interval_labels[length(interval_labels)] <- paste0(“[“, ro
und(intervals[length(intervals) - 1], 3), “, “, round(max(x), 3), 
“]”)

frequencies <- table(cut(x, breaks = intervals,  include.
lowest = TRUE, right = FALSE))

x_i <- round((intervals[-length(intervals)] + intervals[-1]) 
/ 2, 3)

n_i <- as.vector(frequencies)

f_i <-round(n_i / length(x), 4)

p_i <- paste0(round(f_i * 100, 1), “%”)

N_i <- cumsum(n_i)

F_i <- round(cumsum(f_i), 4)

P_i <- paste0(round(F_i * 100, 1), “%”)

table <- data.frame(Interval = interval_labels, x_i, n_i, 
f_i, p_i, N_i, F_i, P_i)

cat(“Table 2: Frequency distribution”, “\n”)

print(table)

cat(“Note. x_i = class mark, n_i = absolute frequency, f_i 
= relative frequency, p_i = percentage, “, “\n”)

cat(“N_i = cumulative absolute frequency, F_i = cumulative 
relative frequency, and P_i = cumulative percentage.”, “\n”)

# Histogram with overlaid density and normal curves

library(ggplot2)

library(scales)

density <- den sity(x, kernel = “epanechnikov”, bw = “SJ”)

x_values <- seq(mean(x) - 4 *sd(x), mean(x) + 4 *sd(x), 
length = 1000)

y_values <- dnorm(x_values, mean = mean(x), sd = sd(x))

intervals <- seq(min(x), max(x), length.out = mode_k + 1)

histogram <- ggplot(data = data.frame(x = x), aes(x = x)) + 

geom_histogram(aes(y = after_stat(density)), binwidth 
= NULL, breaks = intervals, fi ll = “darkolivegreen2”, color = 
“black”) + 

geom_line(data = data.frame(x = density$x, y = density$y), 
aes(x = x, y = y), color = “darkblue”, linewidth = 1) +

Table 2:  Frequency distribution.

i Interval x_i n_i f_i p_i N_i F_i P_i

1 [0.8, 2.874) 1.837 8 0.1569 15.7% 8 0.1569 15.7%

2 [2.874, 4.948) 3.911 11 0.2157 21.6% 19 0.3726 37.3%

3 [4.948, 7.021) 5.984 18 0.3529 35.3% 37 0.7255 72.6%

4 [7.021, 9.095) 8.058 12 0.2353 23.5% 49 0.9608 96.1%

5 [9.095, 10.29] 10.132 2 0.0392 3.9% 51 1 100%

Note. x_i = class mark, n_i = absolute frequency, f_i = relative frequency, p_i = percentage, N_i = cumulative absolute frequency, F_i = cumulative relative frequency, and P_i = 
cumulative percentage.
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geom_line(data = data.frame(x = x_values, y = y_values), 
aes(x = x, y = y), color = “red”, linewidth = 1) +

labs(x = “X values”, y = “Density”) +

theme(panel.background = element_rect(fi ll = “white”), 
axis.text.x.bottom = element_text(size = 8), axis.text.y = 
element_text(size = 8), axis.title.x = element_text(size = 9), 
axis.title.y = element_text(size = 9), axis.line = element_
line(color = “black”)) + 

scale_y_continuous(labels = label_number(accuracy = 
0.01))

jpeg(“Histogram1.jpeg”, width = 800, height = 600, units 
= “px”, res = 300)

print(histogram)

dev.off()

histogram

#Optimal histogram

par(mar = c(5, 6, 4, 2) + 0.1)

hist(x, bincol=NULL, main = NULL, xlab = “X values”, ylab 
= “Frequency”, col=”darkolivegreen2”, border = “black”, lwd 
= 2.5, cex.axis = 2.5, cex.lab = 2.5)

# Rule of the multiple of 5 (proposed in this article)

n <- length(x)

n_I <- fl oor(n / 5)

w_I <- “variable”

k_I <- fl oor(n / n_I)

exc <- n - k_I * n_I

# Mann-Wald Rule

k_MW_min <- round(2*((2*n^2) / qnorm(0.05)^2)^(1/5), 
0)

k_MW_max <- round(4*((2*n^2) / qnorm(0.05)^2)^(1/5), 
0)

w_MW_min <- “variable”

w_MW_max <- “variable”

n_MW_min <- fl oor(n / k_MW_min)

n_MW_max <- fl oor(n / k_MW_max)

exc_MW_min <- n - k_MW_min * n_MW_min

exc_MW_max <- n - k_MW_max * n_MW_max

# Function to obtain prime factors

prime_factors <- function(n) {if (n <= 1) {return(NULL)}

factors <- c()

d <- 2

while (n > 1) {while ((n %% d) == 0) {factors <- c(factors, 
d)

n <- n / d}

d <- d + 1

if (d * d > n) {if (n > 1) {factors <- c(factors, n)}

break}}

return(factors)}

# Function to generate all possible products of the factor 
vector

generate_products <- function(factors) {len <- 
length(factors)

products <- c()

for (i in 1:(2^len - 1)) {selected_factors <- factors[as.
logical(intToBits(i)[1:len])]

product <- prod(selected_factors)

products <- c(products, product)}

return(unique(products))}

# Function to obtain the factor closest to the lower limit 
that gives a uniform frequency of at least 5 cases and no excess.

