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Abstract
This research develops an advanced AI-based smart proxy model to signifi cantly enhance the prediction of oil rates and the monitoring of crucial operational 

parameters such as temperature and pressure in oil fi eld pipeline management. By integrating real-time data from Multiphase Flow Meters (MPFM) with sophisticated 
simulation outputs, the study introduces a dual-model approach that overcomes the limitations of traditional methods, improving both effi  ciency and cost-effectiveness. 
Model 1 employs high-precision real-time MPFM data to provide accurate oil rate predictions. By focusing on critical control points within expansive pipeline networks, 
this model strategically reduces dependency on extensive MPFM deployment, achieving substantial cost reductions while maintaining rigorous measurement standards. 
The incorporation of real-time data ensures immediate responsiveness to operational changes, facilitating accurate and reliable insights essential for effective pipeline 
management. Model 2 utilizes an AI-driven smart proxy to refi ne the outputs of conventional fl ow simulators such as OLGA. This model addresses computational challenges 
including high runtime and numerical convergence issues by selecting the most reliable and accurate simulation outputs. It provides rapid and dependable insights 
into fl ow dynamics, supporting timely operational decisions and proactive management that enhance the safety and effi  ciency of pipeline networks. The integration 
of Model 1 and Model 2 ensures localized precision and extends analytical capabilities across the entire pipeline network, signifi cantly enhancing predictive accuracy. 
This harmonized approach not only sets new standards for fl ow assurance and pipeline management but also illustrates the transformative impact of AI on operational 
strategies in the hydrocarbon sector. 
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Introduction 

The energy sector is fundamentally dependent on 
hydrocarbons, primarily sourced from oil and gas reserves 
within the Earth. Given the fi nite nature of these reserves, 
optimizing their extraction and utilization is crucial for 
ensuring energy security and enhancing operational effi ciency 
[1]. The extraction of hydrocarbons involves complex processes, 
as these resources are obtained through wellbores drilled 
into underground reservoirs followed by their transportation 
through surface facilities designed to separate and process 
the oil, gas, and water before they reach their fi nal industrial 
destinations [2]. This process presents signifi cant technical 
challenges due to the dynamic nature of the involved fl uids 

under varying pressure and temperature conditions [3]. One of 
the critical aspects of hydrocarbon extraction is the management 
of multiphase fl ow, which refers to the concurrent fl ow of gas, 
oil, and water through the production infrastructure. During 
extraction, the pressure in the reservoir naturally declines 
as fl uids are withdrawn. This decline affects the wellbore, 
where fl uid travels from the reservoir bottom to the wellhead, 
often leading to the liberation of gas from the oil phase if the 
pressure drops below the bubble point. This phenomenon 
can occur at various points along the fl ow path, including in 
the reservoir, wellbore, or pipelines. The presence of water 
further complicates this scenario, adding to the complexity 
of fl uid management and separation. Accurate modeling of 
these multiphase fl ows is essential not only for the design and 
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operation of wells and surface facilities but also for maintaining 
effi ciency and safety. Moreover, optimizing these processes is 
crucial for mitigating safety risks and environmental impacts, 
such as leakage, which can have severe consequences for both 
operational integrity and ecological sustainability [4]. 

Traditionally, simulations for managing multiphase 
fl ow have relied on the black oil model, which simplifi es 
fl uid handling by categorizing the fl uids into three primary 
phases: oil, water, and gas. This model assumes that the 
composition of these fl uids remains constant along the fl ow 
path, an assumption that often fails under varying operational 
conditions [5]. The simplifi cations introduced by this model 
can lead to suboptimal designs and operational ineffi ciencies. 
Consequently, there has been a shift towards more sophisticated 
compositional modeling techniques that allow fl uid composition 
to dynamically adjust in response to environmental factors, 
providing a more accurate representation of fl uid behavior 
within the production system [6]. However, even with the 
advent of new approaches and sophisticated multiphase fl ow 
software, numerous assumptions and simplifi cations are 
still inherent in these models. These limitations highlight 
the need for more accurate and faster methods to better 
capture the complexities of multiphase fl ow dynamics and 
improve predictive capabilities. Recognizing the limitations of 
traditional multiphase fl ow models and the signifi cant costs 
associated with advanced equipment such as multiphase fl ow 
meters for accurately determining parameters like oil rates, 
this research aims to develop an innovative pipeline model 
utilizing an AI-based smart proxy approach. This new model 
seeks to enhance accuracy, cost-effi ciency, and speed in the 
extraction of results for the measurement and prediction of 
multiphase fl ow characteristics [7]. The primary objective is to 
enhance the predictive capabilities and operational effi ciencies 
of traditional fl uid fl ow simulators, such as the OLGA model, 
by incorporating advanced AI methodologies. This integration 
seeks to streamline computational processes, reduce model 
run times, and lower costs associated with traditional methods 
while maintaining or improving predictive accuracy. 

The remainder of this paper is structured as follows: the 
next section reviews relevant literature on multiphase fl ow 
modeling and AI applications in oil fi eld management. This 
is followed by a detailed description of the methodology 
employed in developing the AI-based smart proxy models. 
The subsequent sections present the results of applying 
these models to a case study, followed by a discussion of the 
fi ndings and their implications for the hydrocarbon industry. 
The paper concludes with a summary of key contributions and 
suggestions for future research. 

