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1. Introduction

Despite a recent global surge in requirement for offshore 

Oil and Gas (O&G) Exploration and Production (E&P) due to the 

presently ongoing Russian-Ukrainian war [1] and sabotage of 

the Baltic Nord Stream gas pipeline, [2] O&G infrastructure is 

increasingly reaching end of its operational life [3]. Currently, 

in the North Atlantic Oslo-Paris Commission (OSPAR) region 

alone, there are 234 structures Plugged and Abandoned (P&A), 

or being dismantled [4]. Decommissioning strategies are 

therefore a major concern for industry, Government, taxpayers, 

scientists, and non-governmental organisations [5,6]. 

The growing complexity of environmental challenges has 
steered progressive emergence of sustainable business models 
able to embed economic, environmental, and social fl ows in a 
unifi ed value network [7]. This, in turn, has led to the concept 
of alternate ‘sustainable decommissioning’, where there are 
potential environmental, societal, and economical benefi ts of 
leaving some well situated end-of-life offshore O&G platforms 
in situ at the end of their operational lifetimes, known as the 
‘Rigs-To-Reef’ paradigm [8]. These include proposed schemes 
such as repurposing offshore O&G installations as renewable 
energy structures, like Neptune Energy’s Q13a O&G green-
energy hydrogen platform, or recreational SCUBA-diving 
attractions [9], and even hotels, such as the dive resort created 
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Some offshore Oil and Gas platforms act as mini de facto Marine Protected Areas, supporting diverse marine ecological reef communities. Many policies mandate 
the removal of most O&G infrastructure at the end of its operational life, potentially harming marine species and removing critical habitat. One unexplored notion is that 
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potential environmental, societal, and economic net benefi ts of decommissioned platforms in the context of a rewilding paradigm.
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from an offshore platform in the Celebes Sea, near Borneo and 
the Air BnB ‘frying pan’ oil platform located 37 km offshore in 
the Gulf of Mexico. In cases of O&G structures acting as artifi cial 
reefs, their ecological function can be enhanced by incorporating 
nature-in-design concepts blending an understanding of 
species and community needs with engineering solutions and 
aesthetic considerations. Where traditional artifi cial reefs are 
designed to mimic the topography and porosity of natural 
reefs, the complexity of offshore rigs and platforms can be 
attractive to crustaceans, molluscs, small reef fi sh, and corals. 
While repurposing these platforms could potentially outweigh 
(in terms of environmental, societal, and economical benefi ts) 
alternative-decommissioning options, in individually assessed 
cases, complete removal of structures is currently legislated 
throughout European waters, except for some derogated larger 
gravity-based installations [10]; however, OSPAR Decision 
98/3 does not refer to structures which are determined by the 
authorising body to be ‘serving another legitimate purpose in the 
maritime area’ which could apply to offshore installations that 
have been repurposed as artifi cial reef material. Although the 
OSPAR guidelines on artifi cial reefs about living marine resources 
include language that excludes the use of reused or waste 
material, as subsequent drafts progressed, language expressly 
forbidding ‘post-consumer materials and off shore installations’ 
was removed. This opens numerous possibilities from a legal 
perspective, when it comes to decommissioning of offshore 
assets under current OSPAR regulations.

One notion that has not been explored to date, is the 
concept that derogated or repurposed offshore platforms 
that have been demonstrated (with peer-reviewed research) 
to be acting as de facto Marine Protected Areas (MPAs) in the 
form of artifi cial reefs, could be considered, sensu strictu, an 
alternative to rewilding which is the practice of returning wild 
areas, and wildness, to terrain humans have altered [11]. This 
is the fi rst time this concept has been introduced in an offshore 
decommissioning scenario, and this study seeks to encourage 
lively discussion around use of the term rewilding and nature-
in-design when considering derogating or repurposing 
offshore decommissioned installations. It is critical that the 
concept engender a balanced approach, as there are arguments 
for and against a new rewilding paradigm. 

When using the defi nition of rewilding, it is important 
to consider what ‘wildness’ means in an ecological context. 
Chapman [12], for example, does not deem wildness as separate 
from humans with “creative complexity” existing in proximity 
with cities, where areas have been recolonised by vegetation, 
insect, and mammal populations. This view is supported by 
Prior and Brady [13] that states “rewilding, as a specifi c form 
of ecological restoration, does not require human abandonment”. 
Under this notion, offshore structures remaining in situ, is 
not incompatible with the concept of rewilding the seabed. 
Considering the term rewilding used by du Toit and Pettorelli 
[14], which states that “…in contrast with restoration, rewilding 
has lower fi delity to taxonomic precedent and promotes taxonomic 
substitutions for extinct native species that once underpinned the 
delivery of key ecological functions”, these authors place emphasis 
in ecological function rather than taxa. A reasonable example 

of this is introduction of the European rabbit (Oryctolagus 
cuniculus) in Australia which took over some of the native bilby’s 
(Macrotis lagotis) ecological roles, such as soil turnover and seed 
dispersal [15]; however, there are already cases in the North 
Sea, where other functionally similar species have expanded to 
fi ll vacant niches already [e.g. 16]. In the strictest confi nes of 
this defi nition of rewilding, it would be challenging to defend 
that addition of hard substrata (and its faunal assemblages, 
native or non-indigenous, some of which may be invasive) 
could be used for rewilding, given that functions derived from 
these new offshore O&G platform habitats and the assemblages 
they underpin did not exist at that place before addition of 
such hard infrastructure – independently of whether the same 
species were there beforehand or not. Indeed, hard substrata 
typically replaces soft sediment on the benthos and many of 
the functions they provide are quite different. Consequently, 
it could be argued that, rather than rewilding, leaving offshore 
assets in situ creates new habitat for assemblages (that provide 
functions, and potentially ecosystem services) which were 
not there before, such as provisioning of planktonic and 
epibenthic food resources and related trophic pathways, and 
those associated with life-stage specifi c habitat use [17], which 
are critical mechanisms of productive reefs; however, it can 
be argued equally, that this point of view is only valid from 
the starting point of a formerly pristine and non-degraded 
habitat, which is not the case for the heavily overfi shed and 
chemically/acoustically polluted North Sea, the habitat of 
which has been anthropogenically altered irreparably, and 
despite any future conservation measures, will never return to 
its former pristine condition regardless of any rewilding effort. 
Rather it could be considered a new baseline habitat between 
natural and altered. Indeed, unintentional re-wilding has even 
been carried out by a well-known, outwardly anti- O&G Non-
Governmental Organisation [18], who created hard substrata in 
a previously soft-substrate environment, by dumping rocks in 
a trawling zone, to prevent fi shing activities, which is arguably 
the most damaging anthropogenic impact in the North Sea 
[19,20]. This is especially salient, since MPAs are employed as 
tools to manage human impacts, especially fi shing pressure; 
by excluding the most destructive activities MPAs can rewild 
degraded areas of seabed habitat [21]. In this sense, offshore 
O&G installations are already being considered as de facto MPAs 
[22], so is it not a logical step in a similar direction to thus 
consider them in a rewilding scenario?