fi nd_k_MW <- function(n, k_MW_min) {factors <- 
prime_factors(n)

if (is.null(factors)) {return(NA)}

products <- generate_products(factors)

valid_products <- products[products >= k_MW_min & 
fl oor(n / products) >= 5 & n %% products == 0]

if (length(valid_products) == 0) {return(NA)}

return(min(valid_products))}

k_MW <- fi nd_k_MW(n, k_MW_min)

if (is.na(k_MW)) {k_MW <- “NC”

w_MW <- “NC”

n_MW <- “NC”

exc_MW <- “NC”} else {w_MW <- “variable”

n_MW <- fl oor(n / k_MW)

exc_MW <- n - k_MW * n_MW}

# Moore’s Rule
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k_Moore <- round(2 * n^0.4, 0)

w_Moore <- “variable”

n_Moore <- fl oor(n / k_Moore)

exc_Moore <- n - k_Moore * n_Moore

central_int <- function(exc) {if (exc == 0) {re turn(“0 in 
central CIs”)}

else if (exc == 1) {return(“1 datum in the central CI”)}

else {return(paste(“1 datum in the “, exc, “ central CIs”, 
sep = “”))}}

rule_table2 <- data.frame(Rule = c(“Chi-2 test (24 < n < 
40)”, “Mann-Wald_min (n > 39)”, “Mann-Wald (n > 39)”, 
“Mann -Wald_max (n > 39)”, “Moore (n > 39)”),

k = c(k_I, k_MW_min, k_MW, k_MW_max, k_Moore),

w_i = c(w_I, w_MW_min, w_MW, w_MW_max, w_
Moore),

n_CI = c(paste(n_I, “&”, central_int(exc)), paste(n_MW_
min, “&”, central_int(exc_MW_min)), paste(n_MW, “&”, 
central_int(exc_MW)), paste(n_MW_max, “&”, central_
int(exc_MW_max)), paste(n_Moore, “&”, central_int(exc_
Moore))))

cat(“Table 3: Summary of the number of class intervals, 
their widths, and uniform and excess frequency “, “\n”)

print(rule_table2)

cat(“Note. k = number of class intervals, w_i =  variable 
width per interval, and n_IC = absolute frequency per class 
interval (NC = Non-Compliance with the condition).”, “\n”)

# Table of class intervals with uniform frequency and 
variable widths and testing for normality using g-test

# Input values provided by the user (choose rule: multiple 
of 5, MW, Moore)

k <- 10 # Number of class intervals

n_I <- 5 # Uniform frequency per interval

n_exc <- 1 # Excess frequency (one element per center 
interval)

cat(“Criterion. Moore:”, “k =”, k, ”,”, ”n_I =”, n_I, “y”, 
“n_exc =”, n_exc, “\n” ) # In dicate criterion

x_sorted <- sort(x)

n <- length(x)

interval_limits <- numeric(k)

central_intervals <- (k - n_exc) / 2

for (i in 1:k) {if (i <= central_intervals || i > (central_

intervals + n_exc)) {

lower_limit <- x_sorted[(i - 1) * n_I + 1]

upper_limit <- x_sorted[min(i * n_I, n)]} else {lower_
limit <- x_sorted[(i - 1) * n_I + 1]

upper_limit <- x_sorted[min((i - 1) * n_I + n_I + 1, n)]}

interval_limits[i] <- upper_limit}

frequency_table <- data.frame(Interval = character(k), 
n_o = numeric(k), n_e = numeric(k), g_i = numeric(k), 
stringsAsFactors = FALSE)

for (i in 1:k) {if (i == 1) {lower_limit <- min(x_sorted)

F_z_LS_prev <- 0} else {lower_limit <- interval_limits[i 
- 1]

F_z_LS_prev <- pnorm(interval_limits[i - 1], mean = 
mean(x), sd = sd(x))}

upper_limit <- interval_limits[i]

F_z_LS <- pnorm(upper_limit, mean = mean(x), sd = 
sd(x))

if (i == k) F_z_LS <- 1

if (i == 1) {interval_label <- paste0(“[“, round(lower_
limit, 2), “, “, round(upper_limit, 2), “)”)} else if (i == 
k) {interval_label <- paste0(“(“, round(lower_limit, 2), 
“, “, round(upper_limit, 2), “]”)} else {interval_label <- 
paste0(“(“, round(lower_limit, 2), “, “, round(upper_limit, 
2), “]”)}

n_o <- if (i > central_intervals && i <= (central_intervals 
+ n_exc)) {n_I + 1} else {n_I}

n_e <- n * (F_z_LS - F_z_LS_prev)

g_i <- if (n_e == 0) 0 else n_o * log(n_o / n_e)

frequency_table[i, ] <- c(interval_label, n_o, n_e, g_i)}

frequency_table$n_o <- as.numeric(frequency_
table$n_o)

frequency_table$n_e <- as.numeric(frequency_
table$n_e)

frequency_table$g_i <- as.numeric(frequency_table$g_i)

sums <- c(“Sum”, sum(frequency_table$n_o), 
sum(frequency_table$n_e), sum(frequency_table$g_i))

frequency_table <- rbind(frequency_table, sums)

cat(“Table 4: Class intervals with uniform frequency, 
variable widths, and calculations for the G-test”, “\n”)

print(frequency_table)

cat(“Note. n_o = observed frequency, n_e = expected 
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frequency, and g_i = n_o * ln(n_o / n_e).”, “\n”)