Literature review 

Multiphase fl ow in oil and gas production 

Multiphase fl ow, involving the simultaneous movement of 
oil, gas, and water, is a fundamental and complex phenomenon 
in oil and gas production [8]. Accurate modeling and prediction of 
multiphase fl ow are crucial for optimizing extraction processes, 
ensuring operational integrity, and minimizing environmental 

impacts [9]. Effective management of multiphase fl ow 
behavior signifi cantly enhances the effi ciency and safety of 
reservoir operations and surface facilities, ultimately leading 
to improved resource utilization and economic benefi ts. 
This complexity arises from the interaction of different fl uid 
phases, liquid (oil and water), and gas within the production 
system. The behavior of these phases under varying pressure 
and temperature conditions presents signifi cant challenges. 
Accurate modeling of multiphase fl ow involves predicting the 
distribution and movement of each phase, which is infl uenced 
by numerous factors including fl uid properties, fl ow rates, 
and pipeline geometry. These factors interact in complex 
ways under varying operational conditions such as changes in 
pressure and temperature. Fluid properties like viscosity and 
density affect how each phase moves and interacts within the 
pipeline, while fl ow rates determine the velocity and mixing of 
the phases. Pipeline geometry, including diameter, length, and 
orientation, also plays a crucial role in shaping fl ow patterns 
and phase distribution. Effective modeling must account for 
these variables to accurately predict the behavior of multiphase 
fl ow in production systems [10]. 

When multiple phases fl ow concurrently, the interface 
between these phases can adopt various confi gurations, 
referred to as fl ow patterns. These patterns are crucial for 
understanding the dynamics of multiphase fl ow and can 
signifi cantly infl uence the operational effi ciency and safety of 
production processes. Flow patterns, such as stratifi ed, annular, 
and slug fl ow, determine the distribution and interaction of the 
phases within the pipeline, impacting pressure drops, phase 
separation, and overall fl ow stability. Understanding these 
patterns is essential for optimizing production strategies and 
ensuring the safe operation of facilities [11]. The specifi c fl ow 
pattern observed in two-phase fl ow is highly dependent on 
variables such as pressure, fl ow rate, and channel geometry, 
making it a critical aspect of multiphase fl ow dynamics [12]. 
The hydrodynamics and fl ow mechanisms vary considerably 
with each fl ow pattern, signifi cantly affecting factors like 
pressure drop and phase fraction distribution. Accurately 
predicting these parameters necessitates a clear understanding 
of the prevailing fl ow pattern under given fl ow conditions. 
Some common examples of fl ow patterns include bubble, slug, 
churn, and annular fl ow, each presenting unique characteristics 
and challenges in modeling and analysis. In vertical pipelines, 
the infl uence of gravity on the phases is minimized, leading 
to fl ow patterns dominated by the interplay between buoyancy 
and viscous forces. In horizontal pipelines, gravity plays a 
signifi cant role, causing stratifi cation where the heavier liquid 
phase tends to settle at the bottom while the lighter gas phase 
fl ows above it. This leads to fl ow regimes such as stratifi ed 
fl ow, where distinct layers of liquid and gas are formed. Inclined 
pipelines, depending on the angle, exhibit a combination of 
behaviors seen in both horizontal and vertical orientations. 
The angle of inclination affects the fl ow regime transitions, 
resulting in complex patterns like inclined stratifi ed fl ow or 
inclined annular fl ow. Factors such as pressure, fl ow rate, and 
channel geometry also play critical roles in determining fl ow 
patterns. For instance, high fl ow rates may cause a transition 
from bubble to churn fl ow, while variations in pressure can 
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infl uence the distribution and velocity of each phase. Accurate 
prediction of these patterns is essential for optimizing the 
design and operation of wells and pipelines, as each fl ow 
regime affects pressure drops, phase separation, and overall 
fl ow dynamics differently [13]. 

Modeling techniques in multiphase fl ow 

Given the intricate nature of multiphase fl ow, empirical 
correlations, which are based on experimental results from 
specifi c cases, are commonly utilized to address these 
challenges in both wellbores and pipelines. However, the 
application of these correlations is limited, as they often 
lack generalizability across a broad spectrum of conditions. 
These correlations can be tailored to specifi c fl ow regimes or 
designed to be independent of fl ow regimes [14]. Among the 
notable empirical correlations for wellbores, the Hagedorn 
and Brown correlation (Hagedorn, et al. 1965) is widely used 
for oil wells, while the Orkiszewski correlation (Orkiszewski, 
1967) represents a pioneering effort specifi cally developed for 
gas wells. In pipelines, the Lockhart-Martinelli correlation 
(Lockhart & Martinelli, 1949) provides methods for calculating 
the pressure drop when two phases fl ow concurrently, crucial 
for the design and operation of long-distance oil and gas 
pipelines. Additionally, the Chisholm correlation (Chisholm, 
1973) considers phase interactions under high-velocity 
conditions typical in gas transmission pipelines. Further 
contributions in this fi eld include the correlations developed 
by Duns, et al. (1963), Beggs, et al. (1973), and Mukherjee, et 
al. (1983) for multiphase fl ow in vertical and inclined pipes, 
refl ecting the evolving complexity and specifi city required in 
such analyses [15]. 

