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Abstract
The main abiotic factor infl uencing the formation and variability of the bioproductivity characteristics of the waters of the South China Sea (SCS), as well as the 

distribution and migration of tuna, is the water temperature. The impact of other abiotic factors is less signifi cant. The Scientifi c Research Institute of Marine Fisheries 
of Vietnam has carried out many years of work to assess the infl uence of various characteristics of water temperature on changes in bioproductivity parameters, but 
the patterns of their interannual variability have not been identifi ed. Also, the problem of constructing fi sh catch models depending on the determining factors remained 
completely unexplored, and even more so, the development of a forecasting method, which is extremely important when planning a fi shery. In this paper, for the fi rst time, 
an attempt is made to identify the role of various characteristics of water temperature on the parameters of bioproductivity of waters of the South China Sea. A statistical 
model of tuna catch has been created depending on economic and oceanological factors.
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Introduction

The South China Sea is characterized by the exceptionally 
high biological productivity of its waters, which contributes 
to the formation of large commercial stocks of pelagic fi sh 
(tuna, southern herring, sardines, mackerel, humpback, 
sea eel, etc.), and the proximity of the coastal zone and the 
rapid growth of the economy and population contribute to the 
increase of fi shing efforts here. But tuna fi shing is of particular 
importance, as it is extremely valuable in terms of food and 
is in unlimited demand among consumers. Tuna fi shing 
occupies the 1st place in the structure of exports of marine 
fi sh products from Vietnam to more than 60 countries of the 
world and in 2015 it amounted to more than 408 million USD. 
However, intensive tuna fi shing in Vietnam began to develop 
only from the beginning of this century, when the Government 
of the country set a strategic task to dramatically strengthen 
fi shing by accelerating the construction of new more powerful 
fi shing vessels, reorganizing coastal infrastructure, applying 
new technologies in the processing of fi sh products, expanding 
cooperation with other countries in the region and in the 

world, etc. This became possible as a result of the rapid growth 
of Vietnam’s gross domestic product, which has grown 6 times 
in 15 years. 

It is very important to note that there is a possibility of 
increasing fi sh catch without the threat of undermining the 
fi shing stock, which, according to the Scientifi c Research 
Institute of Marine Fisheries of Vietnam, is estimated at 662-
670 thousand tons. At the same time, the total allowable catch 
is about 233 thousand tons, and currently, about 80 thousand 
tons per year are mined. The main abiotic factor infl uencing the 
formation and variability of the bioproductivity characteristics 
of the waters of the South China Sea (SCS), as well as the 
distribution and migration of tuna, is the water temperature. 
The impact of other abiotic factors is less signifi cant. Although 
the Scientifi c Research Institute of Marine Fisheries of 
Vietnam has carried out many years of work to assess the 
infl uence of various characteristics of water temperature on 
changes in bioproductivity parameters, however, patterns 
of their interannual variability have not been identifi ed. The 
problem of constructing fi sh catch models depending on 
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the determining factors and, moreover, the development of 
a forecasting method, which is extremely important when 
planning a fi shery, is completely unexplored. The purpose of 
this work is to identify the impact of various characteristics 
of water temperature on the parameters of bioproductivity of 
waters of the South China Sea, to build a statistical model of 
tuna catch depending on economic and oceanological factors, 
and to develop a methodology for long-term forecasting of tuna 
catch. To achieve this goal, the following tasks were solved: 

- the peculiarities of the distribution and formation of 
the commercial tuna stock in the South China Sea are 
revealed;

- the analysis of quantitative relationships of the 
infl uence of various temperature characteristics on the 
parameters of bioproductivity of the South China Sea 
was performed; 

- the spatial and temporal patterns of the distribution of 
the depth of the critical isotherm of 24 oC are revealed; 

- a statistical model of annual tuna catch values has 
been created depending on economic and oceanological 
factors; 

- A methodology has been developed for long-term 
forecasting of annual tuna catch values. 

The basis for the work was: 

- Data on bioproductivity characteristics, tuna catch, and 
economic indicators, which are provided by the Scientifi c 
Research Institute of Marine Fisheries of Vietnam, the 
Department of Fisheries and Conservation of Biological 
Resources of Vietnam, and the Department of General 
Statistics of Vietnam. For the fi rst time, a unique time 
series of the total tuna catch by Vietnamese fi shing 
vessels in the South China Sea for the period 2000-2015 
is used in statistical calculations. The following water 
temperature characteristics were used in the work, 
which were selected from the reanalysis archives that 
are freely available on the Internet: 

- monthly average data on ocean surface temperature in 
the nodes of the 2 × 2 ° latitude and longitude grid from 
the NOAA NCDC ERST global archive (National Oceanic 
and Atmospheric Administration National Climatic 
Data Center Extended Reconstructed Sea Surface 
Temperature); 

- monthly average data on deep-sea temperature in 
the nodes of the latitude-longitude grid 0.5 × 0.5° 
from the global archive CARTON-GIESE SODA (Simple 
Ocean Data Assimilation). To solve the tasks set, a 
wide range of standard methods of one-dimensional 
and multidimensional statistical analysis contained 
in modern packages of applied statistical programs 
(PPMS), including parametric and nonparametric 
correlation analysis, paired and multiple regression 
models, factor analysis, interpolation methods in the 
construction of maps, etc. 

For the fi rst time, a biological and commercial generalization 
of the three main tuna species (yellowfi n, big-eyed, and 
striped) that make up the commercial stock of the South China 
Sea is presented. 

An assessment of the infl uence of 18 different water 
temperature indicators on a complex of 6 parameters of the 
bioproductivity of the waters of the South China Sea was 
carried out. It is shown that the maximum correlation of all 
bioproductivity parameters is noted for the isotherm depth 
of 24 oC, which varies from -0.70 to -0.94. The second most 
important is the depth of the isotherm of 20 ° C, and the third is 
the temperature of the sea surface. With all these parameters, 
the correlation turns out to be negative. This means that with 
the deepening of isotherms 20 and 24 oC and an increase in sea 
surface temperature, all the characteristics of bioproductivity 
should decrease.

For the fi rst time, using factor analysis, the zoning of the 
South China Sea fi shing area was performed according to the 
nature of the interannual fl uctuations of the isotherm of 24 oC 
for the period 1980-2008. 5 quasi-homogeneous regions have 
been identifi ed. Mainly random interannual fl uctuations are 
observed in the time course of common factors. One can only 
note the presence of a weak 6- to 8-year cycle, which is also 
manifested in tuna stocks in the world’s oceans. 

For the fi rst time, a statistical model of interannual tuna 
catch values has been constructed depending on economic 
(number of fi shing vessels) and oceanological (sea surface 
temperature in the nodes of the grid area) factors, which 
describes 95% of the variance of the initial series and has a 
small standard error. 

For the fi rst time, a method for long-term forecasting of 
annual tuna catch values based on extrapolation of a time series 
with its approximation by a polynomial model and a second-
order autoregressive model has been proposed. Checking the 
results on independent data for 2015 showed a good match. 

The theoretical signifi cance lies in the fact that the 
contribution of economic and oceanological factors to the 
statistical model of tuna fi shing has been revealed. The 
economic factor (the number of fi shing vessels) is the main 
one, accounting for 75% of the variance of the initial series. 
The high effi ciency of the autoregressive model for predicting 
fi sh catch with a lead time of 1 year has been revealed. The 
discrepancy between the actual and estimated data for 2015 
amounted to 1,470 tons, or 2%. The practical signifi cance lies 
in the fact that the results obtained will be implemented in 
the activities of the Ministry of Agriculture of Vietnam and will 
be used in the planning of fi shing and rational exploitation of 
tuna resources. The validity and reliability of the results of the 
work are confi rmed by high-quality initial information used 
in modeling and forecasting, competent application of modern 
methods of one-dimensional and multidimensional statistical 
analysis, and comparison of the results obtained with actual 
data. 
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Materials and methods of research

The basis for the work was 

- Data on bioproductivity characteristics, tuna catch, 

and economic indicators provided by the staff of the 

Scientifi c Research Institute of Marine Fisheries of 

Vietnam Dinh Van Uy, Doan Van Vo, Bui Thanh Hung, 

etc., the Department of Fisheries and Conservation of 

Biological Resources of Vietnam and the Department of 

General Statistics of Vietnam.