# G-test for normality (Woolf, 1957) using Williams’ 
continuity correction.

cat(“Likelihood ratio test or G-test for normality”, “\n”)

g <- 2 * sum(as.numeric(frequency_table$g_i[-(k  + 1)]))

p <- pchisq(g, df = k - 3, lower.tail = FALSE)

power_g <- 1 - pchisq(qchisq(alpha, df = k - 3, lower.tail 
= FALSE), df = k - 3, ncp = g, lower.tail = TRUE, log.p = FALSE)

q <- 1 + (k^2 - 1) / (6 * n * (k - 3))

g_cc <- g / q

p_c <- pchisq(g_cc, df = k - 3, lower.tail = FALSE)

power_g_cc <- 1 - pchisq(qchisq(alpha, df = k - 3, lower.
tail = FALSE), df = k - 3, ncp = g_cc, lower.tail = TRUE, log.p 
= FALSE)

cat(“G-test statistic: g = 2 * sum(g_i) =”, round(g, 4), 
“\n”)

cat(“Asymptotic p-value for G-test statistic: p =”, round(p, 
6), “\n”)

if (p < alpha) {cat(sprintf(“The null hypothesis of normality 
is rejected at a signifi cance level of %.2f with the G-test 
statistic.”, alpha), “\n”)

} else {cat(sprintf(“The null hypothesis of normality is 
maintained at a signifi cance level of %.2f with the G-test 
statistic.”, alpha), “\n”)}

cat(“The right-tailed statistical power for the  alternative 
hypothesis of non-normality for the G-test: ϕ =”, 
round(power_g, 4), “\n”)

cat(“Williams’ continuity correction: q =”, round(q, 4), 
“\n”)

cat(“Williams’ continuity-corrected G-test statistic: g_cc 
= g / q =”, round(g_cc, 4), “\n”)

cat(“Asymptotic p-value for continuity-corrected G-test 
statistic: p =”, round(p_c, 6), “\n”)

if (p_c < alpha) {cat(sprintf(“The null hypothesis of 
normality is rejected at a signifi cance level of %.2f with the 
continuity-corrected G-test statistic.”, alpha), “\n”)

} else {cat(sprintf(“The null hypothesis of normality is 
maintained at a signifi cance level of %.2f with the continuity-
corrected G-test statistic.”, alpha), “\n”)}

cat(“The right-tailed statistical power for the alternative 
hypothesis of non-normality for the G-test with Williams’ 
continuity correction: ϕ =”, round(power_g_cc, 4), “\n”)

Example 1: random sample drawn from a normal 
distrib u tion: In two-tailed tests at a 5% signifi cance level, 

the   sample of 51 data points from the script can be considered 
random by the Wald-Wolfowitz test [57], symmetric (H0: β1 = 
0) by t he D’Agostino test [49], mesokurtic (H0: β2 = 3) by the 
Anscombe-Glynn test [50], and normally distributed according 
to the following tests: Lilliefors’ D [51], Anderson-Darling’s A2 
[52], Royston’s W [53], and Woolf’s G [61]. There is no unique 
mode, but there is normality, so Scott’s rule [19] is used (Table 
1). The histogram with the overlaid density and normal curves 
can be seen in Figure 1, and the frequency distribution in Table 
2. The histogram and density curve reveal a normal profi le.

Figure 2 shows Kreider’s optimal histogram [14] with a 
s imilar profi le, but with more bins, which allows for a worse 
appreciation of the normal bell shape. Moore’s rule [26] (Table 
3) is chosen to construct the frequency table and compute the 
G-test [61] (Table 4) since the sample size is larger than 39 
and the Mann-Wald rule [25] does not yield an integer without 
excess. Moore’s rule gives 10 class intervals with a common 
frequency of 5 and an excess frequency of 1, located in the fi fth 
interval.

Wald-Wolfowitz runs test. Criterion: median

Number of runs: r = 28

n_0 = #(x_i < mdn(x)) = 25 and n_1 = #(x_i > mdn(x)) 
= 25

n = n_0 + n_1 = 50 

Figure 1: Histogram with overlaid density and normal curves (Scott’s rule).

Figure 2: Kreider’s optimal histogram.
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Two-tailed exact probability: p = 0.6707

Mean: M(R|n_0, n_1) = 26 and Standard deviation: 
SD(R|n_0, n_1) = 3.4993

Standardized number of runs: z_r = 0.5715

Two-tailed asymptotic probability: p = 0.5676

Statistical power for the Wald-Wolfowitz runs test using 
bootstrap simulation: ϕ = 0

Statistical data for calculation of uniform width rules

Sample size: n = 51

Sample range: R(x) = max(x) - min(x) = 9.49

Sample interquartile range (quartiles by rule 8): IQR(x) = 
3.3883

Skewness coeffi cient based on the standardized third 
central moment: b_1(x) = m_3 / (m_2)^(3/2) = -0.0693

Asymptotic standard error of b_1: se(b_1) = 0.3236

Sample standard deviation (with Bessel’s correction): sd(x) 
= 2.2035

Testing for symmetry 

D’Agostino skewness test

skew = -0.06933, z = -0.22483, p-value = 0.8221

Statistical power for the D’Agostino skewness test using 
bootstrap simulation: ϕ = 0.009

Testing for mesokurtosis 

Anscombe-Glynn kurtosis test

kurt = 2.43281, z = -0.78376, p-value = 0.4332

Statistical power for the Anscombe-Glynn kurtosis test 
using bootstrap simulation: ϕ = 0.13

Testing for normality by three tests with different rationales

Lilliefors (Kolmogorov-Smirnov) normality test

D = 0.062539, p-value = 0.8875

Statistical power for the Lilliefors normality test using 
bootstrap simulation: ϕ = 0.174

Anderson-Darling normality test

A = 0.19672, p-value = 0.8846

Statistical power for the Anderson-Darling normality test 
using bootstrap simulation: ϕ = 0.153

Shapiro-Francia normality test

W = 0.99112, p-value = 0.9234

Statistical power for the Shapiro-Francia normality test 
using bootstrap simulation: ϕ = 0.073

Normality: 2 = Yes, at 5% signifi cance level.