An alternative approach to modeling multiphase fl ow 
involves the use of homogeneous models. These models 
assume that the fl uid properties of the mixture can represent 
the individual phases, allowing the application of single-phase 
fl ow equations to the multiphase system. Homogeneous models 
often incorporate adjustments for slip velocity, accounting 
for the velocity differences between the phases. Such models 
equipped with slip adjustments are referred to as drift-fl ux 
models, highlighting their ability to refl ect the dynamics of 
multiphase fl ow more accurately (Shi, et al. 2005). The Taitel-
Dukler model (Taitel & Dukler 1976) for pipelines provides 
a robust framework for predicting fl ow regime transitions, 
integrating the concept of slip velocity effectively. However, 
homogeneous models have limitations due to their simplifi ed 
assumptions and inability to capture the complex interactions 
between different phases accurately. Therefore, more advanced 
methods, such as the mechanistic model, are often preferred 
for their ability to provide a more detailed and accurate 
representation of multiphase fl ow dynamics [16]. 

Mechanistic models represent a sophisticated approach 
to multiphase fl ow modeling, grounded in fundamental 
physical laws and an in-depth understanding of the physics 
characterizing each fl ow pattern [17]. These models signifi cantly 
enhance the ability to predict key parameters such as pressure 
and phase fraction profi les within pipes, particularly in 
scenarios that are diffi cult to replicate in laboratory settings 

or where reliable empirical correlations fail to exist (Petalas, et 
al. 2000). The methodology underlying mechanistic modeling 
involves fi rst identifying the different fl ow regimes present 
within a system. Once these regimes are established, distinct 
models are applied to each regime to predict specifi c fl ow 
characteristics, such as liquid holdup and pressure drop. This 
approach was notably advanced by Taitel, et al. (1976, 1980), 
who described the physical mechanisms dictating transitions 
between various fl ow patterns, laying foundational work that 
has been expanded upon in subsequent studies. Following the 
pioneering contributions of Taitel, et al. numerous studies 
have presented comprehensive mechanistic models. Notable 
among these are the works of Ozon, et al. (1987), Hasan and 
Kabir (1988), and Ansari, et al. (1994), which focus on two-
phase fl ow in vertical pipes. Conversely, research by Xiao, et al. 
(1990) and Kaya, et al. (2001) introduced models with limited 
applicability, specifi cally to certain pipe inclinations. More 
generalized studies, such as those by Petalas, et al. (2000) 
and Gomez, et al. (2000), have broadened the scope to include 
comprehensive mechanistic modeling of multiphase fl ow in 
wellbores. In pipeline systems, similar complexities arise as in 
wellbores, necessitating the adoption of mechanistic models 
that are equally grounded in the fundamental principles of 
physics. These models are particularly important for predicting 
fl ow behavior over the extensive lengths and varying conditions 
characteristic of pipelines. As in wellbores, different fl ow 
regimes within pipelines require distinct modeling approaches 
to accurately predict parameters like pressure drops and phase 
fraction profi les under various operational conditions. The 
importance of these models extends to the detailed analysis 
of fl ow pattern transitions, which are crucial for ensuring 
operational safety and effi ciency in pipeline systems. For 
example, studies by Sun, et al. (2009) and Zhang, et al. (2012) 
have extended the groundwork laid by Taitel, et al. adapting it 
to the unique challenges presented by horizontal and inclined 
pipeline systems. These adaptations allow for a nuanced 
understanding of how fl ow patterns like slug or annular fl ows 
develop and transform under different pipeline inclinations 
and pressure conditions [18]. 

Another critical aspect of multiphase fl ow is the modeling 
of heat transfer. During oil production, the temperature 
at the sand face typically matches that of the surrounding 
formation. However, signifi cant temperature variations can 
occur during production, especially with substantial drawdown 
at the bottomhole. According to the Joule-Thomson effect, 
this drawdown increases the temperature of the oil phase 
and decreases the temperature of the gas phase. As fl uids 
ascend, their temperatures change due to heat exchange with 
the surrounding geological formations. In pipelines, similar 
thermal dynamics are observed. The temperature of the fl uids 
adjusts as they travel, infl uencing viscosity and density, 
which affect fl ow rates and pressure drops [19]. This thermal 
behavior is complex due to varying environmental conditions 
and different thermal properties of pipeline materials. 
Accurate modeling of heat transfer dynamics in pipelines is 
essential, involving the calculation of temperature profi les 
and their impact on fl uid properties and fl ow dynamics. 
Advanced thermal models that account for environmental 
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context, pipeline material properties, and fl uid characteristics 
are critical. These models help design pipelines that manage 
heat exchange effectively, ensuring operational effi ciency and 
integrity. Integrating these thermal models with hydraulic 
models provides a comprehensive simulation of multiphase 
fl ow, enabling precise control and optimization of oil and gas 
transport processes [20]. 

Numerous studies have explored the dynamics of heat 
transfer between wellbore fl uids and surrounding formations, 
beginning with Ramey’s seminal work in 1962. He introduced 
a theoretical model to estimate wellbore fl uid temperatures 
based on depth and production duration, though it was limited 
by assumptions of single-phase fl ow and neglecting kinetic 
energy and friction effects. Ramey also developed a general 
formula for calculating the overall heat transfer coeffi cient, 
considering the well radius as a linesource. Building on Ramey’s 
model, Satter, et al. (1965) incorporated multiphase fl ow, 
accounting for kinetic energy and Joule-Thomson expansion. 
Alves, et al. (1992) expanded this further by predicting 
temperature distribution across all inclination angles. Hasan, 
et al. (1994) refi ned these models, discarding the line-source 
assumption for steady-state, two-phase fl ow. In pipelines, 
heat transfer considerations are equally crucial due to long 
transport distances and varying environmental conditions. 
Modern pipeline models adapt and expand wellbore heat 
transfer models to include multiphase fl ow, friction, and kinetic 
energy, which were initially overlooked. These enhancements 
enable more accurate predictions of temperature profi les 
along pipelines, essential for managing fl uid properties and 
ensuring operational integrity and effi ciency. Integrating 
advanced thermal models with comprehensive fl ow dynamics 
simulations is essential. Such robust systems ensure optimal 
operation across diverse geographical and climatic conditions, 
adapting to environmental interactions effectively. This 
holistic approach to modeling heat transfer and fl ow dynamics 
is crucial for developing resilient and effi cient hydrocarbon 
transportation systems [21]. 