Regardless of any philosophical exploration of semantics or 
ecological services justifi cation for rewilding, it is undisputable 
that [10] subsea anthropogenic infrastructure provides hard, 
structurally complex substrate that can accommodate diverse 
sessile invertebrate fouling commun ities such as cnidaria, 
hydroids, bryozoans, porifera, bivalves, cirripeds, soft and hard 
corals, etc. [23-26]. These assemblages, in turn, attract motile 
invertebrates, such as crabs and molluscs [27], that support 
fi sh [28-32], and marine megafauna, such as sharks [33,34], 
marine reptiles [35], birds [36], and marine mammals [37-42]. 
An understanding of the marine communities that have come 
to associate with O&G structures over their operational life is 
important at end-of-life, as decommissioning practices should 
be designed and implemented to minimise negative impacts 
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to marine ecosystems, particularly to sensitive and protected 
species and critical habitats. Such information is required on a 
case-by-case basis, and when it comes to conservation of the 
marine environment, all options, including potentially ‘reefi ng 
as rewilding’ should be on the table.

Visual underwater study of marine life is costly, challenging, 
risky, and prohibitive in terms of gaining access to within the 
500-m fi sheries exclusion zone around offshore O&G platforms; 
however, one important source of data is Remotely Operated 
Vehicles (ROVs), which are used extensively by O&G industries 
for Inspection Maintenance & Repair (IMR), and intervention 
of offshore infrastructure. Industry-science partnerships that 
enable scientists to utilise and augment industry ROVs and 
access collected data, have very high intrinsic value [43,44]. 
Industry is thus facilitating scientifi c research by providing 
historically collected General Visual Inspection (GVI) ROV video 
data to scientists to better understand impacts (both positive 
and negative) of static anthropogenic structures on marine 
ecology [45], and how this changes with time [46-48]. 

Use of incidentally collected ROV video data for scientifi c 
purposes has advantages (e.g. reduced effort, risk, cost, etc.) 
and disadvantages (provided videos collected mainly for 
maintenance purposes rather than scientifi c analysis, poor 
video resolution, distance/scale indication, limiting assessment 
of animal size and species identifi cation, ROV/camera models 
undisclosed, etc.). Nonetheless, previous use of GVI ROV data 
has yielded signifi cant insights into marine life associated with 
offshore infrastructure [e.g. 44,49]. Over the past few years, 
industry has shifted to more routine use of high defi nition 
cameras on ROVs that has led to vast improvements in image 
quality for ecological assessment [50].

Collection of offshore ROV data provide important insight 
into the ecology and trophic hierarchy of O&G infrastructure, 
which can inform operator ‘end-of-life’ decision-making, 
such as decommissioning plans, which identify specifi c options 
for subsea structures within a fi eld. Infrastructure includes a 
wide range of elements, such as platform jackets, production 
fl owlines, bundles, risers and their turrets, towheads, wellheads 
along with their protective units, production manifolds, 
umbilicals, pipeline-end manifolds, concrete mattresses, 
mooring anchors, and chains, among others. In the realm 
of offshore decommissioning, the concept of a Comparative 
Assessment (CA) was introduced, initially in policies and 
guidelines of the Oslo and Paris Convention (OSPAR) in 1998 
[10]. This process is used to evaluate and identify the best 
decommissioning options for assets that may be considered for 
derogation (leaving in situ) based on specifi c criteria. The term 
CA refers to the overall method of assessing decommissioning 
alternatives and selecting the most suitable choices. Guidelines 
for conducting CAs have been issued by O&G UK in 2020 [51] 
and the Department of Energy and Climate Change (DECC), now 
known as the Offshore Petroleum Regulator for Environment 
& Decommissioning (OPRED), in 2018 [52]. These procedures 
align with OSPAR’s regulatory requirements for CA, including 
derogation scenarios; however, detailed procedures for the 

CA process are not specifi ed in OSPAR Decision 98/3, O&G UK 
guidance, or DECC guidance, which adds to the arcane, not-
repeatable nature of the CA process. 

When determining decommissioning options for subsea 
structures, CAs generally consider certain key factors, typically 
in order of priority: safety, environmental impact, social 
implications, technical feasibility, and economic consequences 
of the various decommissioning options [53,54]; however, 
traditional CAs have several disadvantages, Nicolette, Nelson 
[55], even though operators are obligated to release CAs 
into the public domain. Consequently, a more recent Net 
Environmental Benefi t Analysis-Comparative Assessment, 
(NEBA-CA) approach, developed fi rst by Efroymson, Nicolette 
[56], has been developed to compare advantages of different, 
in this case, decommissioning management actions. Net 
environmental benefi ts refer to improvements in the value of 
environmental services or other ecological attributes achieved 
by an action, minus the value of any negative environmental 
impacts caused by that action [56]. These measures can 
include a variety of environmental interventions such as 
restoration, remediation, conservation, and development. It is 
within the terms ‘remediation’ and ‘conservation’ that there 
is mileage considering the terms ‘rewilding’, and ‘nature-
in-design’ when derogating a decommissioned platform 
that has a demonstrated net-gain effect on its surrounding 
environment, and this may be able to be effected through 
the formal NEBA framework, now acknowledged by several 
organisations, including the United States Environmental 
Protection Agency (USEPA) and its Science Advisory Board 
[57], the National Oceanic and Atmospheric Administration 
[58], and the Australian Marine Safety Authority (AMSA), 
for its effectiveness in providing a robust basis for decision-
making; therefore, NEBA evaluates the overall positive or 
negative impact of proposed or implemented actions and helps 
manage site-specifi c risks. NEBAs are now being carried out 
worldwide routinely around offshore O&G decommissioning 
infrastructure.

1.1 Rationale

The aim of this study was to invite discussion around the 
concept of ‘rewilding’ in an offshore-decommissioning context 
by presenting data used in a real-world NEBA-CA [55,59] 
case study of an established (aging) offshore North Sea oil-
production platform. Using incidentally collected industrial GVI 
ROV imagery to assess species presence, richness, biodiversity, 
and vertical distribution this study introduces the concept 
(and explores the possibility), that some, well-placed disused 
offshore installations could offer quantifi able environmental, 
societal, and economical ‘net benefi t’ to the environment 
which could be considered in the context of a potential ocean 
‘rewilding’ paradigm, and could enhance biodiversity, as there 
are already established complex marine communities. The 
study touches on the concept of ‘nature-in-design’, in terms of 
augmenting new offshore anthropogenic infrastructure at the 
deployment stage, to facilitate the decision-making process at 
the decommissioning stage. 
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2. Materials & methods

2.1. Platform & location

 The offshore drilling and production platform is supported 
on a four-leg steel jacket structure with a total of 14 production 
wells. The installation is situated within the United Kingdom 
Continental Shelf (UKCS), in the central North Sea ca. 200 km 
Northeast of Aberdeen, UK (Figure 1). This area supports a 
constellation of offshore installations and several additional 
fi elds [60]. The platform has been in situ since 1992, and is in 
a  water depth of 144 m, on a seabed composed of mud and 
muddy sand [61]. This platform ceased production in 2014 and 
is due for decommissioning and potential derogation in 2026.