Rule selection by convergence of results (Table 1)

Since there is  no unique mode, but the distribution is 
normal, Scott’s rule is used: k = 5 and w = 2.073755

Likelihood ratio test or G-test for normality

G-test statistic: g = 2 * sum(g_i) = 7.755

Asymptotic p-value for G-test statistic: p = 0.3547

The null hypothesis of normality is maintained at a 
signifi cance level of 0.05 with the G-test statistic.

The right-tailed statistical power for the alternative 
hypothesis of non-normality for the G-test: ϕ = 0.487

Williams’ continuity correction: q = 1.0462

Williams’ continuity-corrected G-test statistic: g_cc = g / 
q = 7.4124

Asymptotic p-value for continuity-corrected G-test 
statistic: p = 0.3872

The null hypothesis of normality is maintained at a 
signifi cance level of 0.05 with the continuity-corrected G-test 
statistic.

Table 3: Summary of the number of class intervals, their widths, and uniform and 
excess frequency.

Rule k w_i n_IC

Chi-2 test (24 < n < 40) 5 variable 10 & 1 datum in the central CI

Mann-Wald_min (n > 39) 9 variable 5 & 1 datum in the 6 central CIs

Mann-Wald (n > 39) NC NC NC & 1 datum in the NC central CIs

Mann-Wald_max (n > 39) 18 variable 2 & 1 datum in the 15 central CIs

Moore (n > 39) 10 variable 5 & 1 datum in the central CI

Note. k = number of class intervals, w_i = variable width per interval, and n_IC = 
absolute frequency per class interval (NC = Non-Compliance with the condition).

Table 4: Class intervals with uniform frequency, variable widths, and calculations for 
the G-test.

i Interval n_o n_e g_i

1 [0.8, 2.36) 5 3.6135 1.6238

2 (2.36, 3.7] 5 6.3071 -1.1612

3 (3.7, 4.43] 5 5.2790 -0.2715

4 (4.43, 5] 5 4.8456 0.1569

5 (5, 5.83] 6 7.5927 -1.4125

6 (5.83, 6.01] 5 1.6439 5.5618

7 (6.01, 6.69] 5 5.9028 -0.8300

8 (6.69, 7.54] 5 6.1723 -1.0532

9 (7.54, 8.05] 5 2.8646 2.7850

10 (8.05, 9.93] 5 6.7785 -1.5216

Sum 51 51 3.8775

Note. n_o = observed frequency, n_e = expected frequency, and g_i = n_o * ln(n_o / 
n_e).
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The right-tailed statistical power for the alternative 
hypothesis of non-normality for the G-test with Williams’ 
continuity correction: ϕ = 0.4662

Example 2: random non-normal sample: x <- c(2.7, 4.71, 
6.13, 8.22, 7.59, 6.08, 4.97, 6.4, 4.56, 4.24, 5.2,  6.8, 5. 31, 4.83, 
5.09, 4.56, 4.84, 6.84, 8.21, 4.82, 3.64, 6.5, 5.05, 6.28, 6.21, 
6.62, 5.44, 4.13, 8.93, 4.59, 7.84, 4.47, 2.91, 1.28, 4.62, 6.69, 5, 
6.7, 4.86, 9.57, 7, 4.48, 4.13, 5.32, 4.94, 6.3, 10.05, 4.56, 1.24, 
4.61, 4.24)

In two-tailed tests at a 5% signifi cance level, the sample 
of 51 data  points can be considered random by the Wald-
Wolfowitz test (r = 27, pexact = 0.8843, z(r) = 0.2858, pasymp = 
0.7751, ϕ = 0), symmetric by the D’Agostino test (b1 = 0.23270, 
z = 0.74847, p-value = 0.4542, ϕ = 0.152), and mesokurtic by 
the Anscombe-Glynn test (b2 = 3.6156, z = 1.2594, p-value = 
0.2079, ϕ = 0.087). However, it does not conform to a normal 
distribution according to the tests of Lilliefors (D = 0.1275, 
p-value = 0.0376, ϕ = 0.837), Anderson-Darling (A2 = 0.9619, 
p-value = 0.0141, ϕ = 0.876), Royston (W = 0.9541, p-value 
= 0.0466, ϕ = 0.756), and Woolf (g = 19.9095, p = 0.0058, ϕ 
= 0.9266; g_cc = 19.03, p = 0.0081, ϕ = 0.9131). There is 
convergence in the number of intervals to 8 by the square root 
[15], Rice [16], and Doane [18] rules, with a uniform width of 
1.1013 (Table 5). See the histogram with the overlaid density 
and normal curves in Figure 3 and the frequency distribution 
in Table 6. The histogram and density curve reveals a bimodal 
profi le, with a higher mode located around 5 and a lower mode 
around 7.