Accurately computing mixture properties is crucial for 
modeling pressure and temperature profi les in wellbores and 
pipelines. This process involves estimating the in-situ volume 
fractions of each phase. For gas-liquid fl ows, methodologies 
vary; in three-phase fl ows (gas, oil, water), combining liquid 
phases simplifi es calculations, providing satisfactory accuracy 
(Wang, 1996). Modern models adapted from both wellbores 
and pipelines incorporate multiphase fl ow dynamics, friction, 
and kinetic energy to ensure precise pressure and temperature 
predictions. In pipeline systems, including extensive networks, 
advanced thermal models integrated with hydraulic simulations 
enhance operational effi ciency and safety. These models 
must account for varying environmental conditions, complex 
geometries, and fl uid interactions to optimize hydrocarbon 
transportation. This comprehensive approach ensures robust, 
reliable, and effi cient pipeline operations, addressing the 
complexities of fl ow dynamics and thermal interactions to 
maintain system integrity and performance across diverse 
environments [22]. 

Overview of OLGA for dynamic multiphase fl ow simula-
tion 

The OLGA dynamic multiphase fl ow simulator is a 
comprehensive tool designed for simulating transient fl ow in 
multiphase systems, providing critical insights for maximizing 
production and minimizing risks associated with oil and gas 
operations. It is widely recognized as an industry-standard 
tool for dynamic multiphase fl ow simulation, offering a range 
of features and benefi ts tailored to the needs of both offshore 
and onshore developments. The development of OLGA began 
in the late 70s and early 80s, focusing on transient fl ow 
phenomena in the petroleum industry. Designing a pipeline in 
OLGA involves several parameters. The length of the pipeline 
determines the distance over which fl ow behavior is simulated. 
The diameter is crucial for determining fl ow characteristics, 
pressure drop, and fl ow rates. Roughness affects frictional 
losses and fl ow resistance within the pipeline, while the 
material infl uences structural integrity, corrosion resistance, 
and thermal properties. Building an OLGA model involves 
defi ning pipeline geometry and network topology, specifying 
fl uid properties, setting boundary and initial conditions, and 
selecting numerical parameters to control simulation accuracy 
and effi ciency [23]. 

The software can simulate various types of boundary 
conditions, including constant fl ow rate, constant pressure, 
and time-varying fl ow rates. Pipeline sectioning in OLGA 
improves accuracy by accounting for detailed pipeline 
geometry and environmental conditions, but it increases 
computational complexity. The pipeline system is divided 
into sections, with sequential calculations performed for each 
section to ensure detailed and accurate simulations. OLGA’s 
ability to model dynamic multiphase fl ow with detailed input 
data and conservation equations makes it an indispensable 
tool for effective pipeline management and optimization in 
the oil and gas industry. Its comprehensive approach allows 
for precise modeling of various operational scenarios, enabling 
better decision-making and enhanced operational effi ciency. 
Additionally, specifying the expected fl ow regime whether 
single-phase, two-phase, or multiphase is essential for 
accurate simulation. Operational scenarios such as startup, 
shutdown, and fl ow rate changes, along with additional 
constraints like friction factors and heat transfer coeffi cients, 
should also be included. OLGA employs nine conservation 
equations, continuity (mass conservation), momentum (axial, 
radial, vertical), and energy to simulate fl uid fl ow behavior. The 
software models the pipeline as a series of connected segments, 
considering how terrain topography impacts pressure profi les, 
liquid holdup, and fl ow patterns [24]. 

AI-based smart proxy models in the oil and gas in-
dustry 

Smart Proxy Models represent a signifi cant advancement 
in the application of Artifi cial Intelligence (AI) and Machine 
Learning (ML) to numerical simulations, particularly in the oil 
and gas industry. These models are designed to replicate the 
behavior of comprehensive numerical simulation models with 
high accuracy, maintaining the original simulation’s physics 
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and space-time resolution. Unlike traditional proxy models 
that might simplify the underlying physics or use predefi ned 
functional forms, Smart Proxy Models leverage data from 
numerical simulations to learn and accurately mimic the 
intricate behaviors of fl uid fl ow in hydrocarbon reservoirs. One 
of the key benefi ts of Smart Proxy Models is their ability to 
deliver highly accurate numerical simulation results without 
the need to modify the underlying mathematical equations, 
reduce the number of cells and time steps, or deploy numerous 
numerical simulations. This approach allows for the most 
realistic application of AI and ML in developing proxy models 
for numerical simulations, offering signifi cant advantages in 
terms of computational effi ciency and accuracy. The primary 
application of Smart Proxy Models in the oil and gas industry is 
in Numerical Reservoir Simulation (NRS). These models help in 
making reliable reservoir management decisions by examining 
various operational scenarios quickly and accurately. For 
instance, in a study conducted on a prolifi c mature fi eld, a 
Smart Proxy Model was developed to optimize oil production 
while minimizing water-cut. The model enabled thousands of 
simulations runs in seconds, facilitating extensive sensitivity 
analyses and uncertainty quantifi cation that would otherwise 
take months using traditional methods. A notable case 
study with the Abu Dhabi National Oil Company (ADNOC) 
utilized a well-based Smart Proxy Model to rank wells based 
on their probability of success in a rate relaxation program. 
This model identifi ed wells that could potentially increase oil 
production with minimal water production, thereby enabling 
more informed decision-making in reservoir management. 
Similarly, in CO2 sequestration projects, cell-based Smart 
Proxy Models have been employed to perform rapid sensitivity 
analysis and uncertainty quantifi cation, crucial for optimizing 
CO2 injection strategies [25]. 