2.2 Defi nition of terms

A description of these types of offshore O&G structures can 
be found in Goodlad, Garden [62]; a summary is presented here 
in the Section 1.1. of the Supplementary materials.

2.3 Footage sources

 Between 11 and 28 August 2017, commercial work-class 
ROV pilots performed GVIs and Close Visual Inspections (CVI) 
around the platform legs, conductors, caissons, WHPUs, and 
bundles. On 1–2 November 2017, an additional seabed structure 
(towhead manifold) was surveyed. ROVs were equipped with 
cameras throughout, make and models unknown. Data were 
provided to analysts on hard drives, as opposed to marine 
scientists performing dedicated ROV surveys, consequently, 
control over factors such as date, time, areas surveyed, distance 
between the camera and the substratum, etc. was not possible, 
and is typical of industry studies.

2.4 Video screening & selection

Footage was viewed through VLC Media Player 3.0.6 
Vetinari (Video Lan, Boston MA), which was able to read all 
fi les, typically in Packet fi le Fidonet (.pkt) format. Data were 
screened by several experienced marine science analysts 
working in parallel (e.g. viewing different videos concurrently) 
to maximise effi ciency. 

The fi rst stage of analysis involved data screening for simple 
‘accept’ or ‘reject’ criteria based on a qualitative assessment 
of suitability, including brightness, turbidity, visibility, etc., 
followed by a further quality-assessment-scoring method 
adapted from McLean, Gates [63] and listed in Tables S1-S3. 
After this process, useable GVI footage, with occasional sections 
of CVI interspersed, was selected that covered the entire water 
column of the platform (0 m to seabed at 144 m). Since ROV 
footage focussed primarily on vertical structures and was 
unavailable or unreliable at positions away from the platform, 
with regards to assessment of any non-vertical habitat (such 
as seabed, or seabed-based structures), analysis considered 
only vertical ‘sweeps’ performed by the ROVs along a sample 
of each structure type, including caissons, conductors, and 
platform legs. Consequently, useable GVI footage was collected 
in depth bands following Guerin, Jensen [64], with 5 m depth 
bands near the surface, 10 m depth bands from 20-80 m and 
20 m depth bands past 80 m (Figure S3). Only vertical habitat 
of the jacket was included in analysis because vertical sweeps 
were not performed on towheads, WHPUs, and bundles, which 
were all seabed structures, positioned at ca. 140–144 m depth. 

Accepted footage was then assessed further for species-
identifi cation feasibility for both motile and sessile species (see 
Online Resource1 Section 1.2 for video assessment criteria). 

2.5 Video analysis & taxonomic identifi cation

Video footage that passed the screening stage was then 
used to compile a library of all taxa detected, following formal-
assessment protocols to avoid observer bias (see Online 
Resource1 Section 1.3). Most videos were fi ve-minutes long and 
analysed as a whole; longer fi les were also analysed in fi ve-
minute sections, for comparability. 

Taxonomic identifi cation of species present was performed 
according to Todd, Lavallin [25; 2020], using identifi cation 
guides and keys [e.g. 65,66 etc.], and various peer-edited 
online marine databases (listed in Online Resource1 Section 1.4). 
During analysis, which predated standardisation techniques 
outlined in Horton, Marsh [67], species sighted in video footage 
(and stills; see Section 3.6) were compared with morphometric 
data/photographs (and for fi sh, meristics) presented in peer-
reviewed literature, identifi cation guides, and online databases. 
These were also cross-referenced to known recorded habitat, 
distribution, ecology, and depth preference for each identifi ed 
taxon. For most obvious and common species (such as fi sh), 
identifi cation was certain; however, for others, like smaller 
Cnidaria, Porifera, Crustacea, a sample would have been 
required to verify taxonomic status to species level. Moreover, 
while some specimens could not be identifi ed reliably to species 

Figure 1: Platform location in the North Sea. Coordinates in WGS’84 decimal 
degrees.
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level, due to cryptic nature of species, oblique viewing angles, 
partially obscured identifi cation features, poor footage quality, 
or distance at which most surveys were performed from the 
structure, etc., confi dence for larger or very well documented 
species, such as sharks or cold-water corals, was certain. All 
species were grouped into the lowest possible taxonomic rank as 
per Lacey and Hayes [68]. For example, individual brittle stars 
(Ophiothrix fragilis or Ophiocomina nigra) could only be counted 
and identifi ed to species level when the ROV approached the 
structure for contact Cathodic Protection (CP) readings or 
during depth-of-coverage estimation for biofouling surveys. 
Consequently, the two species were grouped together into one 
‘brittle star’ category for data analysis. Both species are also 
often associated together [69], which further justifi ed this 
analysis method. 

All identifi ed species were divided into motile and sessile 
species (see Online Resource1 Section 1.2) according to the 
species’ ability to move, with exception of highly prevalent 
brittle stars, which could not be differentiated or counted at 
an individual level, so were obliged to be categorised as a fi xed 
‘sessile’ group. 

2.6 Still-ima ge analysis

Randomly timed stills were captured from each video [as 
per 68,70] by using a random number generator to select a still 
image for every minute of footage (rounded up or down to the 
nearest minute for each video). These stills were assessed in 
PhotoQuad v1.4 [71] by four analysts, again following the same 
analysis protocol to avoid observer bias. A stratifi ed-random grid 
of one hundred points was overlaid onto each image (Figure S2) 
as per Gormley, McLellan [72], ensuring even coverage. Using 
the species-identifi cation (ID) library compiled during video 
analysis, each point was then assigned to a species or structure 
type (e.g. platform, towhead, water column, etc.). Number of 
points identifi ed per species, or structure was calculated for 
each still image and used for further analysis (e.g. out of 100 
points in total, 50 could have corresponded to species A, 25 to 
species B, 10 to species C, and 15 to water, etc.). Note, if two or 
more points fell on the same individual (say, a large fi sh that 
took up a high portion of the frame), it was ignored. Similarly, 
for the avoidance of bias in this type of grid-point analysis and 
focal distances (i.e. a fi sh up close may fall under three points, 
but the same size fi sh farther from the camera may only fall 
under one point), these stills were discarded. Where possible, 
at least ten stills were analysed from each of the 13 depth bands 
used for analysis, though stills with no species sighted were 
removed from further study.