Figure 4 shows Kreider’s optimal histogram [14] with a 
very similar profi le. A s in the previous example, Moore’s rule 
[26] is chosen to construct the frequency table and compute 
the G-test (Table 7), since the sample size is the same (Table 
4). Moore’s rule [26] gives 10 class intervals with a common 
frequency of 5 and an excess frequency of 1, located in the fi fth 
interval.

A simplifi ed script for small sample sizes: What should be 
done with a small s a mple size of less than 25? In this case, 
only the fi rst part of the script would apply. The number of 
class intervals can be determined using the square root rule or 
Rice University’s rule. With both rules, the uniform width is 
calculated by dividing the range by the number of class intervals. 

When testing for randomness with the Wald-Wolfowitz runs 
test, exact probabilities must be applied. For normality testing, 
the Shapiro-Wilk test can be used. The D’Agostino skewness 
test can be used with a sample size greater than 8, and the 
Anscombe-Glynn kurtosis test with a sample size of at least 20. 
Additionally, the signifi cance level should be increased to 0.1.

Below is a script that follows these suggestions. It is applied 
to a sample generated by inverse transformation sampling 
from an  arcsine distribution with threshold parameters: a = 0.5 
and b = 2. The distribution is modifi ed to have a major mode 
on the left and a minor mode on the right within its bounded 
range. These data, to give them specifi c context, represent 
the average diameter of the cavernous artery (measured in 
millimeters) of the penis in 16 men subjected to visual stimuli 
with homosexual content.

# Vector of scores

x <- c(0.657, 0.687, 0.513, 1.179, 1.976, 1.611, 0.571, 0.604, 
1.482, 0.524, 1.746, 0.754, 2, 1.843, 0.501, 0.889)

cat(“Rules for determining the number of class intervals 
(k) and uniform width (w)”, “\n”)

# Square root rule

k_sqrt <- ceiling(sqrt(length(x)))

w_sqrt <- (max(x) - min(x)) / k_sqrt

cat(“Square root rule: k =”, k_sqrt, “w =”, w_sqrt, “\n”)

# Rice University Rule

k_Rice <- ceiling(2 * length(x)^(1/3))

w_Rice <- (max(x) - min(x)) / k_Rice

cat(“Rice University Rule: k =”, k_Rice, “w =”, w_Rice, 
“\n”)

# Testing for randomness

library(randtests)

Figure 3: Histogram with overlaid density and normal curves (convergence of 
criteria).

Table 5: Summary of number, width, and frequency per class interval.

Rule k W n_IC

Square root 8 1.1013 variable

Rice University 8 1.1013 variable

Sturges 7 1.2586 variable

Doane 8 1.1013 variable

Scott 6 1.6904 variable

Freedman-Diaconis 9 1.1002 variable

Rudemo 10 0.9625 variable

Shimazaki-Shinomoto 11 0.8009 variable

k = number of class intervals, w = uniform width per interval, and n_IC = absolute 
frequency per interval.
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result_ww <- runs.test(x, alternative = “two.sided”, 
threshold = median(x), pvalue = ‘exact’)

print(result_ww)

alpha <- 0.1

if (result_ww$p.value < alpha) {cat(sprintf(“The null 
hypothesis of randomness is rejected at a signifi cance level of 
%.2f using Wald-Wolfowitz runs test.”, alpha), “\n”)

} else {cat(sprintf(“The null hypothesis of randomness 

is maintained at a signifi cance level of %.2f using Wald-
Wolfowitz test.”, alpha), “\n”)}

ww_power <- function(x, alpha, B = 1000) {n <- length(x)

p_values <- numeric(B) 

for (i in 1:B) {

bootstrap_sample <- sample(x, replace = TRUE)

result <- runs.test(x, alternative = “two.sided”, threshold = 
median(x), pvalue = ‘exact’)

p_values[i] <- result$p.value}

power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- ww_power(x, alpha)

cat(“Statistical power for the Wald-Wolfowitz runs test 
using bootstrap simulation: ϕ =”, power, “\n”)

# Testing for symmetry

library(moments)

result_agostino <- agostino.test(x, alternative = “two.
sided”)

print(result_agostino)

if (result_agostino$p.value < alpha) {cat(sprintf(“The null 
hypothesis of symmetry is rejected at a signifi cance level of 
%.2f using D’Agostino skewness test.”, alpha), “\n”)

} else {cat(sprintf(“The null hypothesis of symmetry is 
maintaineagostino_power <- function(x, alpha, B = 1000) {n 
<- length(x)

p_values <- numeric (B)

for (i in 1:B) {

bootstrap_sample <- sample(x, replace = TRUE)

Table 6: Frequency distribution.

i Interval x_i n_i f_i p_i N_i F_i P_i

1 [1.24, 2.341) 1.791 2 0.0392 3.9% 2 0.0392 3.9%

2 [2.341, 3.443) 2.892 2 0.0392 3.9% 4 0.0784 7.8%

3 [3.443, 4.544) 3.993 7 0.1373 13.7% 11 0.2157 21.5%

4 [4.544, 5.645) 5.095 20 0.3922 39.2% 31 0.6079 60.7%

5 [5.645, 6.746) 6.196 10 0.1961 19.6% 41 0.8040 80.3%

6 [6.746, 7.848) 7.297 5 0.0980 9.8% 46 0.9020 90.1%

7 [7.848, 8.949) 8.398 3 0.0588 5.9% 49 0.9608 96%

8 [8.949, 10.05] 9.500 2 0.0392 3.9% 51 1 100%

Note. x_i = class mark, n_i = absolute frequency, f_i = relative frequency, p_i = percentage, N_i = cumulative absolute frequency, F_i = cumulative relative frequency, and P_i = 
cumulative percentage.