Beyond upstream applications, Smart Proxy Models are 
also highly benefi cial for midstream projects, especially in 
the design and management of complex pipeline networks. 
These models can simulate various pipeline confi gurations 
and operational scenarios quickly and accurately, supporting 
effi cient and cost-effective pipeline network design and 
operation. By providing rapid and reliable insights, Smart 
Proxy Models enhance safety, reliability, and operational 
effi ciency in the transportation of hydrocarbons. Ultimately, 
Smart Proxy Models represent a transformative technology 
in the oil and gas industry, leveraging AI and ML to enhance 
the capabilities of numerical reservoir simulations and other 
complex engineering tasks. Their ability to maintain the 
integrity of the original simulation’s physics while signifi cantly 
reducing computational time and resources offers substantial 
improvements in effi ciency, accuracy, and cost-effectiveness. 

Methodology 

Overview 

This section outlines the methodology employed in 
developing and validating the AI-based Smart Proxy Models 
for real-time oil rate prediction and pipeline monitoring. 
The dual-model approach integrates highprecision real-time 
data from Multiphase Flow Meters (MPFM) with AI-driven 

refi nements of conventional fl ow simulators, specifi cally 
targeting improvements in predictive accuracy and operational 
effi ciency. 

Data collection 

The data collection process for this study involved gathering 
comprehensive fi eld data from an offshore oil fi eld located in 
the Caspian Sea. This fi eld began production in 1978 and is 
characterized by shallow water depths ranging from 8 to 42 
meters. The fi eld’s hydrocarbon reservoirs, primarily within 
Pliocene-aged Red Series sandstones, exhibit favorable porosity 
and permeability, which are essential for effi cient hydrocarbon 
extraction. The dataset for this study includes intricate details 
on the pipeline network of this fi eld, essential for advanced 
modeling and optimization strategies. Specifi c measurements 
such as pipeline diameters, lengths, angles, and roughness are 
detailed alongside dynamic fl ow parameters like oil fl ow rates, 
Gas-Oil Ratios (GOR), and water cuts from each platform. The 
dataset encompasses daily measurements spanning different 
distinct attributes, with data collected from 272 wells assessed 
between the years 2021 and 2023. This extensive data collection 
effort was critical for developing the AI-based smart proxy 
model. The dataset included real-time high-accuracy data 
from MPFM, capturing oil rates every two hours from 94 
distinct days. This real-time data integration ensured that the 
model could provide precise estimations essential for effective 
management of the pipeline networks. In this research, 
the fi eld has two main pipeline networks. The fi rst network 
comprises 8 pipelines connected to 6 platforms serving as 
mass sources. In contrast, the second network consists of 14 
pipelines linked to 13 platforms acting as mass sources. The 
main fl ow of oil occurs within the second network, making it 
the primary pipeline network. The schematic of these two main 
pipeline networks is illustrated in Figure 1. 

Data preprocessing 

In the development of our AI-based smart proxy models, 
meticulous data preprocessing is essential to ensure the accuracy 
and applicability of the models in pipeline management. This 
process begins with the careful selection and cleaning of 
collected data, with a focus on stabilizing scattered two-hour 
interval measurements from Multiphase Flow Meters (MPFM) 
into more reliable daily data points. Such preprocessing is 
critical for managing extensive pipeline networks and achieving 
accurate predictive models. The handling of data from OLGA 
software, a fundamental tool for simulating multiphase fl ow in 
pipelines, forms a signifi cant part of our preprocessing efforts. 
Outputs from OLGA are prone to numerical convergence 
problems and other computational issues, requiring rigorous 
review and validation. Domain experts play a crucial role in this 
phase, using their deep operational knowledge and engineering 
judgment to fi lter out any anomalies such as those caused by 
insuffi cient numerical resolution or improper simulation node 
selection that could compromise the model’s integrity. These 
experts ensure that only the most accurate and reliable data are 
used for model training. Anomalies due to numerical dispersion 
or inadequately confi gured simulation nodes are particularly 
scrutinized. The identifi ed discrepancies are corrected or 
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expert-guided approach, the accuracy of data inputs is ensured, 
and the foundation for our AI models is solidifi ed, thereby 
providing the robustness required for effective real-world 
application and setting new standards in pipeline management 
and operational effi ciency. 

Figure 2 presents a schematic illustrating the typical real 
pipeline topology alongside a segmented representation within 
the OLGA software. This segmentation is crucial, as it allows 
for more accurate resolution of numerical issues within OLGA, 
ensuring that the model handles complex fl ow dynamics 
effectively and enhances the stability of simulations. 