- The objects of the study were yellowfi n (Thunnus 

albacares), big-eyed (Th. obesus), and striped 

(Katsuwonus pelamis) tuna, which are the main object 

of fi shing in the offshore waters of the central part of 

the South China Sea. For the fi rst time, a unique time 

series of the total tuna catch by Vietnamese fi shing 

vessels in the South China Sea for the period 2000-

2015 is used in statistical calculations. The study area 

was limited by the following latitude and longitude 

zones: 6-17o S.S., 107-117o V.D. It is in this area, located 

mainly in the central part of the South China Sea, that 

Vietnamese vessels fi sh.

 The following water temperature characteristics were used 

in the work, which were selected from the reanalysis archives 

that are freely available on the Internet: 

- monthly average data on ocean surface temperature in 

the nodes of the 2 × 2 ° latitude and longitude grid from 

the NOAA NCDC ERST global archive (National Oceanic 

and Atmospheric Administration National Climatic 

Data Center Extended Reconstructed Sea Surface 

Temperature); 

- monthly average data on deep-sea temperature in the 

nodes of the latitude-longitude grid 0.5 × 0.5° from 

the global archive CARTON-GIESE SODA (Simple Ocean 

Data Assimilation). 

Statistical methods for analyzing the data used in the work. 

To solve the tasks set, a wide range of standard methods of 

one-dimensional and multidimensional statistical analysis 

contained in modern packages of applied statistical programs 

(PPMS) was used, including parametric and nonparametric 

correlation analysis, paired and multiple regression models, 

factor analysis, interpolation methods for constructing maps, 

etc. 

Let’s briefl y consider only the basic methods of data 

processing and analysis used in the work.

Identifi cation and analysis of trends. 

In general, the interannual variability of any characteristic 

can be represented as the following decomposition [1].

X(t) = T(t) + C(t) + E(t),                 (1)

where T(t) is the trend component, C(t) is the component 
characterizing cyclic fl uctuations time series, and E(t) is the 
residual part characterizing irregular fl uctuations. Obviously, 
the sum of the fi rst two terms in decomposition (1) can be 
considered as a deterministic part of a stochastic series, while 
the third term is a random part. In decomposition (1), the 
trend component will be understood as a certain slow change 
in the process with a period exceeding the length of the initial 
implementation [1]. It follows that the very existence of a trend 
is completely determined by the length of the series. Whens its 
length changes, the trend may appear, disappear, or change its 
intensity and shape. In essence, the trend shows which way (up 
or down) the process is developing over time. But at the same 
time, it cannot form cycles, which, as can be seen from the 
decomposition (1), are described by the second term. 

Note that there is still some confusion about the concept 
of a trend. In a number of works [2,3], the trend is identifi ed 
with the trend, which is usually understood as the main 
pattern in the development of a random process. Therefore, 
unlike a trend, the trend of a time series can form cycles. 
There is also an opinion [4] that a trend should be understood 
as a deterministic component of a time series. In addition, in 
some cases, a trend is understood to be the longest-period 
component of a time series.

Obviously, in some cases, in addition to the main (main) 
trend, it is advisable to highlight local trends. The main trend 
is for the entire time series. If the series is divided into separate 
characteristic segments that differ from each other in the 
direction of time fl uctuations, then for each of them you can 
build your own local trends. Naturally, highlighting local trends 
makes sense only for long-time series. Fishing characteristics 
do not always correspond to this condition.

It is shown in [5] that several types of trend are possible: by 
the average value, when the sample average changes linearly 
or non-linearly over time; trend by variance, when the range 
of fl uctuations changes, trend by average and variance at the 
same time, and trend by the autocorrelation function, when 
it depends not only on the time shift, but also and from the 
beginning of the countdown. The trend in the average value 
is most common, including in fi shing characteristics. It can 
be linear or nonlinear in form and is usually approximated by 
polynomial approximations. A linear trend can be represented 
as:

T(t) = a0 + a1t,                (2)

where t is the time. In this case, the free term a0 shows the 
conditional value of the series X(t) at t = 0. The angular 
coeffi cient (regression coeffi cient) a1 is the magnitude of the 
trend (Tr), meaning the rate of increase (decrease) of the 
characteristic in question per unit of time. The nonlinear trend 
is expressed by a polynomial of the second degree:

T(t) = a0 + a1t + a2t2,                  (3)

The a2 coeffi cient shows the acceleration (deceleration) of 
the rate of change of the considered characteristic over time 



022

https://www.biolscigroup.us/journals/annals-of-marine-science

Citation: Kien ND, Bukharitsin PI. The Influence of Temperature Conditions on the Bioproductivity of Waters and Tuna Fishing in the South China Sea. Ann Mar Sci. 
2024;8(1):019-033. DOI: https://dx.doi.org/10.17352/ams.000046

squared, i.e. the parabolic shape of the trend corresponds to an 
accelerated or delayed change in the values of the series with 
constant acceleration. If a2 < 0 and a1 > 0, then the quadratic 
parabola has a maximum, if a2 > 0 and a1 < 0 – a minimum. 
To fi nd the extremum, the fi rst derivative of the parabola with 
respect to t is equated to 0 and the equation with respect to t 
is solved.

The numerical values of the coeffi cients in these formulas 
are determined by the least squares method. Of course, there 
are other ways to approximate the trend. When assessing a 
trend, it is most important to assess its signifi cance, i.e. how 
signifi cant its contribution to the variability of a random process 
is. The Student’s criterion is used for this purpose. Thus, when 
assessing the signifi cance of a linear trend, a null hypothesis 
is recorded with respect to the regression coeffi cient a1 and the 
correlation coeffi cient between the time series and the trend 
component r(X,T):

H0 : |a1| = 0, H0 : |r(X,T)| = 0,                 (4)

To test these hypotheses, a Student’s sample criterion is 
calculated, and it can be shown that tr = ta1. This makes it 
easier to assess the signifi cance of the trend. The sample value 
of the Student’s statistics is calculated as:

21
2

r
nr

t



                   (5)

A trend is considered signifi cant if the Student’s criterion 
scores exceed its critical value at a given level of signifi cance, 
i.e.

t > tcr(,  = n–2),                 (6)

The signifi cance of the trend can be estimated approximately 
by the critical value of the correlation coeffi cient. For 
suffi ciently long time series and the signifi cance level  = 0.05, 

we have 
2

2kpr
n


  [6]. If r(X,T) > r kr, then the trend can 

be considered signifi cant. In modern PPTs, the signifi cance of 
the trend can be determined directly by evaluating the p-level 
coeffi cient a1.

When assessing the signifi cance of a nonlinear trend, the 
correlation ratio  is calculated, and then the null hypothesis is 
tested as a correlation coeffi cient. By the value of the correlation 
coeffi cient and the correlation ratio, it is easy to determine the 
coeffi cient of determination, which shows the contribution of 
the trend to the description of the variance of the response 
function. It is determined in linear and nonlinear versions 
using the same formula R2 = 2

Tr /
2
y, where the numerator is 

the variance of the trend, and the denominator is the variance 
of the original series. Note that the coeffi cient of determination 
can also be used to assess the signifi cance of the trend. For 
suffi ciently long time series and the signifi cance level  = 0.05, 
we have R2

kr ≈ 4/(n+2) [1].