2.7 Data an alysis

Statistical analysis was performed in R version 3.5.1 [73] 
and RStudio version 2022.02.01+461 using packages vegan 
[74], Modern Applied Statistics with S MASS [75] and Mixed 
Generalised Additive Model (GAM) Computation Vehicle, MGCV 
[76]. 

For consistency, the majority of data analysis was performed 
according to Todd et al. [25,47], where species richness (S), 

and Shannon diversity (H’) of stills were assessed at different 
depths. Data were grouped into 13 depth bands (i.e. not a 
continuum), as per Guerin, Jensen [64] and Guerin [31]; these 
were 0 –5, 5–10, 10–15, 15–20, 20–30, 30–40, 40–50, 50–60, 
60–70, 70–80, 80–100, 100–120, and >120 m (see Figure S1 
and additional details in Online Resource1 Section 1.5). Depth 
transects were replicated spatially, e.g. different legs of the 
platform were sampled. Depth of video footage was analysed 
against hour of day, across both August and November 2017, 
and a GAM was used to plot smoothed depth (explanatory 
variable, i.e. depth treated as a continuum) against time of day 
that footage was collected (response variable) to investigate 
diel trends. Following this, presence of non-biotic factors in 
the fi eld of view (e.g. water column, surface structures, etc.) 
was excluded, and remaining % cover values for observed 
species were scaled (carefully, to avoid bias) to one for each 
depth band (i.e. % cover is related to number of points in the 
grid assigned to that spp./grouping, such as algae spp.). From 
these, S and H’ were then calculated per depth band, separately 
for both sessile and motile species. Kolmogorov-Smirnoff tests 
were used to determine if S and H’ were normally distributed, 
after which t-tests, with equal variance, and Kruskal-Wallis 
tests were used on normally and non-normally distributed 
data respectively, to determine if these variables were related 
to depth. All videos were time stamped, and as such, an 
assessment was made as to diel survey effort.

Since ecological data (like species abundance) are often 
non-normally distributed and zero-infl ated, data were tested 
for normality, and if necessary, any relevant transformations 
for any non-normally distributed data (e.g. fourth root, etc.) 
were applied. An ANalysis of SIMilarity (ANOSIM) test was 
performed as per Todd, Susini [48]), on all data (both sessile 
and motile combined) to determine fouling community 
similarities across depth bands. Non-metric MultiDimen sional 
Scaling (NMDS) ordination analysis tests per Todd, Susini 
[48]), were applied to a corresponding Bray-Curtis similarity 
matrix, to identify groupings of similar species between depth 
bands.

3. Results

A total of 3,030 videos (458 GB of data) was available for 
analysis, of which a subset of 128 videos (4.2%) was analysed 
(hTot = 08:55). Analysis of each hour of video footage took 
approximately ten hours. ROVs focussed on platform legs, 
caissons, conductors, bundles, pipes, and towheads. Most 
videos (n = 109) were collected between 11th and 28th August 
2017, during which all platform depths were covered. Nineteen 
videos from 1st and 2nd November 2017 were also analysed, which 
focused solely on seabed structures, with a mean ± Standard 
Deviation (SD) depth of 141.96 m ± 2.63 m. A total of 289 high-
quality stills were analysed. Of the 13 depth bands, ROV video 
footage at >120 m (band 13) had the most stills analysed (72, 
followed by 40–50 m, band seven; 47 stills) and 10–15 m (band 
three; 37 stills); at least ten stills were analysed for each depth 
band, except 0–5 m (band 1), which had six stills (see Figure S4 
in Online Resource1). 
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Videos used in analysis were collected typically by ROV 
pilots in shallower areas overnight, and deeper areas during 
the day (Figure 2). This bias was unavoidable during data 
analysis, as there was no choice in data provided by pilots and 
is typical of commercial datasets worldwide.

3.1 Taxa recorded

During video analysis, 33 taxa, across ten phyla were 
observed. Twenty-three of these were identifi ed to species 
level, six to genus or family level, and the remaining to a wider 
class or phyla (Table 1). Utilising this species library, 20 of the 
33 taxa were also recorded in stills. Still images of each species 
can be seen in Figures 3-5. Most of these stills were recorded 
in August, and not November footage, though some were only 
recorded in November. These included two fi sh, cod (Gadus 
morhua, Figure 4o) and a labrid (Figure 5c), one Northern 
Henricia starfi sh (Henricia sanguinolenta, Figure 4h), and turf 
Bryozoa (Figure 4e). 

In addition to taxa observed in selected videos and stills 
(Figures S5-7), two additional protected species were also 
seen during initial exploration of video footage. These were a 
porbeagle shark (Lamna nasus) at 124 m (Figure 3 a,b) and fi ve 
confi rmed sightings of the cold-water coral (Lophelia pertusa, 
synonym Desmophyllum pertusum) at 54 m (Figure 3c). Neither 
species were observed in analysis of randomly selected stills.

3.2 Species richness, diversity & depth preference

The most common taxa were soft coral and anemone 
cnidarians, primarily white and orange morphs of M. senile 
and A. digitatum. While species richness did not differ 
signifi cantly with depth (Table S6), it is clear from Figure 4, 
that high-level diversity differed with depth, with cnidarians 
dominating midwater, with higher diversity in both shallower 
and deeper portions. Specifi cally, cnidarians dominated species 
assemblages from 15–120 m (depth bands 4–12; Figure 4). 
Fish were observed in deeper areas, most frequently >120 m 

(depth band 13). Pollachius virens comprised approximately 
50% of marine life cover at this depth and was observed 
making foraging attempts (Figure 5). Algae, Mytilus spp., and 
serpulids were most prevalent at shallower depths, while 
echinoderms were found in comparably lower numbers at all 
depths (Figure 4). Highest densities of arthropod cirripeds 
were recorded in deep waters of >100 m (bands 12–13), likely 
representing different species than those in shallower water. 
Arthropods were recorded in deep water (Figure 4), especially 
barnacles, potentially C. hameri, were recorded in deep water 
while shallower observations were more likely to be a different 
species, and those in the fi rst 50 m of the water column were 
likely intertidal species, which were not identifi able with any 
degree of confi dence. 

Species richness (S) and diversity (H’) were calculated for 
each depth band (shown in Table S6). Between fi ve and 15 
species were observed in any given band, though no motile 
species were observed at 0–5 m (depth band 1). S was normally 
distributed for sessile species (Kolmogorov-Smirnov D = 0.31, 
p = 0.57), but non-normally distributed for motile species 
(Kolmogorov-Smirnov D = 0.83, p = <0.01). S did not change 
signifi cantly with depth for either sessile (t = -0.60, p = 0.58), 
or motile species (Kruskal-Wallis χ2 = 11, p = 0.44). H’ was non-
normally distributed for both sessile species (Kolmogorov-
Smirnov D = 0.92, p = 5x10-6), and motile species (Kolmogorov-
Smirnov D = 1, p = 1.2x10-5), and was also invariant with depth 
(sessile: Kruskal-Wallis χ2 = 12, p = 0.45; motile: Kruskal-Wallis 
χ2 = 11, p = 0.44. 