Data selection 

Feature engineering and input data selection are critical 
steps in developing AI-based smart proxy models. It is 
essential to identify inherent correlations and relationships 
within the data to enhance the model’s predictive capabilities. 
This involves selecting relevant features that signifi cantly 
impact the target variables, such as pressure, temperature, 
and oil rate. Feature engineering involves transforming the 
raw data into meaningful inputs for the AI model. This process 
includes selecting Key Performance Indicators (KPIs) that are 
closely linked to the output variables. KPIs help in identifying 
potential correlations and refi ning the input features. The 
selected features are then validated through rigorous testing 

removed, with a special focus on maintaining the authenticity 
of operational conditions. This involves optimizing the number 
of nodes in the pipeline simulations and running multiple 
simulations to select confi gurations that yield the most 
precise results without imposing unnecessary computational 
burdens. Continuing into the model execution phase, vigilant 
monitoring is crucial to identify and address any issues such as 
numerical dispersion, warnings, or errors that could affect the 
model’s performance and accuracy. Optimization strategies, 
including refi ning the segmentation of the pipeline network 
and implementing adaptive time-stepping methods, enhance 
model stability and computational effi ciency. These measures 
prevent the artifi cial smoothing of sharp fronts and ensure the 
model accurately captures the physical behaviors of the fl ow. 
For missing data, typically resulting from instrumental failures 
or transmission errors, our approach involves ‘data patching’ 
where domain experts by using an AI approach replace missing 
or unreliable data points with estimates derived from a 
thorough analysis of adjacent data and operational conditions. 
This method ensures that the patched values refl ect realistic 
operational scenarios, maintaining the continuity and accuracy 
of our datasets. After each simulation run, domain experts 
conduct rigorous validations of the outputs against empirical 
data and operational records. This validation confi rms the 
model’s accuracy and its utility in facilitating informed 
decision-making for pipeline management. Through this 

 

Network 1 

Network 2 

Figure 1: Pipeline Networks. 
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and integration into the model to ensure their predictive power 
and relevance. Also, in AI techniques, especially in AI-based 
smart proxy models, understanding the tier concept is crucial. 
According to Shahab Mohaghegh’s book, the tier concept 
helps in structuring the data by recognizing different levels 
of infl uence and interaction between various parameters. 
In pipeline simulations using OLGA software, different 
nodes represent specifi c segments along the pipeline where 
measurements are taken, or predictions are needed. In the 
context of using neural networks, these tiers are selected based 
on the weights of each input to the output at the target node, 
with the model determining the internal connections of each 
tier. For example, predicting parameters such as temperature, 
pressure, or fl ow rate at a specifi c node may require data 
from tier 1, tier 2, or tier 3, indicating how many nodes 
along the pipeline can affect the target prediction node. For 
some parameters, tier 1 data may be suffi cient, while others 
may require additional tiers depending on the parameter’s 
complexity and the fl uid dynamics involved. Figure 3 provides 
a clear schematic example of a typical pipeline with four nodes, 
effectively demonstrating this concept. 

Model development 

The methodology for developing the AI-powered smart 
proxy models involved two specialized models tailored to 
distinct operational needs, ensuring enhanced predictive 
accuracy and effi ciency within complex multiphase fl ow 
environments in pipeline networks. 

Model 1: High-precision AI model using actual measured 
data: Model 1 was designed to integrate real-time data from 
Multiphase Flow Meters (MPFM) to provide accurate oil 
rate predictions. This approach reduces the dependency on 
extensive MPFM deployments by strategically focusing on 
critical control points within the pipeline networks. Although 
the two-hour data recorded from MPFM is highly accurate, it 
needed to be aligned with the daily resolution of the input data. 
Therefore, the scattered two-hour interval measurements from 
MPFM were averaged to produce stable and reliable daily data 
points. This averaging process was crucial for achieving high 

precision in predictions, which is essential for effective day-
to-day pipeline management. By doing so, Model 1 ensures 
precise monitoring and control, thereby enhancing the overall 
effi ciency and reliability of pipeline operations. 

Model 2: Enhanced AI-driven simulation for comprehensive 
pipeline analysis: Model 2 utilized an AI-based smart proxy 
model to enhance the outputs from traditional transient fl ow 
simulators like OLGA. This model addressed issues such as high 
runtime and numerical convergence problems by selecting the 
most reliable and accurate simulation outputs, validated by 
domain experts. The integration of these reliable outputs into 
the AI model ensured rapid and dependable insights into the 
pipeline networks’ fl ow conditions. 

Model integration and validation 

The integration of Models 1 and 2 created a robust predictive 
framework that leveraged the strengths of both real-time 
measurements and advanced simulations. Model 1 provided 
high precision and immediate responsiveness at critical 
control points, while Model 2 expanded the scope of predictive 
analytics across the entire network. The data were categorized 
into different sets for training, calibration, validation, and blind 
data sets. The training set included a substantial portion of the 
data used to train the AI models and identify patterns. The 
calibration set was used to fi ne-tune the models, ensuring they 
accurately captured the nuances of the data. The validation set 
was employed to test the model’s performance and ensure they 
could generalize to new, unseen data. Additionally, blind data 
sets, which the AI models had never seen before deployment, 
were used to evaluate the constructed AI models. This fi nal 
evaluation step ensured the robustness and reliability of 
the models in real-world scenarios. The validation process 
involved rigorous testing of the AI models using the collected 
and preprocessed data. The models were evaluated for their 
predictive accuracy in estimating oil rates, temperature, 
and pressure within the pipeline networks. The results 
demonstrated signifi cant improvements in computational 
effi ciency and accuracy compared to traditional methods. 