Another important characteristic of the trend is its value Tr, 
defi ned in the linear case as:

( ) ( ) ( 1)0 1 0 1 1 1
1

a a t a a t a nnTr a
n n

   
   ,           (7)

where n is the length of the series. It can be seen from this 
that the magnitude of the linear trend is determined by the 
regression coeffi cient. Similarly, for a nonlinear trend, its fi rst 
and last values are calculated using the formula (3) and then 
the difference is divided by the length of the interval. As a 
result, we get the value of the trend per unit of time. However, 
at the same time, Tr ≠ a1. It should be borne in mind that 
the coeffi cient of determination calculated in this way for a 
nonlinear trend is higher than for a linear trend.

At the same time, the greater the “steepness” of the trend, 
the greater the difference between linear and nonlinear trends.

So, the coeffi cient of determination and the magnitude 
of the trend comprehensively characterize the behavior of 
the trend. However, it must be remembered that the above 
procedure for estimating trends is parametric, the effectiveness 
of which signifi cantly depends on how accurately the initial 
series is close to the normal distribution and on its length. 
Indeed, for long series, even if the initial series is not normal, 
trend estimation can be carried out in the manner discussed 
above quite accurately. For short series, especially when the 
distribution of the initial data is unknown, the effectiveness 
of trend estimation using formulas (2) − (7) decreases. In this 
case, nonparametric Spearman or Kendall rank correlation 
coeffi cients can be used to estimate the coeffi cient of 
determination, followed by an approximate assessment of 
signifi cance according to the Student’s criterion [6].

Multiple regression analysis

As a rule, fi shing characteristics are determined by a large 
set of factors, the combined effect of which may have different 
effects on the process under study. Therefore, there is a need 
to study the effects of various causes simultaneously. This 
problem is solved using the classical method of data analysis – 
multiple (multifactorial) regression analysis. 

The method of multiple regression analysis is used in 
almost all applied sciences as the most universal method of 
analyzing source data, and hundreds of modifi cations of this 
method have been developed to solve specifi c problems. Due 
to its fl exibility, simplicity, and theoretical sophistication, it is 
an integral part of many other methods of multidimensional 
statistical analysis. In general, the multiple linear regression 
(MLR) model can be represented as follows:

j

m

j
jj xbby  

1
0               (8)

where m is the number of variables xj in the model, j is the 
vector of residuals (errors) that are not described by the MLR 
equation. The regression coeffi cients bj are calculated based on 
the least squares method. 



023

https://www.biolscigroup.us/journals/annals-of-marine-science

Citation: Kien ND, Bukharitsin PI. The Influence of Temperature Conditions on the Bioproductivity of Waters and Tuna Fishing in the South China Sea. Ann Mar Sci. 
2024;8(1):019-033. DOI: https://dx.doi.org/10.17352/ams.000046

To build an effective MLR model, the following conditions 
must be met:

– MLR errors must have a zero mean;

– homoscedasticity of regression residuals, i.e. their 
variance should be constant;

– errors should be independent (uncorrelated) with 
factors and response function;

– there should be no multicollinearity between 
independent variables;

– preferably, but not necessarily, a normal distribution of 
residues.

The mathematical description of MLR is contained in 
many works [7,8,9,10], so here we will limit ourselves to a 
brief description of only those aspects that are necessary 
to understand the calculations performed. The following 
parameters are used to evaluate the quality of the MLR model:

1. A multiple linear correlation coeffi  cient, which is an analogue 
of the usual paired correlation coeffi cient, characterizing the 
measure of the linear relationship between the actual and 
calculated values of the response function according to the 
MLR equation, i.e.





n

i
ii

xyy

yyyy
n

r
1)(

)~)((1
                 (9)

where iy~  the response values are calculated according to the 

MLR model, y(x) is the standard deviation of the values iy~ .

The value of R varies within 0 ≤ R ≤ 1. At R = 1, we have 
a functional linear model when the factors fully describe the 
variance of the response function, as a result of which the 
residuals are zero ( i = 0). At R = 0, the variability of the response 
function is completely determined by the residuals of i. [3]. It 
should be noted that in many PPSP, simultaneously with the 
value of R, an adjusted multiple correlation coeffi cient Rsk is 
also given, which makes it possible to eliminate the positive 
bias of the correlation coeffi cient. 

2( 1) (1 )( 1)
1 1

( )CK
y

D n r nr
D n m n m

   
   

             (10)

where D, Dy are sample estimates of the variance of the residuals 
and the response function, respectively. The difference R–Rsk is 
a correction for a positive displacement of the value R.

2. The linear coeffi  cient of determination, which is the square 
of the multiple correlation coeffi cient

R2 = Dy(x) /Dy = 1 – (D/Dx)              (11)

where Dy(x) is the variance of the response function values 
calculated using the regression equation; D is the variance 
of the residuals. The coeffi cient of determination shows the 
proportion of the explained variance of the response function. 

3. The standard deviation of the model:

  )1mn/()y~y( 2
ii)x(y               (12)

This value is functionally related to the linear coeffi cient of 
determination by the formula:

2
)( 1 rxy                 (13)

4. Standard errors of multiple correlation coeffi  cient and 
regression coeffi  cients:

1
1 2





mn
r

R                 (14)

2(1 )
( 1)

y yj
bj

xj yy

r D
n m D








 

           (15)

where xj is the standard deviation of the predictor xj; Dyj is 
the minor of the main determinant (determinant) for which 
the fi rst row (y) and the jth column are crossed out; Dyy is the 
minor for which the fi rst row and the fi rst column are crossed 
out. 

The use of formula (14) is legitimate in cases where the 
sample values of R obey the normal law, i.e. with relatively 
small values of R and a large length of the initial series n. For 
large values of R and small values of n, the Fisher z-transform 
should be used.

To check the parameters R and bj for signifi cance, a null 
hypothesis of the form H0: R = 0, H0: bj = 0 is formulated. The 
verifi cation of this hypothesis is also carried out using the 
t-test:

R >tR, , |bj| >tbj.

If this condition is fulfi lled, then the null hypothesis is 
rejected as untenable and the sample estimates of R and bj are 
considered signifi cant, i.e. deviating from zero in a non-random 
way. In most PPSP, the procedure for checking bj values for 
signifi cance is implemented through the p-criterion (p-level), 
which represents the level of signifi cance that corresponds to 
the Student’s t-criterion, taking into account the number of 
degrees of freedom.

If this condition is fulfi lled, then the null hypothesis is 
rejected as untenable and the sample estimates of R and bj are 
considered signifi cant, i.e. deviating from zero in a non-random 
way. In most PPSP, the procedure for checking bj values for 
signifi cance is implemented through the p-criterion (p-level), 
which represents the level of signifi cance that corresponds to 
the Student’s t-criterion, taking into account the number of 
degrees of freedom.

5. The Fisher criterion used to assess the adequacy of the 
entire MLR model. For this purpose, the null hypothesis of the 
form H0: Dy(x) = D is tested, i.e. the variance of the values of 



024

https://www.biolscigroup.us/journals/annals-of-marine-science

Citation: Kien ND, Bukharitsin PI. The Influence of Temperature Conditions on the Bioproductivity of Waters and Tuna Fishing in the South China Sea. Ann Mar Sci. 
2024;8(1):019-033. DOI: https://dx.doi.org/10.17352/ams.000046

the response function calculated by the MLR equation is equal 
to the variance of the residuals. The null hypothesis is tested 
using the Fisher criterion:

F = Dy(x)(n – m – 1)/(Dm)               (16)

The calculated value of the Fisher criterion and compared 
with the table (critical) value Fкр((2) at a given signifi cance 
level  and degrees of freedom 1 = m, 2 = n – 1. If inequality F 
> Fкр, the null hypothesis about the equality of the variances of 
the calculated values of the response functions and the residue 
is rejected and it is assumed that the variance described by 
the MLR model, non-random way different from that of the 
error variance. This means that the model under consideration 
is adequate, i.e. it corresponds well to the initial data of the 
response function. The reverse conclusion is made if F < Fкр.