Cnidaria were the most observed phylum overall, with 
different species showing preference for specifi c depths (Figure 
6). M. senile was common throughout the entire water column, 
being observed in 210 of 289 stills and present across all depth 
bands, with two notable peaks in % cover of ca. 50% and 83% 
at 15–20 m (depth band 4) and 60–100 m (depth bands 9–11), 
respectively. A. digitatum was observed in 127 of the 289 stills 
and was present in all but the shallowest region (0–5 m; depth 
band 1). A. digitatum had a peak of ca. 50% cover at 30–60 m 
(depth bands 6–8) – higher than that of M. senile. Sagartia 
spp. were detected mostly at 15–40 m (depth bands 4–6). The 
remaining two cnidaria, B. tuediae and U. felina, were found 
primarily in deeper areas, at much lower abundance (hence not 
included in Figure 6).

3.3 Species assemblages

Fouli ng-assemblage similarity between depth bands was 
statistically signifi cant (ANOSIM, R = 0.3391, p = 0.001). Non-
metric multidimensional scaling analysis grouping (groups 
A–D) of depth bands and species based on similarities is shown 
in 

Figure 7. Mytilus spp., algae and Serpulidae were more 
commonly identifi ed in shallower regions up to 15 m (depth 
bands 1–3, group A; Figure 7), while Sagartia spp., A. digitatum 
and the colonial tunicate B. schlosseri were grouped together in 
the upper-middle depths of 15–60 m (depth bands 4–8; group 
B). The lower-middle water column, 60-120 m (bands 9–12; 

Figure 2: Depth of video footage analysed against hour of day, across both August 
and November 2017. Red line indicates smoothed prediction from a Generalised 
Additive Model (GAM) and grey curve represents 95% confi dence interval. Grey 
vertical shading indicates night phases.
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group C) contained other species of Cnidaria (in particular, M 
senile), Echinodermata, Cirripedia, and the poriferan sponge, 
A. dichotoma. The deepest band (>120 m) contained A. rubens, 
T. indivisa, mixed Bryozoa/Hydrozoa turf biotope, and all fi sh 
species (group D; Figure 7). 

Only 19 of the 34 taxa recorded in video were detected in 
stills. Remaining 19 taxa were therefore not included in analysis 
of species assemblages, were relatively rare, but are discussed 
in Section 3.1.1. of the Online Resource1.

4. Discussion

One hundred and twenty eight ROV videos and 289 stills 
were analysed to assess diversity of fouling assemblages on 
an end-of-life hydrocarbon offshore production platform, 
to inform decommissioning options via a Net Environmental 
Benefi t Analysis-Comparative Assessment, NEBA-CA [55,59]. 
A detailed discussion on limitations of industry data is 
provided in Section 3.1. of the Supplementary data; however, 
with these limitations in mind, this study has shown that 

Table 1: Taxa observed in ROV video footage. Ranges denoted by a hyphen, e.g. 1-5, mean that the taxa were observed from 1, and inclusive of bands in between, 5. 1While 
‘marine algae’ is not a phylum, since algae were not identifi ed to red or green status, they are included here under the nomenclature ‘Phylum’. 2The two brittle star species were 
also combined during further analysis, as it was not possible to distinguish between them on all occasions. Grey cells indicate a high confi dence of taxonomic identifi cation, 
whereas taxa listed in white cells require either morphometric or genetic confi rmation to identify taxonomically to species level. Blanks in recording on offshore structures 
indicate unknown. 

 Phylum Scientifi c name Common name
Motile or 
sessile

Video, still 
or both

Depth (m) Depth band
Recorded on North Sea 

platforms previously

Marine algae1 Algae S Both 0–30 1–5

Porifera Antho dichotoma Common sponge S Both 60–144 9–12

Cnidaria Aurelia sp. Moon jelly M Video 13–144 3–12

Aequorea vitrina Crystal Jellyfi sh M Video 100 11

Cyanea capillata Lion’s mane jellyfi sh M Video 95 11 [48]

Tubularia indivisa Oaten pipes hydroid S Both 10–141 3–12 [48,77]

Alcyonium digitatum Dead man's fi nger S Both 5–144 1–12 [48]

Bolocera tuediae Deeplet anemone S Both 60–144 8–12 [48]

Urticina felina Dahlia anemone S Both 40–143 7–12 [77]

Metridium senile Plumose anemone S Both 5–144 1–12 [77]

Sagartia spp. Elegant anemone S Both 15–143 3–12 [77]

Lophelia pertusa Cold-water coral S Video (incidental) 54 8 [78,79]

Ctenophora Ctenophora Comb jelly M Video 16–144 4–12

Annelida � Serpulidae Tube worm S Both 0–144 1–12 [48,80]

Arthropoda Cirripedia spp. Barnacle S Both 15–144 3–12 [48]

Euphausiid spp. Free-swimming shrimp M Video 10–144 2–12 [48]

Lithodes maja King crab M Video 138–143 12

Cancer pagurus Edible crab M Video 12–44 3–7 [48,77,80]

Maja brachydactyla Common spider crab M Video 67–144 9–12

Necora puber Velvet crab M Video 15 3 [77,80]

Bryozoa Bryozoa/Hydrozoa turf biotope S Both >120 12 [48]

Mollusca Mytilus spp. Blue mussel S Both 0–50 1–7 [77,81,82] 

Echinodermata Asterias rubens Common starfi sh M Both 14–140 3–12 [48,77,80]

Henricia sanguinolenta Northern Henrecia M Both 144 12

Porania pulvillus Cushion star M Video 130 12

Ophiothrix fragilis Common brittle star2 M Both 0–60 1–8 [77,80]

Ophiocomina nigra Black brittle star2 M Both 0–50 1–7

Echinus esculentus Common sea urchin M Video 45–120 7–12 [77]

Chordata Botryllus schlosseri Star ascidian S Both 15–130 4–12

Pollachius virens Saithe M Both 74–140 10–12 [83-86]

Gadus morhua Cod M Both 144 12 [48,77,83,85,86]

Sebastes norvegicus Rose fi sh M Video 139–144 12

Chelidonichthys lucerna Tub gurnard M Video 144 12

�L abridae spp. Unidentifi ed wrasse M Both 13–144 3–12

Lamna nasus Porbeagle shark M Video (incidental) 124 12 [40,87]
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industry data can yield valuable insights into the importance of 
platforms as artifi cial reefs in remote locations, as evidenced 
by the increasing number of studies of this nature [e.g. 
25,44,46,63,88,89]. For example, such imagery can extend the 
known ranges of species [90], record associations of species 
with structures [91], and provide fi rst in situ observations of 
others [90,92]. Moreover, while many industrial ROV surveys 
concentrate on certain elements only, CVI and GVI often cover 
the entirety of the sub-surface structure, providing a good 
overview from surface to seabed. 