Figure 4: Kreider’s optimal histogram.

Table 7: Class intervals with uniform frequency, variable widths, and calculations for 
the G-test.

i Interval n_o n_e g_i

1 [1.24, 3.64) 5 7.7262 -2.1759

2 (3.64, 4.47] 5 6.8103 -1.5450

3 (4.47, 4.59] 5 1.1781 7.2276

4 (4.59, 4.83] 5 2.4723 3.5215

5 (4.83, 5.05] 6 2.3764 5.5570

6 (5.05, 5.32] 5 3.0117 2.5346

7 (5.32, 6.28] 5 10.5910 -3.7528

8 (6.28, 6.69] 5 3.9778 1.1435

9 (6.69, 7.59] 5 6.6749 -1.4446

10 (7.59, 9.57] 5 6.1813 -1.0604

Sum 51 51 10.0055

Note. n_o = observed frequency, n_e = expected frequency, and g_i = n_o * ln(n_o / 
n_e).



038

https://www.agriscigroup.us/journals/annals-of-environmental-science-and-toxicology

Citation: De la Rubia JM (2024) Determination of the number and width of class intervals using R. Ann Environ Sci Toxicol 8(1): 022-042. 
DOI: https://dx.doi.org/10.17352/aest.000077

result <- agostino.test(bootstrap_sample)

p_values[i] <- result$p.value}

power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- agostino_power(x, alpha)

cat(“Statistical power for the D’Agostino skewness test 
using bootstrap simulation: ϕ =”, power, “\n”)

# Testing for mesokurtosis

result_ag <- anscombe.test(x, alternative = “two.sided”)

print(result_ag)

if (result_ag$p.value < alpha) {cat(sprintf(“The null 
hypothesis of mesokurtosis is rejected at a signifi cance level 
of %.2f using Anscombe-Glynn kurtosis test.”, alpha), “\n”)

} else {cat(sprintf(“The null hypothesis of mesokurtosis 
is maintained at a signifi cance level of %.2f using Anscombe-
Glynn kurtosis test test.”, alpha), “\n”)}

ag_power <- function(x, alpha, B = 1000) {n <- length(x)

p_values <- numeric(B)

for  (i in 1:B) {

bootstrap_sample <- sample(x, replace = TRUE)

result <- anscombe.test(bootstrap_sample, alternative = 
“two.sided”)

p_values[i] <- result$p.value}

power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- ag_power(x, alpha)

cat(“Statistical power for the Anscombe-Glynn kurtosis 
test using bootstrap simulation: ϕ =”, power, “\n”)

# Testing for normality

library(nortest)

result_sw <- shapiro.test(x)

print(result_sw)

if (result_sw$p.value < alpha) {

cat(sprintf(“The null hypothesis of normality is rejected at 
a signifi cance level of %.2f using Shapiro-Wilk test.\n”, alpha))

} else {cat(sprintf(“The null hypothesis of normality is 

maintained at a signifi cance level of %.2f using Shapiro-Wilk 
test.\n”, alpha))}

shapiro_power <- function(x, alpha, B = 1000) {n <- 
length(x)

p_values <- numeric(B)

 for (i in 1:B) {

bootstrap_sample <- sample(x, replace = TRUE)

result <- shapiro.test(bootstrap_sample)

p_values[i] <- result$p.value}

power <- mean(p_values < alpha)

return(power)}

set.seed(123)

power <- shapiro_power(x, alpha)

cat(“Statistical power for the Shapiro-Wilk normality test 
using bootstrap simulation: ϕ =”, power, “\n”)

# Selection of the number and uniform width of the 
intervals

k <- 6

w <- (24983 - 2498) / 90000

# Frequency distribution table

intervals <- seq(min(x), max(x), w)

if (max(intervals) < max(x)) {intervals <- c(intervals, 
max(intervals) + w)}

interval_labels <- paste0(“[“, round(intervals[-
length(intervals)], 3), “, “, round(intervals[-1], 3), “)”)

interval_labels[length(interval_labels)] <- paste0(“[“, ro
und(intervals[length(intervals) - 1], 3), “, “, round(max(x), 3), 
“]”)

frequencies <- table(cut(x, breaks = intervals, include.
lowest = TRUE, right = FALSE))

x_i <- round((intervals[-length(intervals)] + intervals[-1]) 
/ 2, 3)

n_i <- as.vector(frequencies)

f_i <-round(n_i / length(x), 4)

p_i <- paste0(round(f_i * 100, 1), “%”)

N_i <- cumsum(n_i)

F_i <- round(cumsum(f_i), 4)

P_i <- paste0(round(F_i * 100, 1), “%”)

table <- data.frame(Interval = interval_labels, x_i, n_i, 
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f_i, p_i, N_i, F_i, P_i)

cat(“Table: Frequency distribution”, “\n”)

print(table)

cat(“Note. x_i = class mark, n_i = absolute frequency, f_i 
= relative frequency, p_i = percentage, “, “\n”)

cat(“N_i = cumulative absolute frequency, F_i = cumulative 
relative frequency, and P_i = cumulative percentage.”, “\n”)