The task of selecting effective predictors is directly related 
to the problem of constructing an optimal MLR model and in 
most modern PPMS packages is carried out simultaneously. 
The most effective method is the step-wise regression method. 
There are two most commonly used algorithms [7]: the 
inclusion method and the exclusion method.

The essence of the variable inclusion method is that at 
the beginning, at the fi rst step, the predictor most correlated 
with the response function is selected and all parameters of 
the paired regression model are calculated. After that, based 
on the partial correlation coeffi cients, which show the “net” 
contribution of each variable to the variance of the response 
function, the subsequent variables with the maximum partial 
correlation coeffi cient are selected in turn. This procedure is 
repeated until all m models are built or the criterion is stopped.

The variable exclusion method implements the reverse 
procedure. First, a complete (from m variables) MLR model 
is constructed. Then the least signifi cant factors are excluded 
from it in turn. This continues until the only signifi cant factor 
remains. Note that if we compare the results of calculations 
using both methods, then even for the same set of variables 
there will be no complete identity. This is primarily due to the 
formal aspects. In the statistical literature [8,9], preference is 
more often given to the second method, since it provides an 
opportunity to consider all variants of models. However, with 
a large number of variables, the advantages of the fi rst method 
include the absence of the need to build a complete MLR model. 
In this study, it is the method of including variables that is 
used.

When choosing the number of predictors of the regression 
equation that “best” describes the initial sample, unfortunately, 
there is no single correct method. In most PPSP, the standard 
procedure for stopping the calculation is based on setting 
the permissible minimum of F-inclusion and maximum 
of F-deletion, where the minimum of F-inclusion is Fin= Fa

1 
(1,u-1), the maximum of F-deletion is Fout = Fa

1 (1,) for the 
signifi cance level a and the number of degrees of freedom v. 
However, according to [1], such a choice of F values is not quite 
correct. The value of F can also be set by the researcher himself.

The process of including subsequent predictors in the 
regression model occurs after comparing the value of the 
F-variables with the value of the allowable minimum Fin, that 
is, the condition must be met: F > Fin. Similarly, variables are 
excluded. Thus, the set of predictors is determined when the 
calculated values of F cease to meet the specifi ed criteria.

However, despite the fact that step-by-step algorithms 
are well developed, the use of this method involves making 
subjective decisions related to the choice of the optimal model. 
Obviously, fi nding the optimal MLR model is an informal task, 
and the more complex the initial model is, the more informal 
participation of the researcher is required to assess its optimal 
form [1]. On the one hand, if we want to obtain reliable forecasts 
using the selected model, then the largest possible number 
of variables should be included in the model. On the other 
hand, bearing in mind informal criteria (cost of information, 
availability, etc.), it is desirable to include as few predictors 
as possible in the equation. In addition, with an increase in 
the number of variables included in the regression model, a 
signifi cant contradiction occurs: with constant sample size, the 
quality of the description of the response function increases, 
but the accuracy of all model parameters deteriorates [10,11].

The optimal model is a suitable compromise between these 
two extremes. Since there is no single statistical procedure, 
it is possible to use only a general scheme for evaluating the 
optimality of the model [1]. First of all, it is necessary to calculate 
the full range of models (from 1 to m), analyzing using different 
step-by-step algorithms and ranking predictors in different 
ways. After that, it is necessary to conduct a comprehensive 
analysis of the main parameters of the models (coeffi cient of 
determination, standard error of the model, Fisher’s criterion, 
p-level of regression coeffi cients). You should also take into 
account the fact that the simpler the model, the more reliable 
it is, so in cases where you have to choose from several models, 
you should always prefer a simpler one. As a result of a 
comprehensive analysis, it is possible to form an objective idea 
of the degree of reliability of the regression model, however, 
the task of choosing the optimal MLR model does not always 
have an unambiguous solution.

Factor analysis

In a narrow sense, factor analysis is understood as the 
method for identifying hypothetical (unobservable) factors 
designed to explain the correlation matrix R of quantitative 
observable features. It is assumed that the observed variables 
are a linear combination of factors. A factor is understood to be 
a hypothetical, not directly measurable, hidden (latent) variable 
in one way or another related to the original observed variables. 
The purpose of factor analysis is to identify hypothetical 
quantities among a large number of observed variables that are 
meaningfully interpreted and explain the totality of the studied 
variables as simply as possible.

The theoretical foundations of FA were laid in the 1930s and 
40s by the American psychologist and mathematician Thurston 
[12]. He gave not only a general computational scheme but also 
proposed many constructive ideas, the development of which 
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continues to the present time. In particular, Thurstone proved 
the basic factor theorem, proposed a centroid method for 
determining factors, a methodology for assessing generality, 
and formed the principle of a simple structure and ways to 
simplify factors.

If the principal component method (MGK) is considered 
a mathematical method that does not explicitly require 
preliminary statistical hypotheses, then factor analysis (FA) 
is already initially a statistical method. Its basic formula in 
matrix form is written as follows:

X = F.A′ + E                               (17)

where F is a matrix of values of common factors of size k×n; A’ 
is a matrix of coeffi cients of coupling of common factors and 
initial variables of size k×n, called factor loads; E is a matrix of 
residuals or characteristic factors (k×n). 

The conditions imposed on the factor model (17) are as 
follows:

the common factors should be mutually independent;

common factors should be normalized and reduced to a 
single length;

common factors should not be correlated with errors;

errors should not be correlated with each other;

The number of common factors should not exceed half of 
the number of observed variables, i.e. k≤ m/2.

Calculation of common factors. The methods of factor 
analysis are usually divided into two groups: simplifi ed and 
modern approximating [13]. Currently, the methods of the 
second group are mainly used, which assume that the fi rst, 
approximate solution has already been found and is optimized 
in some way by subsequent steps. The maximum likelihood 
method is considered to be the most accurate and at the same 
time the most diffi cult [14,15]. However, the method of the main 
factors, which is included in most modern PPSP, has become 
the most widespread. It is based on the MGK, which allows you 
to obtain the initial factor loads in the m-dimensional feature 
space. After that, the transition from the m-dimensional 
space to the k-dimensional space of common factors is carried 

out, as a result of which those axes along which the observed 
variability does not go beyond the accepted errors are removed.

Then the secondary rotation of the axes is carried out 
already in the space of k common factors in such a way that 
as many factor loads as possible turn out to be close to zero, 
and the remaining factor loads, on the contrary, would be as 
close as possible to ± 1. This procedure is called the principle 
of simple structure. As a result, the variance of observations 
is redistributed and at the same time, the geometric structure 
of the source data is distorted. In cases where the best 
interpretability of the results is achieved, the use of MFAs can 
be considered justifi ed.

Thus, the general block diagram for calculating common 
factors can be presented as follows (Figure 1).

X is a matrix of initial data of size mхn;

Z is a standardized matrix of the same size;

R is a correlation matrix of size mхm;

Rh is a reduced correlation matrix of size mхm;

 is a vector column of eigenvalues of the matrix Rh with 
length m;

A0 is a matrix of initial factor loads of size mхm;

k is a vector column of eigenvalues of the matrix Rh of 
length k;

A is the matrix of fi nal factor loads of size kхm;

F is the matrix of main factors of size kхn.

The fi rst difference between MFA and MGK begins from the 
moment of transition from the usual correlation matrix to the 
reduced one, in which there are commonalities on the main 
diagonal instead of units. Recall that generality is a fraction 
of the variance of variables that can be explained through 
common factors. 

In general, the magnitude of the generality can be written 
as h2 = 1 – u2, where u2 is the variance of the characteristic. 
To determine the generality, several methods are used: the 
method of the greatest correlation, the Barth method, the triad 
method, the small centroid method, and the method of the 
square of the multiple correlation coeffi cient [13,15,16]. Most 
often, by default, the PPSP uses the latter method, according to 

Figure 1: Block diagram of factor analysis [6].