4.1 Taxa recorded

During its 25 years in situ, the platform accumulated a 

wide diversity of well-established reefi ng assemblages; for 
full taxonomic species descriptions, see Section 2.2. in the 
Supplementary information. With an effort of 128 videos 
(hTot = 08:55), and 289 stills, a total of 33 unique taxa were 
recorded across nine phyla (plus algae as a separate group). 
Thirty of these were identifi ed to class (of 12 in total, including 
Cirripedia), 29 to family (of 23 in total, including Labridae, 
Serpulidae, Euphausiidae), 26 to genus (including Aurelia spp., 
Sagartia spp., and Mytilus, spp.), and 23 to species. Several 
of these taxa have not been reported previously on O&G 
installations. The diversity of taxa present at the platform is 
likely much higher than that documented here, with measures 
likely limited by the extent of suitable imagery for analysis and 
the snapshot of imagery obtained (single points in time).

4.1.1 Taxa not previously recorded on offshore installations : 
Several taxa observed on this study have not previously been 
recorded on O&G infrastructure in the North Sea, based on a 
thorough review of the literature. 

Alcyonium digitatum was one of the most observed taxa 
in this study. The lack of data of offshore sightings for this 
species in the peer-reviewed literature might be linked to 
limited access of academic scientists to offshore installations; 
the same applies to all records of offshore taxa presented here. 

The common sponge, A. dichotoma, is encountered 
frequently in deeper European waters [93], having been 
reported, for instance, at the Norwegian continental shelf 
border at 200–400 m [94], and the Trondheim fjord in 
Norway at 60m [95]. Nonetheless, while A. dichotoma was 
observed in ROV footage of trawled habitat around gas fi elds 
in the Barents Sea [96], there are currently no records of its 
presence on O&G platforms. As such, its confi rmed presence 
on the platform represents, to the best of our knowledge, 
a new sighting. Unidentifi ed branching sponges have been 
recorded previously on platforms in southern California, but 
individuals were grouped by morphology rather than to species 
level [97]. Additionally, this recording corroborates the use of 
opportunistic ROV data for study of fouling communities and 
demonstrates that offshore platforms generally can provide a 
useful method of further study on species for which the ecology 
remains relatively unknown. 

H. sanguinolenta has been recorded previously on hard, 
exposed habitats in the north Atlantic Ocean, at depths of 0–365 
m [98], fi lter feeding on detritus and plankton H. sanguinolenta 
is known to feed on sponges [99], so its presence on the platform 
is likely not unusual, although to the best of our knowledge, this 
species has not been recorded on O&G installations previously; 
however, without genetic confi rmation to species level [100], 
its presence as a fi rst record on an offshore platform cannot be 
stated with a high level of confi dence. 

The jellyfi sh A. vitrina was also detected in one video, at 
a depth of 100 m. A. vitrina has been documented previously 
throughout the north eastern Atlantic in pelagic and coastal 
areas [101], though in limited detail; a thorough literature 
search revealed that this may be its fi rst documented sighting 
off an offshore hydrocarbon platform. 

Figure 3: Species sighted incidentally during ROV video footage, including a 
porbeagle shark (Lamna nasus, a and b) and the cold-water coral, Lophelia pertusa 
(c).

Figure 4: Scaled percentage cover of phyla in each depth band.

Figure 5: Examples of saithe (Pollachius virens) foraging, detected in ROV video 
footage.
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4.1.2. Other notable taxa: A. rubens feeds primarily on 
benthic organisms also observed in this study, including bivalve 
molluscs, polychaete worms, and barnacles, with a preference 
for mussel epibionts [102]. Biomarkers can be used to analyse 
pollutants in A. rubens, which bioaccumulate due to the species’ 
predatory behaviour [103]. As such, this species is an important 
potential indicator species and may be used to inform the study 
of temporo-spatial trends in water quality of the North Sea.

The commercially important, semi-pelagic schooling P. 
virens was the most frequently observed fi sh in ROV footage. 
This species occurs throughout the eastern Atlantic and North 
Sea, with a depth range of 37–364 m [104]. In this study, the 
shallowest detection was at 74 m, though most individuals were 
observed in large schools, at depths of >140 m. In European 
waters, P. virens is a migratory species with a life expectancy of 
up to 25 years [105]. The exponential increase in abundance of 
P. virens observed near the seabed highlights the importance of 
offshore platforms to the species, in areas where the otherwise 
may be limited habitat complexity, i.e. the absence of platforms 
may result in less complex habitats that do not favour the 
spreading of species [e.g. 106]. Furthermore, this predatory 
species likely benefi ts from the fouling organisms inhabiting 
the structure [107]. During this study, P. virens were observed 
feeding in water depths of more than 100 m; however, their 
prey could not be identifi ed. Analysis of stomach contents of P. 
virens, from individuals sampled at British Petroleum’s North 
Sea Miller platform, were found to contain a high proportion 
of euphausiids (Fujii, 2016), swarms of which were observed 
in this study between 40–130 m. The high abundance and 
foraging detected suggests these areas are important for the 
adult populations of this species.

The commercially important G. morhua was also observed 
in the lower depth group, in six videos at 142–143 m, totalling 
11 individuals. P. virens were also observed exhibiting shoaling 
behaviour in all six videos, suggesting possible associations 
between the two fi sh species, as has been recorded with 
other predatory species [108]. G. morhua is well-documented 
throughout the north Atlantic and North Sea, at depths of 
0–600 m [104,109]. The species exhibits large variation in 
abundance and distribution between feeding and breeding 
sites, with spawning occurring typically between November 
and May [110]; a major G. morhua spawning site is the central-
southern North Sea [111-113]. It has been hypothesised that 
during the planktonic stage, North Sea stocks spill over into 
Norwegian and Greenland waters [113,114], suggesting their 
relative importance in stock recovery for other locations. Severe 
effects of overexploitation have been documented for this 
commercially valuable apex predator, and slow recovery has 
had knock-on effects for numerous species [115,116]. Hence, 
this study demonstrates the importance of anthropogenic 
structures as habitat/breeding grounds for recovery (due 
to absence of fi shing in surrounding areas) and refuge of 
important fi sh species.

There was a single sighting of the commercially important 
velvet crab (N. puber) at 20 m. N. puber is documented 
throughout the east Atlantic and the North Sea with a depth 

range 0–80 m [117]. N. puber have planktotrophic larvae, with 
tidal fl ow playing a large part in their dispersal [118]. 

The commercially important, deepwater trawled, long-
lived, and gregarious [119] rose fi sh (S. norvegicus) was recorded 
in three videos, each of a single individual on seabed structures at 
140–144 m depth. S. norvegicus is well-documented throughout 
the eastern Atlantic and North Sea with a depth range of 100–
1,000 m [120]. S. norvegicus is classifi ed as Vulnerable and is at 
risk of over-exploitation from commercial fi sheries due to its 
slow growth rate and late maturity (IUCN Red List). 