Results 

Two distinct AI-based smart proxy models were developed, 
each with unique architectures tailored to specifi c purposes. 
These variations included differences in the number of 
neurons, hidden layers, and other hyperparameters. For 
Model 1, advanced AI software called “Improve,” developed 
by Intelligent Solutions, Inc. (ISI), was utilized to create an 
Artifi cial Neural Network (ANN) specifi cally designed for 
predicting oil rates. Conversely, Model 2 was constructed using 
Python-based coding to develop the ANN model, aiming to 
predict temperature, pressure, and oil rate along the pipeline. 

Model 1: High-precision AI model using actual measu-
red data 

For Model 1, the objective was to predict oil rates based 
on accurate production data from Multiphase Flow Meters 
(MPFM), which were set up at the fi nal node in Network 2. 

Figure 2: Pipeline Networks.

Figure 3: Pipeline Schematic with 4 Nodes.
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The dataset consisted of production records over 94 distinct 
days spanning three years from 2021 to 2023. Initially, fuzzy 
clustering techniques were employed to categorize the MPFM 
oil rate data into three main clusters: poor, average, and good. 
This approach assigns membership values to each data point, 
indicating the degree to which it belongs to each cluster rather 
than strictly categorizing them into discrete groups. These 
clusters provided a clear understanding of the data distribution 
and variability, which was essential for the subsequent 
training and validation phases. The results of this clustering 
are illustrated in Figure 4. 

For constructing an AI-based smart proxy model, the 
dataset was partitioned into four distinct groups: training, 
calibration, validation, and blind data. To ensure the integrity 
of the blind testing procedure, 12 data points were randomly 
selected and isolated from the model training process. The 
training set, comprising 70% of the remaining data after 
omitting the blind data, was used to develop the foundational 
predictive capabilities of the model. The calibration set, 
representing 15% of the data, was utilized to fi netune the 
model parameters, optimizing performance. The validation 
set, including the remaining 15% of the data, was applied to 
evaluate the model’s performance on unseen data. The blind 
data set, consisting of data points not seen by the model during 
training, was used to assess the model’s predictive accuracy 
post-training. The schematic representation of the ANN model 
is presented in Figure 5. 

During this phase, the ANN model was executed using 
input data selected based on the available data described in 
the data collection section, following the Key Performance 
Indicator (KPI) method. This strategic approach enabled a 
comprehensive assessment of the importance and relevance of 
input data for predicting the output. The KPI method provided 
initial guidance, which was further refi ned through model 
application to determine its effectiveness. Additionally, this 
approach facilitated the automatic selection of the optimal 
number of epochs by analyzing training and validation errors, 
thereby enhancing the model’s effi ciency and accuracy. 

The coeffi cient of determination (R²) values for the training, 
calibration, and validation phases were approximately 0.997, 
0.823, and 0.832, respectively, as shown in Figure 6 with the 
optimized epoch number. The optimized epoch number was 
determined through an iterative process that analyzed the 
training and validation errors to fi nd the point where the 
model’s performance was maximized without overfi tting. 
These high R² values indicate a strong correlation between the 
predicted and actual data, demonstrating the effectiveness 
of the ANN model in capturing the underlying patterns and 
making accurate predictions. 

The fi nal validation step involved using the 12 blind 
data points to rigorously test the model’s effi cacy. The 
model predicted these data points without any parameter 
modifi cations, achieving a prediction error rate of 
approximately 1% and an R² value of around 0.87, as detailed 
in Table 1 and visually represented in Figure 7. These metrics 
underscore the model’s high predictive accuracy and reliability, 

highlighting its potential as a cost-effective alternative to the 
highly expensive MPFM methods. 

Model 2: Enhanced AI-driven simulation for comprehen-
sive pipeline analysis 

Model 2 was developed using a Python platform to construct 
an ANN model that integrates traditional OLGA simulation 
outputs with carefully curated operational data, validated by 
domain experts. This innovative approach addresses common 
limitations of conventional simulation methods, such as long 
runtimes and numerical convergence issues. The aim of Model 

Figure 4: Fuzzy Clustering of MPFM Oil Rate Data. 

Figure 5: Schematic Representation of the ANN Model.

Figure 6: R² Values for Training, Calibration, and Validation Phases of the ANN 
Model.
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2 was to predict temperature, pressure, and oil fl ow rate 
along the pipeline, providing a comprehensive analysis of the 
pipeline’s operational parameters. 

Model 2’s development focused on a detailed analysis 
of a single pipeline within a network. This specifi c pipeline, 
selected from Network 1, carries oil through Platform 1 to Flow 
path 1, making it the nominated pipeline for this study. The 
primary objective was to conduct sensitivity and uncertainty 
analyses to understand the OLGA model’s responses to various 
parameters. The data were categorized into four main groups: 
general input data, PVT properties, OLGA output data, and AI 
model target variables. 

General input data included pipeline characteristics such as 
pipe diameter and pipe angle, as well as production data like 
oil rate, Gas-Oil Ratio (GOR), and water rate. PVT properties 
cover the physical properties of the fl uids involved, including 
the densities and viscosities of oil, gas, and water. OLGA output 
data comprised calculated data from the OLGA model, such as 
fl ow regime and velocity. In cases where direct prediction of 
target variables was not feasible, OLGA output data were used 
as new input features. These predicted features then served 

as inputs for predicting the fi nal target variables. Finally, AI 
model target variables were the parameters that the AI model 
was designed to predict, such as temperature, pressure, and 
oil rate. 