026

https://www.biolscigroup.us/journals/annals-of-marine-science

Citation: Kien ND, Bukharitsin PI. The Influence of Temperature Conditions on the Bioproductivity of Waters and Tuna Fishing in the South China Sea. Ann Mar Sci. 
2024;8(1):019-033. DOI: https://dx.doi.org/10.17352/ams.000046

which the value R2 is calculated for each variable with all other 
variables and substituted for the main diagonal instead of one.

Another important difference between the MFA and the 
CIM is the implementation of a procedure for the secondary 
rotation of common factors to improve their interpretability. 
In accordance with the principle of a simple structure, its main 
task, which consists of assessing the suffi ciency of the number 
of turns, is usually solved on the basis of special criteria 
based on the representation of the variance of factor loads as 
a measure of the complexity of the structure of factors. This 
variance is calculated using the formula:
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where a2
jq are the elements of the factor mapping matrix, i.e. 

the magnitude of factor loads, and k is the number of common 
factors.

It follows from formula (18) that the value of the variance 
will be maximum when one of the values of the squared loads 
is equal to the community h2

j, and all other elements in the 
line are zero. It is precisely in maximizing the criterion (18) by 
rotating the coordinate axes that the essence of the orthogonal 
rotation of the factor space consists. For this purpose, the 
following criteria are used [13,16]: quartimax, varimax, 
oblimax, quartimin, oblimin.

of these criteria, varimax, proposed by Kaiser, has been the 
most widely used, which best corresponds to the principle of a 
simple structure and has the form.
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The values of aij obtained as a result of such orthogonal 
rotation are accepted as the fi nal factor loads. Note that in cases 
where, according to the researcher, orthogonal rotation does 
not lead to achieving the “necessary” results, oblique rotation 
procedures (oblimax, quartimin, oblimin) can be used, in which 
the factors become correlated with each other. Obviously, this 
contradicts the classical formulation of the MFA problem and 
signifi cantly expands the initial set of its assumptions. 

In addition, non-orthogonal rotation introduces an element 
of subjectivity into the already rather arbitrary rotation of 
the task, which is advisable for everyone to avoid, excluding 
experts. We also emphasize that secondary rotation distorts 
the geometric structure of objects in the factorial space. This 
can lead to both an improvement and a deterioration in the 
physical interpretability of the source objects.

Results

The main patterns of formation of biological and com-
mercial productivity of the waters of the South China Sea

Features of tuna distribution in the World Ocean: Tuna in-

cludes about forty species found in tropical, subtropical, and 
temperate latitudes of the World Ocean. The main tuna popu-
lations are distributed from 40°c to 40 ° C, although shoals of 
tuna are found in higher latitudes during the warmer months. 
According to the Food and Agriculture Organization (FAO), if 
the global tuna catch in 1950 was less than 1 million tons, then 
by 2009 it reached 6.5 million tons, i.e. it increased at a rate of 
about 0.1 million tons/year. At the same time, striped (40%) 
and yellowfi n (18%) tuna make up the basis of the global catch. 

Tuna live at different depths: large tunas up to depths of 
300-400 m, the vertical distribution of small tunas is limited to 
depths up to 100 m, although they are most often found in the 
uppermost layer of water up to 50 m. Tuna usually migrates at 
a speed of 9-10 knots, sometimes up to 15-18 knots. The mass 
of large tunas is usually several tens of kilograms, the length 
is more than 1 m; the mass and length of small tunas are 3-5 
kg and 50-60 cm, respectively. It is very important that tunas 
react very sensitively to changes in water temperature, and for 
each of their species there is an optimal temperature regime of 
habitat (Figure 2). Similarly, tunas react to changes in salinity 
and the transparency of the water. The optimal salinity of the 
water for them is 35.5 %, and the transparency is 25-30 m [17-
21]. 

Features of tuna distribution in the waters of the South 
China Sea

In the South China Sea, tuna distribution can be divided 
into two zones according to the nature of monsoon activity. 
During the northeast monsoon, when fi shing takes place from 
October to March, tuna is distributed mainly in the northern 
part of the South China Sea and near the Paracel Islands (12o00 
N - 17o00 N and from 110o00 E - 115o30E). During the southwest 
monsoon (from April to September), tuna is distributed in the 
southern part of the South China Sea and off Spratly Island 
(6o00 N - 11o30 N and from 108o00 E - 114o00 E). 

 

10° 15°С  30°С  25°С  20°С  

1

2

3 

Figure 2: The temperature range of the habitat of individual tuna species. 1 – 
Yellowfi n; 2 – Big-eyed; 3 – Striped q is the temperature range of the habitat q is the 
fi eld temperature range q is the optimal temperature.
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Figure 3 shows the distribution of the main tuna fi shing 
areas by Vietnamese vessels. The fi shing area I (Hoangsa) 
represents the northern part of the South China Sea, fi shing 
areas II, III, IV, and V represent the central areas of the sea 
of Vietnam and area VI represents the southern zone off the 
coast of the sea of Vietnam. The maximum catch is observed 
in September, which is 12.5% of the average annual catch. 
The least amount of fi sh is harvested in November-December 
(about 7.3%), i.e. intra-annual differences in fi sh catch are 
small. 

The infl uence of water temperature on the biological 
productivity of the South China Sea

As is known, out of a large number of abiotic factors, the 
water temperature has the greatest infl uence on biological 
productivity, the effect of which on the vital activity of 
marine organisms is extremely multifaceted. The long-
term experimental studies carried out in Vietnam on various 
characteristics of water temperature and parameters of 
bioproductivity of seawaters allow us to assess the degree 
of interrelation between them. Of the 26 indicators, 18 
represent different temperature characteristics. and 8 are 
the parameters of bioproductivity. Table 1 shows the sample 
coeffi cients correlations between them for the period 1990-
2009. Previously, we noted that all the characteristics of 
bioproductivity are closely related to each other, the correlation 
between them does not fall below r = 0.85 [22-25].

As can be seen from Table 1, the maximum correlation of 
all bioproductivity parameters is noted for the isotherm depth 
of 24 OC (r=|0,70-0,94|). The second most important is the 
depth of the isotherm of 20 oC. A signifi cant correlation at the 
level of =0.05 (gcr=0.42) is also observed with the thickness 

of the upper homogeneous layer of water and the temperature 
of the sea surface. With all these parameters, the correlation 
turns out to be negative. This means that with the deepening 
of isotherms 20 and 24 oC, an increase in the thickness of 
the quasi-homogeneous layer, and an increase in sea surface 
temperature, all the characteristics of bioproductivity should 
decrease. At the same time, the characteristics of bioproductivity 
react poorly to the variability of the layer thickness between 

Figure 3: The main tuna fi shing areas by Vietnamese vessels: I – Hoangsa fi shing 
area (Paracel Islands); II – Truongsa (Spratly Islands); III – Fukui; IV – Fuien; V – 
Vung Tau; VI – the southern part of the South China Sea. The squares indicate the 
nodes of the geographical grid in which the water temperature data was selected. 

Table 1: Distribution of sample correlation coeffi  cients between indicators of thermal conditions and characteristics of bioproductivity of sea waters. The critical value of the 
correlation coeffi  cient at α= 0.05 gcr = 0.42.