There was a single sighting of porbeagle shark L. nasus. 
The Northeast Atlantic L. nasus population is classifi ed as 
Critically Endangered (IUCN Red List: Ellis, Farrell [121]) and 
has declined signifi cantly in this region due to commercial 
fi shing pressure [122]. L. nasus is a highly migratory species, 
traveling up to thousands of kilometres annually through 
European waters from northern Norway through to Spain 
[123,124], however there is limited information on their 
presence at offshore structures. The (now sadly defunct) 
North Sea Bird Club [125], an initiative led by the University 
of Aberdeen to encourage oil and gas workers to document 
birds and other marine life, reported 14 records of L. nasus, 
with almost all records occurring from 1996-1998 (Weir, 
2001). This record includes an aggregation of 25 individuals in 
August 1997. Haugen and Papastamatiou [126]) documented a 
rare aggregation of at least 20 individuals at the Alba platform 
in the North Sea, swimming slowly at the surface. No mating 
behaviour was observed, though some sharks were reported as 
female, suggesting they may have been present for parturition. 
All reported observations around offshore structures, including 
our incidental observation, occurred during the boreal summer, 
suggesting their presence may be seasonal, though it is not 
known if this is balanced against effort, i.e. more observations in 
the summer, and in better weather conditions. The observation 
of L. nasus at the platform therefore supports the burgeoning 
body of evidence that offshore structures are highly important 
locations for marine megafauna, including other shark species 
[34,38,40,127]. Furthermore, while L. nasus is at risk of being 
caught as bycatch in commercial fi sheries, they are protected 
from fi shing activity while near offshore structures due to the 
de facto MPA effect of safety zones. 

The protected [128,129], dome-shaped, cold-water coral 
L. pertusa was detected on fi ve occasions at depths of between 
53.5–124.3 m, in a similar depth range to when fi rst observed 
on offshore installations by Roberts [78], at depths of between 
75 and 114 m, by Gass and Roberts [79] at depths of 48–109 
m and by Guerin, Jensen [64] at depths between 55 and 140 
m. This species has also been observed on pipelines [130]. 
Remotely Operated Vehicle surveys on other platforms have 
noted this species’ absence above a depth of 43 m [25,48,80] 
possibly due to warmer shallower waters created by summer-
thermocline stratifi cation, which may limit the species vertical 
distribution. The L. pertusa sighting in this study was found 
in a slightly sheltered location (between the platform and an 
anode), again as in the study of Gass and Roberts [79]. The ROV 
narrator noted that L. pertusa had been detected previously at 



031

https://www.peertechzpublications.org/journals/annals-of-limnology-and-oceanography

Citation: Todd VL, McLean D, Elden SV, Thomas Á, Todd IB. A New Rewilding Paradigm: NEBA-CA Case Study of an End-of-Life North Sea Oil Platform. Ann Limnol 
Oceanogr. 2025;10(1):022-038. Available from: https://dx.doi.org/10.17352/alo.000020

this platform in 2011 at a depth of 117 m, on a clamp, on riser 
caisson two, although it was no longer present at this location 
in 2017. In studies by Roberts [78] and Gass and Roberts [79], 
L. pertusa reefs detected in this paper lack the polychaete worm 
Eunice norvegica, which in natural reefs share parasitic and 
mutualistic relationship with the deep-water coral. Studies have 
not determined why E. norvegica is not present in reefs found on 
offshore structures while other typical polychaete worm species 
do. This presents some uncertainty about the completeness of 
the coral communities that develop on artifi cial reef structures, 
with more information the lacking needs of E. norvegica could be 
addressed, potentially through a nature-in-design approaches. 
The ecology of this species is somewhat arcane, due to its 
depth preference and inaccessibility In the lab, L. pertusa has 
been shown to feed opportunistically on available microalgae, 
zooplankton, bacteria, and dissolved organic matter [131]. Using 
growth rates and areal coverage, Dahl, Pereyra [132] calculated 
ages of some colonies to be over 3,000 years old. Assuming the 
ROV pilot was experienced in identifi cation of this species, even 
a handful of detections on the platform supports the notion 
that it may be an important location for this slow-growing 
species, and indeed still fall under IUCN ‘red list’ protection 
laws. Addamo, Vertino [133] suggested that the genus Lophelia 
is synonymised with Desmophyllum so that L. pertusa becomes 
a synonym of D. pertusum however, the molecular evidence is 
considered uncertain by JNCC and MarLIN, as such we have not 
applied the revision across this paper.

4.2 Species richness & diversity 

While species richness (S) and diversity (H’) did not 
exhibit a signifi cant relationship with depth for either motile 
or sessile organisms, the deepest regions had highest overall 
S, though this is likely because comparably more data from 
this depth was analysed, due to the presence of additional 
seabed structures (e.g. towhead and bundles), and because 
more complexity at depth can often (but not always) mean 
more diversity. Similarly, while not signifi cant, lowest S was 
reported in the shallowest depth band (0–5 m), which is 
likely because surface waves and currents at this depth made 
it diffi cult for the ROV to approach the structures closely, 
resulting in low video quality for motile species (Table S6 in 
Online Resource1). While we cannot eliminate unbalanced 
sampling, as a consequence of using industry data, there are 
resampling methods and discovery curve analysis that could be 
considered on future studies of this nature; however, this bias 
in low surface S at platforms has been reported by others [e.g. 
80,134]. In summary, the patterns observed on this platform 
are consistent with the fi ndings of Van der Stap, Coolen [80] 
on fi ve offshore North Sea platforms, who reported that species 
richness showed a signifi cant non-linear relation with water 
depth; from a low richness in shallow waters it increases with 
depth until 15–20 m, after which richness decreases again. 

Finally, though not signifi cant across all depths, there was 
an obvious decrease in overall H’ in depth bands 9–11, before it 
increased again in bands 12–13. This could be explained by the 
prevalence of M. senile at depth bands 9–11, which dominated 
the taxa mixture, accounting for approx. 84% cover (Figure 
6). M. senile is known to outcompete other fouling community 
species [135], which explains the overall decrease in H’. 

4.3 Species assemblages

There was  no signifi cant difference in number or diversity 
of species with depth, however the composition of fouling 
communities varied signifi cantly across depth bands (ANOSIM, 
R=0.3391, p = 0.001%). Dissimilarity was greater between depth 
bands that were further apart, and lesser between close bands. 
For example, dissimilarity between bands 1 and 12 was 0.99 
(where 1 refers to completely different assemblages), largely 
due to Mytilus sp. and algae (found in shallower areas), and P. 
virens and Cirripedia sp. (found in deeper areas). In contrast, 
bands 9–10 and 10–11 had a dissimilarity of 0.27 and 0.24 
respectively.