# Histogram with overlaid density and normal curves

library(ggplot2)

library(scales)

density <- density(x, kernel = “epanechnikov”, bw = “SJ”)

x_values <- seq(mean(x) - 4 *sd(x), mean(x) + 4 *sd(x), 
length = 1000)

y_values <- dnorm(x_values, mean = mean(x), sd = sd(x))

intervals <- seq(min(x), max(x), length.out = k + 1)

histogram <- ggplot(data = data.frame(x = x), aes(x = x)) + 

geom_histogram(aes(y = after_stat(density)), binwidth 
= NULL, breaks = intervals, fi ll = “darkolivegreen2”, color = 
“black”) + 

geom_line(data = data.frame(x = density$x, y = density$y), 
aes(x = x, y = y), color = “darkblue”, linewidth = 1) +

geom_line(data = data.frame(x = x_values, y = y_values), 
aes(x = x, y = y), color = “red”, linewidth = 1) +

labs(x = “X values”, y = “Density”) +

theme(panel.background = element_rect(fi ll = “white”), 
axis.text.x.bottom = element_text(size = 8), axis.text.y = 
element_text(size = 8), axis.title.x = element_text(size = 9), 
axis.title.y = element_text(size = 9), axis.line = element_
line(color = “black”)) + 

scale_y_continuous(labels = label_number(accuracy = 
0.01))

jpeg(“Histogram.jpeg”, width = 800, height = 600, units = 
“px”, res = 300)

print(histogram)

dev.off()

histogram

At a 10% signifi cance level, the sample sequence can be 
considered random by the Wald-Wolfowitz runs test (r = 10, n1 
= 8, n2 = 8, p_exact = 0.810 > 0.1; statistical power: ϕ = 0) and 
symmetric by the D’Agostino test (√b1 = 0.438, z = 0.897, p-value 
= 0.370 > 0.1, ϕ = 0.229). However, it presents platykurtosis 
according to the Anscombe-Glynn kurtosis test (b2 = 1.513 < 
3, z = -2.337, p-value = 0.019 < 0.1, ϕ = 0.637) and is far from 
normal by the Shapiro-Wilk test (w = 0.840, p-value = 0.010 
< 0.1, ϕ = 0.989). The kurtosis test should be approached with 
caution, as it is recommended for a minimum sample size of 
20. The number of class intervals by the square root rule is 4 (w 
= 0.37475), and by the Rice University rule, it is 6 (w = 0.24983 
= 22485 / 90000 = 1499 / 6000). To construct the frequency 
table with class intervals (Table 8) and the histogram (Figure 
5), the Rice Univer sity rule is followed, as it best refl ects the 
generating distribution of the sample, although the square root 
rule also provides a good representation.

Discussion

The extensive three-section script developed in this article 
facilitates the calculation of eight uniform amplitude rules. 
On the one hand, four sample size-based rules are obtained: 
three classical rules [15, 17-18] and a more recent one from 
Rice University [16]. The latter simplifi es two optimal width 

Figure 5: Histogram with overlaid density and normal curves.

Table 8: Frequency distribution.

i Interval x_i n_i f_i p_i N_i F_i P_i

1 [0.501, 0.751) 0.626 7 0.4375 43.8% 7 0.4375 43.8%

2 [0.751, 1.001) 0.876 2 0.1250 12.5% 9 0.5625 56.2%

3 [1.001, 1.25) 1.126 1 0.0625 6.2% 10 0.6250 62.5%

4 [1.25, 1.5) 1.375 1 0.0625 6.2% 11 0.6875 68.8%

5 [1.5, 1.75) 1.625 2 0.1250 12.5% 13 0.8125 81.2%

6 [1.75, 2] 1.875 3 0.1875 18.8% 16 1 100%

Note. x_i = class mark, n_i = absolute frequency, f_i = relative frequency, p_i = percentage, N_i = cumulative absolute frequency, F_i = cumulative relative frequency, and P_i = 
cumulative percentage.
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rules, namely Scott’s [19] and Freedman-Diaconis [20] rules. 
Moreover, four optimal width rules are computed [19-22].

It should be noted that Rudemo’s rule [21] is not available 
in other programs, although the other three optimal amplitude 
rules are programmed in R: in the basic package via the 
histogram function (Scott and Freedman-Diaconis) and in the 
‘pracma’ package (Shimazaki-Shinomoto). Rudemo’s rule [21] 
minimizes the integrated mean square error from the leave-
one-out cross-validation method. This function has multiple 
relative minima, hence the DEoptim: Global Optimization by 
Differential Evolution package is used. By default, the upper 
limit is set to the sample maximum, but a quarter of the 
maximum appears as a coded option (highlighted in blue), 
with the symbol # placed before the result, so that it is not 
read during the execution of the script. This can be activated 
when the width is very large and the number of bins very 
small compared to the Shimazaki-Shinomoto rule [22] and the 
other two optimization rules, as well as the optimal histogram 
provided by R from its basic package [14]. The # symbol is 
put in the previous ‘result’ and removed in the ‘result’ shown 
in blue. A quarter of the range, or approximately the semi-
interquartile range, was considered, being an approximation of 
the standard deviation [58,59] and constituting a distance four 
times larger than Fisher’s [60] proposal for the uniform width 
of class intervals, which is a quarter of the standard deviation.