 Parameter TV DV NSSC NSTC ToTV ToDV ToNSC ToNTC

T0 -0.43 -0.43 -0.52 -0.53 -0.47 -0.59 -0.6 -0.63

∆Т0 -0.2 -0.24 -0.3 -0.31 -0.21 -0.31 -0.32 -0.35

H0 -0.51 -0.46 -0.56 -0.55 -0.55 -0.61 -0.62 -0.63

T1 0.05 0.09 0.12 0.12 0.04 0.1 0.12 0.13

H1 -0.23 -0.2 -0.23 -0.21 -0.23 -0.23 -0.24 -0.23

H1 - H0 -0.11 -0.09 -0.1 -0.08 -0.1 -0.08 -0.1 -0.08

Grad Тz -0.06 -0.14 -0.16 -0.2 -0.06 -0.19 -0.17 -0.22

H15 -0.37 -0.19 -0.16 -0.13 -0.38 -0.2 -0.16 -0.12

H20 -0.73 -0.48 -0.56 -0.5 -0.8 -0.65 -0.63 -0.57

H24 -0.80 -0.70 -0.87 -0.83 -0.84 -0.89 -0.94 -0.94

H20-15 0.15 0.17 0.26 0.25 0.19 0.28 0.31 0.31

H24-20 0.21 0.33 0.45 0.48 0.20 0.39 0.48 0.52

Grad Т0 0.18 0.16 0.21 0.2 0.16 0.16 0.21 0.2

Grad Т25 0.41 0.38 0.43 0.42 0.34 0.34 0.4 0.39

Grad Т50 0.09 0.08 0.04 0.03 0.02 -0.02 -0.01 -0.03

Grad Т75 -0.23 -0.24 -0.28 -0.29 -0.21 -0.25 -0.28 -0.29

Grad Т100 -0.24 -0.26 -0.27 -0.27 -0.18 -0.21 -0.23 -0.24

Grad Т150 0.04 -0.03 0.07 0.05 0.19 0.19 0.18 0.17
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isotherms 20 and 24 OC (r=|0,20-0,52|). It should also be 
noted that the temperature range of 20-24 oC is optimal for the 
distribution of tuna. 

So, it is quite obvious that the signifi cant infl uence of 
various characteristics of water temperature on all parameters 
of the biological productivity of the South China Sea, of which 
the most important should be considered the depth of the 
isotherm of 24 OC. 

The spatiotemporal variability of the isotherm depth is 
24 oC

First of all, let’s consider the average annual (1980-
2008) distribution of the isotherm depth of 24 oC according to 
CARTON-GIESE SODA data (Figures 4,5). It is easy to see that 
H24 gradually increases from 51 m in the extreme northwest 
of the district to 76-78 m in its southern part at latitude 9o S. 
Further south, H24 begins to decrease. A much more complex 
character is characteristic of seasonal changes in the average 
annual monthly values of H24, however, for most points the 
annual course of H24 is practically absent and the distribution 
of H24 is mainly random, which is due to the fact that the 
maximum and minimum values of H24 can occur in any season 
of the year. The absolute maximum of H24 is observed in 
January at point 17 (101.4 m), and the absolute minimum is in 
June at point 1 (33.2 m).

Given the relatively short length of the H24 time series 
(n=29), the calculation of cyclic fl uctuations is impractical, 
therefore, only linear trends were calculated for all points of 
the selected water area. The spatial distribution of the angular 
trend coeffi cients (Tr) is shown in Figure 5. As can be seen, 
trends in the entire sea area are positive, i.e. there is a tendency 
to deepen the isotherm of 24 oC. The maximum trend values 
are confi ned to the shallow northwestern part of the district. 
At the same time, signifi cant trends, i.e. deviating from zero 

in a non-random way, are peculiar to the value Tr ≥0.35. The 
presence of positive trends means that during the period under 
review, there was a tendency to decrease the bioproductivity of 
sea waters.

In order to study the spatiotemporal structure in more 
detail, the matrix of average annual values of H24 with a size 
of 23x29 was subjected to classical factor analysis. The analysis 
of the eigenvalues showed that it is possible to limit ourselves 
to the fi rst fi ve factors, which describe 78% of the variance of 
the initial fi eld. Table 2 shows the contribution of individual 
eigenvalues (factors) to the dispersion of the H24 fi eld after 
the second orthogonal rotation by the varimax Kaiser method, 
which partially redistributed the variance between the factors. 
As a result, the fourth factor became the second, and the third – 
the fi fth. That is why there are not very signifi cant differences 
between the factors.

The results of the zoning of the KM water area according 
to the interannual fl uctuations of H24 are shown in Figure 6. 
The district number corresponds to the factor number (proper 
number). As expected, the largest area is occupied by the fi rst 
district, which is characterized by the highest interannual 
variability of H24 values. The smallest fi fth district serves as a 
buffer zone between the fi rst and fourth districts. 

A statistical model of tuna catch based on the water 
temperature of the surface layer of the sea

The temperature of the sea surface layer (TPM) is one of the 
important factors affecting the bioproductivity and distribution 
of tuna [21,23,25]. On average, during the year, the TPM in the 
South China Sea varies in the range of 26-29 oC (Table 3).

In order to study the impact of TPM on tuna fi shing, a time 
series of average annual TPM values was formed at 23 points in Figure 4: Spatial distribution of the average annual depth of the isotherm of 24 oC 

over a long-term (1980-2008) period of time in meters. 

Figure 5: Spatial distribution of the angular coeffi  cients of the linear trend of the 
depth the isotherm of 24 oC in of m/year.
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the South China Sea for the period 2000-2014, corresponding to 
the data of the total annual tuna catch by Vietnamese trawlers. 
So, the original model looked like: 

V = f (bj ;TPM0j), where j = 1...m (m=23)             (20)

Unknown coeffi cients bj were determined by the method 
of including variables in the step-by-step procedure of the 
multiple linear regression model (MLR). The optimal model for 
catching tuna at the fi fth step (Table. 4) has a high coeffi cient 
of determination (R2=0.86), a small standard error (6743 tons 
or 13%), and signifi cant Fisher and Student criteria (p-level). 
Naturally, there is a very good correspondence between the 
actual and calculated values of fi sh catch using the MLR model.

The current state of tuna production

The South China Sea is a very important fi shing area, where 
10 countries closest to the sea are fi shing, and it is extremely 
important for the development of the economy and the 
provision of seafood to the Vietnamese population. In recent 
decades, there has been a fairly rapid increase in the population 
of Vietnam and a signifi cant growth in the country’s economy. 

Over the period 2000-2014, the population increased by about 
15%, and the gross domestic product increased 6 times! In 
terms of economic growth, Vietnam is one of the leaders in 
Southeast Asia. Naturally, such rapid economic growth in 
Vietnam has made it possible to increase the fi shing fl eet and 
its capacities almost annually. Thus, the number of fi shing 
vessels increased more than 3 times during the period under 
review, and their total capacity increased more than 4 times! 

During the period under review (2000-2014), the total 
annual tuna catch by Vietnamese vessels increased by more 
than 2 times and reached 80,000 tons in 2014 (Figure 7). At 
the same time, tuna fi shing by Vietnamese vessels in the South 
China Sea is conducted in four main ways (as a% of its total 
catch): these are gill nets (50%), purse seine (29%), fi shing 
rod and longline (21) fi shing. A comparative analysis of the 
catch of various tuna species shows that the largest share of 
the total catch for the period 2000-2014 was for striped tuna 
(61%). Yellowfi n tuna is in second place (31%), and bigeye 
tuna is the least produced (7%). Other tuna species do not have 
commercial stocks in the South China Sea.

Statistical model of tuna catch depending on economic 
and oceanological factors 

The number of fi shing vessels, their total capacity, gross 
domestic product (GDP), and the population of Vietnam were 
considered as economic factors in this work. To assess the 
degree of their connectivity with fi shing, the nonparametric 
Spearman correlation coeffi cient was used (Table 5).