The results of NMDS analysis plotted taxa and depth 
bands based on similarity, resulting in the manual selection 
of four groups with similar taxa/depths (Figure 7). Details of 
taxa in each depth group are briefl y presented below, as well 
as those that were not detected in still images and therefore 
excluded from species assemblage analysis. The four groups 
align roughly with current proposed decommissioning options 
of removing the platform between 10–16 m, 26–55 m, 55–
106 m or 106–144 m; each option equates approximately to 
removing a depth group. No taxa detected were unique to depth 
group, although, individual species of Cirripedia and Labridae 
which could not be identifi ed to species level have not been 
reported elsewhere, and thus may be unique. Groups B, C, and 
D, however, each supported between 1–6 potentially unique 
species, detected nowhere else on the platform. Therefore, 
removing these deeper sections would likely result in the loss 
of biodiversity.

Contribution of upper layers to the diversity of lower layers 
must also be considered. For example, much of the organic 
material found around the base of the platform at 144 m likely 
originated from much shallower areas, as has also been shown 
to occur at the base of platforms in California [136]. There 
was an accumulation of Mytilus spp. shells around the base of 
the platform that had fallen from near the surface, and any 
storm damage that causes sections of fouling assemblage 

Figure 6: Percentage cover of the three most observed cnidarians across depth 
bands. Red circles represent values from each individual ROV still image analysed, 
and black circles and lines represent the mean.
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to be knocked off may further support other opportunistic/
scavenging species near the seabed.

Finally, industrial studies on the topic of this paper are 
dependent strongly on time and budget, both of which are at 
a premium, compared to academic timelines. Work presented 
here had to follow previous methodology from other platforms 
using similar data and depth bands, for consistency [25,47,48]. 
Consequently, the number of images (samples) from some of 
the depth bands was low for statistical analysis, while some 
depth bands afforded the luxury of more images (e.g. only six 
images analysed for the upper depth band, and >70 viewed for 
the deepest). It could be argued that, using 5 m depth bands 
thus limited availability of observations, which may have had 
the unavoidable consequence of ‘unbalancing’ the survey. 
Moving forward a way to solve this issue would be to consider 
the planned decommissioning of different sections of the 
structure (four main depth bands). Further assessment could be 
modifi ed to address this from the opposite perspective, in that 
the focus could be based on four main depth bands to highlight 
what organisms/assemblages could be lost, widening the depth 
bands, and balancing deign. Work from the shallowest zone 
could be noted to include predominantly algae, so none of the 
work would be lost.

4.4 NEBA-CA, re-wilding and nature-in-design

While the Rigs-to-Reefs paradigm remains c ontroversial 
[137-139], research is starting to elucidate importance 
of, and intricacies within, offshore-installation ecology 
[44,46,84,140]. Installations surrounded by exclusion zones 
can act as de facto marine protected areas [22,141], which 
have potential to aid conservation of endangered sessile 
invertebrates [23] and ichthyofauna, including sharks, and 
marine mammals [37,127]. Additionally, adjacent stocks of 
commercially-exploited species, including G. morhua, P. virens, 
and C. pagurus, may be augmented [32,142], potentially to the 
benefi t of fi shers [143], and socio-economically, of benefi t to 
wider marine stakeholders. Reproductive strategies of taxa 

reported here varied considerably from broadcast spawning, 
budding, to brooding; however, many species recorded 
include larval phases, which are capable of being transported 
considerable distances by currents [e.g. A. digitatum, >10 km; 
144]. These communities can act as a source of individuals for 
nearby areas which may now facilitate development/recovery 
of other locations [145,146].

As a consequence of analysis performed during the NEBA-
CA in the Nicolette, Nelson [55] – based on the data from this 
study – full removal of the jacket was determined to create 
negative environmental impacts with the predicted risks, such 
as reducing commercial fi shing value by 60%, outweighing 
any potential benefi ts. Instead, the NEBA-CA recommended a 
Protect-in-Place option where the jacket is cut at 15 m below 
Lowest Astronomical Tide (LAT) with the cut section placed 
on the seabed beside the standing jacket and the exclusion 
zone maintained at 500 m (note, engineering simulations for 
proposed reef modifi cations were available for the NEBA-CA 
but are not presented here). Further improved understanding 
of installation ecology provides the scientifi c underpinning for 
planning and implementation of environmentally benefi cial 
decommissioning strategies [22]. Offshore installation 
communities are inherently dynamic [26] and vary considerably 
between geographical locations, depths, structural designs and 
orientations [26,31,64,147-152]. Consequently, derogations 
permitted under current legislation should be considered 
case-by-case on the premise of multi-criteria evaluation 
[153], taking into account environmental, social and economic 
outcomes, as suggested by Jørgensen [138], Macreadie, Fowler 
[137], and Fowler, Macreadie [139]. 

This study introduced a hitherto unconsidered concept that 
certain, well-placed, thoroughly researched (and well published) 
offshore installations scheduled for decommissioning could be 
considered as a form of ‘re-wilding’ of artifi cial reefs, especially 
if augmented nature-in-design alternatives to make them 
more effective as artifi cial reefs. It follows that to formulate 
a long-term cradle-to-grave decommissioning strategy with 
the greatest ecological benefi t, the concept of nature-in-
design at the offshore platform design and subsequent phase 
should be considered to create structures that enhance marine 
biodiversity and ecosystem resilience. While the offshore wind 
sector is further advanced in these abstractions [e.g. 154], 
the idea is gaining traction in the offshore O&G sector [e.g. 
155,156]. By integrating nature-based solutions at the design 
(and potentially decommissioning) phase offshore platforms 
can serve as long-term ecological assets, benefi ting both the 
environment and the industry.

5. Conclusion

In summary, this platform in the northern North Sea 
supported a range of species with distinct zonation of fouling 
communities, some of ecological (porbeagle, Lophelia pertusa) 
and commercial (gadoids) importance, and formed a valuable 
contribution to the NEBA. This platform could benefi t from 
implementation of a Rigs-To-Reefs decommissioning regime 
(possibly with implications for fi sheries, ecotourism, and 
biodiversity) within the North Sea. Comparable information 

Figure 7: Non-metric MultiDimensional Scaling (NMDS) of species and depth 
bands. Black numbers indicate depth bands, and red text denotes species/groups. 
Ellipses have been added to demonstrate groupings, identifi ed by letters A–D.
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from installations in different geographical locations would be 
required to reinforce this theory. 

Discussions and fi ndings of this study should be considered 
during discussions surrounding OSPAR Decision 98/3 and 
what purposes are considered legitimate by regulators. The 
‘re-wilding’ concept should be explored thoroughly, by 
independent organisations such as the United Nations Global 
Rewilding Alliance (GWA). Governments should investigate this 
option further by opening funding to universities and research 
organisations worldwide working actively in this space. 
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