For the selection of the number of class intervals, we chose 
to look for convergence of results among the eight uniform 
width rules and defi ned a uniform width bounded within the 
sample range (between sample minimum and maximum). In 
the case of non-convergence, the Scott rule [19] is chosen if 
there is normality, and the Freedman-Diaconis rule [20] is 
chosen if there is no normality. However, it should be noted 
that both rules perform poorly with the arcsine distribution [2]. 
For this distribution, it is advisable to use the square root rule 
[2], which is coded with the # symbol placed before it so that it 
is not read during the execution of the script. The distribution 
can be recognized through the density curve, which will show a 
U-shape. To change the mode, inactivate mode_k and mode_a 
by adding the symbol # to the two previous codes, and activate 
mode_w <- w_sqrt and mode_k <- k_sqrt by removing the 
symbol #.

There is a third option for determining the number of class 
intervals. Instead of using a uniform width, this approach leaves 
the width variable and chooses a uniform frequency when it 
is variable in the previous eight rules [62]. This third option 
has been proposed to check normality using Pearson’s chi-
square test or likelihood ratio test [25,26] with the intention 
of achieving a uniform frequency of at least fi ve data points 
per interval with at least fi ve class intervals [24]. Hence, it was 
separated into a third block, which includes a summary table 
with the data from these two rules, complemented by a new 
rule for samples of 25 to 39 data points, the frequency table 
with the calculations of the likelihood ratio test, and the results 
of this goodness-of-fi t test with or without the Williams’ 
continuity correction [28].

The new rule was named the “multiple of fi ve” because it 

proposes dividing the sample size by 5 and rounding the result 
down, resulting in a uniform frequency if there is no surplus, 
or common frequency if there is surplus. The number of class 
intervals is the sample size divided by the uniform or common 
frequency, rounded down. If there is an excess frequency, one 
data point per interval is allocated to the central intervals. For 
sample sizes 25 to 29, there are fi ve intervals with a frequency 
of 5 (there is a surplus with sample sizes 26 to 29); for sample 
sizes 30 to 34, there are six intervals with a frequency of 6 
(there is a surplus with sample sizes 31 to 34); and for sample 
sizes 35 to 39, there are seven intervals with a frequency of 
7 (there is a surplus with sample sizes 36 to 39). In all three 
cases, the surplus is from 1 to 4 elements. A similar solution is 
proposed for the Mann-Wald rule [25], seeking an integer, the 
one closest to the lower limit, that does not exceed the upper 
limit, that gives a uniform frequency of at least 5 cases, and 
that does not yield a surplus. If the sample size is greater than 
39, it is suggested to use this option, and if it is not feasible, it 
is recommended to apply Moore’s rule [26].

In the case of small samples (less than 25 data points), which 
is a common situation in the social sciences, a simplifi ed script 
is presented with two recommended rules for determining the 
number of class intervals (square root and Rice University), 
which provide uniform widths. The inferential tests do not 
include the likelihood ratio test, but they do include the Wald-
Wolfowitz runs test using exact probability, the D’Agostino 
skewness test, the Anscombe-Glynn kurtosis test, and the 
Shapiro-Wilk normality test instead of the Shapiro-Francia 
test, as these were developed for small samples.

Conclusion

The extensive three-section script can be used both 
practically and didactically at a descriptive and inferential level 
when working with quantitative variables and random samples 
of at least 25 data points. At the descriptive level, it provides 
two summary tables for nine rules to determine the number 
and width of class intervals. The fi rst table is for the eight 
uniform width rules, and the second is for the three variable 
width rules. Additionally, it includes two frequency tables 
(one based on the convergence criterion for the eight uniform 
width rules and a uniform frequency table) and two histograms 
(one based on the convergence criterion and another using 
Kreider’s method). At the inferential level, the script includes 
the density curve (using Epanechnikov’s kernel with Sheather-
Jones bandwidth) and tests for randomness (Wald-Wolfowitz), 
symmetry (D’Agostino), mesokurtosis (Anscombe-Glynn), and 
normality (Lilliefors’ D, Anderson-Darling A2, Royston’s W, 
and Woolf’s G).

It can be applied to any type of distribution: whether 
normal, as found in measures of general intelligence, ability, 
and expressive attitudes in open societies, as in the fi rst 
example of the Result section; with positive skewness, as found 
in measures of psychopathology or stigmatized attitudes; 
with negative skewness, as observed in measures of academic 
achievement, prosocial behaviors, or normative attitudes in 
closed societies; or bimodal, as found in measures of sexual 
orientation in men (higher mode in exclusively heterosexual 
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orientation and lower mode in exclusively homosexual 
orientation) or political ideology in radicalized democratic 
societies due to strong socio-economic crises (left-wing vs. 
right-wing ideology). Other distributional forms can also 
be observed, as shown in the second example of the Results 
section, which is very common in the social and health sciences.

A simplifi ed script is also provided for small samples that are 
common in social research. This script is a condensed version 
of the extensive three-section script, focusing on the fi rst 
section. It includes the rules (square root and Rice University) 
and recommended inferential tests (Wald-Wolfowitz runs test 
using exact probability, D’Agostino skewness test, Anscombe-
Glynn kurtosis test, and Shapiro-Wilk normality test) for small 
samples. It provides a frequency table with class intervals and 
a histogram with overlaid density and normal curves.
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