From the Table 5 It can be seen that there is a high correlation 
between all factors, which is mainly due to the presence of well-
defi ned trends in the time series. All correlation coeffi cients 
are signifi cant according to the Student’s criterion (at  
=0.05 gcr = 0.50). Tuna catch has a minimal correlation with 
the population (r=0.81) and a maximum correlation with the 
number of fi shing vessels (r=0.87). It follows that tuna fi shing 
(V) is largely determined by economic reasons, while the role 
of oceanological conditions in tuna fi shing is secondary. Using 
the least squares method, a regression model was calculated 
with the number of fi shing vessels N: 

V = Vec + Voc = 7495 +1.964N + V              (21)

Table 2: Assessment of the contributions of the fi rst fi ve factors to the dispersion of 
the isotherm depth fi eld 24 oC

Number
Proper 
number 

 The contribution of the 
eigenvalue to the variance of the 

fi eld H24, % 

 The total contribution of 
eigenvalues to the variance 

of the fi eld H24, % 

1 4.20 18.2 18.2

2 3,84 16,7 34,9

3 3,63  15,8 50,7

4 3,54  15,4 66,1

5 3,02  13,1 79,2

Figure 6: Zoning of the central part of the South China Sea according to the 
interannual variability of H24 by the method of factor analysis. The circles indicate 
the reference points at which the time series for sea surface temperature formed 
the optimal MLR model for tuna fi shing. 

Table 3: The seasonal course of the average monthly average annual values of sea 
surface temperature.

 Temperature 
Months

1 2 3 4 5 6 7 8 9 10 11 12
 Maximum 28.5 30.4 29.2 30.5 31.2 30.8 30.0 31.0 30.6 30.8 30.0 29.9

Average 26.0 26.0 26.8 28.4 29.4 29.3 28.8 28.7 28.9 28.4 27.6 26.5
Minimum 23.0 23.3 23.6 26.2 28.0 27.8 25.7 27.0 25.1 26.4 23.0 22.9

Table 4: Statistical parameters of the model of multiple linear regression of the total 
annual tuna catch from sea surface temperature.
 Model 

Step
 Coeffi  cient of 
determination

 The standard error of 
catching tuna

 The Fisher 
Criterion

 Maximum 
p-level

1 0.58 12501 17.7 0.000

3 0.77 7971 12.0 0.002

5 0.86 6743 11.3 0.040

Statistical modeling and forecasting of tuna catch in the South China Sea. 
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where V are the remnants of the model, which are 
determined by oceanological conditions. This equation and its 
coeffi cients are signifi cant according to the criteria of Fisher 
and Student, the coeffi cient of determination is R2 =0.75, and 
the average square error  = 7497 t/year, which is 15% of the 
average catch value. The next task is to build a model for the 
V component, in which the TPM anomalies selected from the 
NOAA NCDC ERST archive were taken as the initial variables. 
To build a model in the form: 

V = f(bj ;DTMJ),                (22)

where bj are unknown coeffi cients to be determined, the 
method of including variables of the stepwise algorithm of 
the multiple linear regression model was used. After that, 
a detailed analysis of the main parameters of the models 
(coeffi cient of determination, standard error of the model, 
Fisher criterion, p-level of regression coeffi cients) was carried 
out for signifi cance at each step. Up to and including step 8, 
the model parameters were signifi cant, however, starting 
from step 9, regression coeffi cients appeared in the model, 
insignifi cant according to the Student’s criterion. Thus, an 
equation with 8 variables of water temperature anomalies was 
adopted as the optimal model: 

V = b0 + b1ΔTPM1 + ... + b8ΔTPM8
,             (23)

which describes 95% of the variance of the δV series, has a small 
standard error of tuna catch ( = 2514 tons/year), a signifi cant 
Fisher criterion for the model, and signifi cant Student criteria 
for all variables. As a result, in general, the statistical model of 
tuna catch in the South China Sea has the form: 

V = a0 + a1N + 


8

0i
ib ∆TPMi                       (24)

This model describes 98% of the variance of the initial time 

series of tuna catch, and the random catch error according to 

the model is 1590 tons/year, i.e. 3%. 

Methodological aspects of fi sh catch forecasting 

The problem of long-term prediction of tuna catch seems 
to be very diffi cult for the very reason that for short time 
series, it is impossible to investigate and identify the inherent 
internal patterns of variability and frequency structure. In 
principle, in relation to the problem under consideration, it is 
advisable to divide forecasting methods into 3 groups: expert, 
extrapolation, and statistical methods. Given the short length 
of the time series of fi sh catch and the fact that the linear trend 
describes the predominant proportion of its variance, the most 
acceptable option for developing a long-term forecast of tuna 
catch is extrapolation methods. Forecasting tuna catch in the 
South China Sea. For the fi rst time, a method for long-term 
forecasting of annual tuna catch values based on extrapolation 
of a time series with its approximation by a polynomial model 
and a second-order autoregressive model is proposed. Due to 
the short length of the fi sh catch time series and the fact that 
the trend describes the predominant proportion of its variance, 
this approach seems to be the only possible one. Two numerical 
procedures are implemented in the work. The fi rst was to 
isolate a linear trend and approximate the residuals obtained 
after its elimination by a polynomial model. The calculated 
linear trend equation has the form: 

V = a0 + a1t + V*               (25)

where t is the time, V* is the residuals. Equation (6) describes 
65% of the variance of the initial series and has a standard 
error equal to =8288 t/year. The use of the “Approximation” 
software package has shown that the most accurate way to 
approximate the residues of V* is a polynomial of degree 5, i.e.

V* = b0 + b1t + b1t2 +… + b5t
5                 (26)

The coeffi cient of determination of this dependence is 
R2=0.84, and the standard error is =4236 t/year. Now summing 
up the components in formulas (6) and (7), we get a fi sh catch 
that functionally depends only on time:

V = a0 + b0 + (a1+ b1)t + b1t
2 +… + b5t

5,             (27)

This equation describes 95% of the variance of the initial 
series and has a standard error equal to =3250 t/year, which 
is 5% of the average value. Another option for constructing 
an extrapolation model is to use an autoregressive model in 
relation to residues in formula (6) of the form: 

Ho(t) = a1X
o(t-1) + a2X

o(t-2) + ... + рX
о(t-p) + Z(t),            (28)

where Xo(t) is a centered random process, Z(t) is white noise. 
To estimate the order of the autoregression model, we use a 
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Figure 7: Total tuna catch by Vietnamese vessels in the South China Sea in tons.

Table 5: Estimates of nonparametric Spearman correlation coeffi  cients between 
economic factors and tuna catch.

 
Number of fi shing 

vessels
 Total capacity of 

vessels
 tuna 
fi shing

 GDP

 Total capacity of 
vessels

0.977 1

 tuna fi shing 0.868 0.847 1

GDP 0.927 0.971 0.852 1

 The number of the 
population

0.965 0.988 0.812 0.913
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private autocorrelation function (CHAKF). At the fi rst shift, =1, 
the partial autocorrelation coeffi cient coincides with the usual 
autocorrelation coeffi cient, i.e. r part(t1) = r(1). At the second 
shift =2, it takes into account the infl uence of r(t1) on it. Figure 
8 shows a graph of the CHAKF, from which it can be seen 
that in the fi rst two shifts, there is a high partial correlation 
exceeding the critical value of the correlation coeffi cient at the 
signifi cance level  = 0.05 (rcr = 0.50). However, at subsequent 
shifts of ≥3, it decreases sharply and becomes insignifi cant. It 
follows that, in principle, we can use fi rst- and second-order 
autoregression models, i.e. p=1 and p=2.

Having calculated the autoregression coeffi cients using the 
Yule-Walker method, it is not diffi cult after that to calculate 
the values of V * using formula (9), adding which with the 
trend component we obtain estimates of tuna catch. 

The forecast for the linear trend (6) for 1 step (for 2015) 
gives an estimate of fi sh catch equal to 72100 tons/year, and 
according to equation (8) – 82,000 tons/year, which almost 
coincides with the actual catch of fi sh in 2014. The forecast using 
the autoregression model of the fi rst and second order gives an 
estimate of tuna catch for 2015 equal to 81,500 and 77,200 tons/
year, respectively. It can be seen from this that the second-
order autoregression model signifi cantly underestimates 
the estimate of fi sh catch. However, only a comparison with 
the actual catch can determine which forecast estimates are 
more accurate. After this work was completed, an estimate of 
the tuna catch by Vietnamese vessels for 2015 was obtained. 
It amounted to 78.670 tons, i.e. it almost coincides with the 
prognostic estimate based on the second-order autoregression 
model. As for the forecast of tuna catch for 2016, if we focus on 
extrapolation models, it may decrease.

Discussion

As a result of the research carried out in the work, the 
following main conclusions were drawn. 

1. The commercial stock of tuna according to the Scientifi c 
Research Institute of Marine Fisheries of Vietnam is 
estimated at 662-670 thousand tons. At the same 
time, the total allowable catch is about 233 thousand 
tons, and currently, about 80 thousand tons per year 
are mined. In the South China Sea, tuna distribution 
can be divided into two zones according to the nature 

of monsoon activity. During the northeast monsoon, 
when fi shing takes place from October to March, tuna 
is distributed mainly in the northern part of the South 
China Sea and near the Paracel Islands. During the 
southwest monsoon (from April to September), tuna is 
distributed in the southern part of the South China Sea 
and off Spratly Island. The maximum catch is celebrated 
in September. The least amount of fi sh is harvested in 
November-December. Striped tuna accounted for the 
largest share of the total catch in the period 2000-
2014 (61%). Yellowfi n tuna is in second place (31%), 
and bigeye tuna is the least produced (7%). Other tuna 
species do not have commercial stocks in the South 
China Sea. Most tuna is harvested using gill nets (50%), 
purse–line fi shing provides 29% of the total catch, and 
longline and fi shing line fi shing - another 21%. 

2. The assessment of the infl uence of 18 different water 
temperature indicators on a complex of 6 parameters of 
the bioproductivity of the waters of the South China Sea 
for the period 1990-2009, which are closely related to 
each other, the correlation between them does not fall 
below r= 0.85. It is shown that the maximum correlation 
of all bioproductivity parameters is noted for the isotherm 
depth of 24 oC and ranges from r=-0.70 to r=-0.94. The 
second most important is the depth of the isotherm 
of 20 °C, and the third is the temperature of the sea 
surface. With all these parameters, the correlation turns 
out to be negative. This means that with the deepening 
of isotherms 20 and 24 oC and an increase in sea surface 
temperature, all the characteristics of bioproductivity 
should decrease. At the same time, although the range 
of 20-24 oC is optimal in the distribution of tuna, the 
characteristics of bioproductivity react poorly to the 
variability of the layer thickness between isotherms 20 
and 24 oC. 

3. A detailed analysis of the spatial and temporal patterns 
of the depth of the isotherm 24 oC (H24) was performed 
on the basis of the deep-sea archive of CARTON-GIESE 
SODA for the period 1980-2008. In particular, there is a 
signifi cant spatial differentiation of H24 values, both in 
the zonal and meridional directions. For average long-
term annual conditions, the values of H24 gradually 
increase from 51 m in the extreme north-west of the 
district to 76-78 m in its southern part at latitude 9o S. 
Further south, H24 begins to decrease. There is also an 
increase in H24 values from coastal areas to the open sea. 
The calculation of linear trends showed that positive 
trends are observed in the entire sea area, i.e. there is a 
tendency to deepen the isotherm of 24 oC. The maximum 
trend values are confi ned to the shallow northwestern 
part of the district. The presence of positive trends 
means that during the period under review, there was a 
tendency to decrease the bioproductivity of sea waters. 

4. For the fi rst time, on the basis of factor analysis, 
the zoning of the South China Sea fi shing area was 
performed according to the nature of interannual 
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Figure 8: Graph of the partial (1) and general (2) autocorrelation function of the 
values of δV*.
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fl uctuations of the isotherm of 24 oC. The fi rst 5 factors 
describe almost 80% of the variance of the initial 
fi eld. According to factor loads, 5 quasi-homogeneous 
regions were identifi ed. The largest area with the 
maximum interannual variability of H24 is stretched 
in a meridional direction along the coast of Vietnam. 
The rest of the districts have a latitudinal orientation. 
Mainly random interannual fl uctuations are observed in 
the time course of common factors. One can only note 
the presence of a weak 6- to 8-year cycle, which is also 
manifested in tuna stocks in the world’s oceans. 

5. For the fi rst time, a statistical model of the interannual 
values of tuna catch was constructed depending on 
economic and thermal factors. It is shown that the most 
important economic factor is the number of fi shing 
vessels, which increased by more than 3 times over 
the period 2000-2014, and their total capacity by more 
than 4 times! The thermal factor was the sea surface 
temperature (TPM) in the nodes of the two-degree grid, 
which is determined with high accuracy, is available 
almost online, and has a signifi cant correlation with 
both the characteristics of bioproductivity and H24. 
It is shown that the economic factor (the number of 
fi shing vessels) is the main one, accounting for 75% 
of the variance of the initial series. The remnants from 
this model served as the initial data for constructing 
a regression model with TPM anomalies, taken from 
the well-known NOAA NCDC ERSSTv4 archive. An 
optimal model containing 8 variables is obtained, which 
describes 95% of the variance of the residual series 
with a signifi cant Fisher criterion for the model and a 
signifi cant Student criterion for all variables. As a result, 
the general statistical model of tuna catch, depending 
on the number of vessels and TPM, describes 98% of 
the variance of the initial series, and the random error 
of catch according to the model is 1590 tons/year, i.e. 
3%. 

6. For the fi rst time, a method for long-term forecasting 
of annual tuna catch values based on extrapolation of 
a time series with its approximation by a polynomial 
model and a second-order autoregressive model has 
been proposed. Due to the short length of the fi sh catch 
time series and the fact that the trend describes the 
predominant proportion of its variance, this approach 
seems to be the only possible one. Two numerical 
procedures are implemented in the work. The fi rst 
consisted in approximating the residues obtained after 
excluding the linear trend from the time series of tuna 
catch by a polynomial of degree 5, which describes 
95% of its variance and has a standard error equal to 
=3250 t/year, i.e. 5% of the average value. The second 
approach was to use an autoregressive model for the 
same residues, which is a stationary random process. 
As a result of calculating the partial autocorrelation 
function, it was found that the second-order model 
is optimal. The independent forecast of tuna catch for 
2015 according to the polynomial model gave a value of 
82,000 tons/year, and according to the autoregressive 

model – 77200 tons/year. After making a forecast from 
Vietnam, it was obtained that the actual tuna catch in 
2015 amounted to 78,670 tons/year. The discrepancy 
with the fi rst model is 4%, with the second – less than 
2%.

Conclusion

The South China Sea is characterized by exceptionally high 
biological productivity of its waters, which contributes to the 
formation of large commercial stocks of pelagic fi sh. Of particular 
importance is the tuna fi shery, as it is extremely valuable in 
terms of food and enjoys unlimited demand among consumers. 
Tuna fi shing ranks fi rst in the structure of Vietnam’s exports 
of marine fi sh products to more than 60 countries around the 
world, and in 2015 it amounted to more than 408 million US 
dollars. The government of the country set a strategic goal of 
sharply increasing the fi shery by accelerating the construction 
of new, more powerful fi shing vessels, reorganizing the 
coastal infrastructure, using new technologies in processing 
fi sh products, and expanding cooperation with other countries 
in the region and the world. The purpose of this work is to 
identify the impact of various oceanographic characteristics 
on the parameters of the bioproductivity of the waters of the 
South China Sea, build an effective statistical model of tuna 
catch depending on oceanographic and economic factors, and 
develop a method for long-term forecasting of tuna catch.
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