The initial phase focused on predicting temperature 
distribution along the pipeline using general input data, with 
temperature-sensitive PVT data introduced later. This approach 
ensured comprehensive data usage for accurate temperature 
predictions, optimizing the AI proxy model’s development. 

Among the 60 different single-pipeline OLGA models 
constructed with various input parameters to cover several 
scenarios, 70% of the data were utilized for training and 
30% for calibration, validation, and blind testing. Given the 
substantial volume of output data, traditional statistical 
metrics such as R² and Mean Squared Error (MSE) were often 
found to be inadequate for fully assessing model performance. 
As highlighted by recent studies, including those by Matejka 
Research, identical statistical metrics can result from 
distinctly different data patterns, which can lead to incorrect 
decisions [26]. The importance of visualizing model outputs 
to gain comprehensive insights was thus underscored by this 
phenomenon. Therefore, in this study, the results of the blind 
data versus pipeline length were visualized to highlight errors 
and better understand the model’s performance. Through this 
visualization approach, deviations and anomalies that might 
not be apparent through statistical metrics alone were identifi ed 
and interpreted. By focusing on graphical representations, a 
more nuanced evaluation of the model’s predictive accuracy 
and robustness was ensured, leading to more reliable and 
actionable insights. 

Parameters such as neuron count and epoch size were 
optimized to enhance prediction accuracy. High accuracy in 
temperature predictions was demonstrated across various 
scenarios. The model was run for 24 hours, and the results for 
four blind test data points taken at different times, and case 
numbers are illustrated in Figure 8. These four blind test data 
points are provided as examples among all blind test results to 
showcase the model’s performance across different conditions. 

In the next phase, the model initially struggled with 
pressure predictions because the input data were not 
adequately representative of accurate pressure prediction. 
To improve accuracy, feature engineering was employed to 
include gas enthalpy as a key input alongside the previously 
predicted temperature. After examining various parameters 
and constructing different ANN models, this parameter was 
selected as crucial. This approach signifi cantly boosted the 
model’s performance, as demonstrated by the accurate results. 
The predicted pressure for a specifi c case showed substantial 
improvement after incorporating gas enthalpy. The model 
was run for 24 hours, and Figure 9 presents the results for 
four blind test data points taken at different times and case 
numbers as examples. 

The fi nal phase focused on predicting oil rates by integrating 
PVT data alongside the previously predicted temperature and 
pressure. With temperature and pressure already predicted, 

Figure 7: Predictive Accuracy of the AI Model on Blind Data.

Table 1: Error Metrics and R² Values for AI Model Predictions on Blind Data.

Actual Oil Flow Rate 
(STB/d)

Predicted Oil Flow Rate 
(STB/d)

Difference Error (%)

56343 56364 21 0.04 %

56692 57220 529 0.93 %

57815 57469 346 0.60 %

59183 59453 270 0.46 %

58019 58204 185 0.32 %

56974 58204 1230 2.16 %

57367 57825 457 0.80 %

57136 57497 361 0.63 %

56366 56459 93 0.17 %

56142 57235 1093 1.95 %

59155 58757 398 0.67 %

54374 54654 280 0.52 %

Average Error 0.77%
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we utilized the PVT table, which relates each PVT parameter 
to specifi c temperature and pressure conditions. This detailed 
relationship allowed the model to accurately use PVT input data 
for predicting oil rates. Despite optimizing hyperparameters, 
the accuracy for oil rate predictions was lower than that for 
temperature and pressure, as shown in Figure 10. 

Discussion and recommendations 

Implementing AI-based smart proxy models in real oil 
fi eld operations presents considerable challenges, particularly 
concerning data quality and system integration. High-quality, 
consistent data are essential, as these models depend heavily 

Figure 8: Temperature Predictions for Blind Test Data across Various Scenarios.

  

  

Figure 9: Pressure Predictions for Blind Test Data across Various Scenarios.
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Figure 10: Oil fl ow rate Predictions for Blind Test Data across Various Scenarios.

on accurate inputs for training and operation. However, 
fi eld data often contain gaps, noise, and inaccuracies due 
to equipment malfunctions or suboptimal data collection 
practices. Addressing these issues necessitates robust data 
preprocessing techniques to ensure model reliability. Another 
signifi cant challenge is the integration of AI models with 
existing pipeline monitoring systems, such as Supervisory 
Control and Data Acquisition (SCADA) systems. These systems 
are not typically designed for seamless integration with AI, 
which requires custom solutions like middleware or Application 
Programming Interfaces (APIs) to enable real-time data 
sharing and analysis. Additionally, computational constraints 
and the need for real-time processing capabilities can limit 
the models’ effectiveness. Implementing edge computing 
solutions to process data closer to the source can reduce latency 
and improve operational responsiveness, which is crucial 
for timely decision-making. Overcoming these challenges 
requires a comprehensive approach, including continuous 
model refi nement, system upgrades, and the training of 
personnel in AI-enhanced operations. This ensures that the 
AI models enhance, rather than disrupt, oil fi eld productivity 
and safety. By addressing data quality issues through advanced 
preprocessing and investing in integration and computational 
infrastructure, the deployment of AI models can be made 
more reliable and effective. The integration of AI-based smart 
proxy models holds signifi cant potential to enhance predictive 
accuracy and operational effi ciency within the oil and gas 
industry. This study demonstrates how substantial cost savings 
and accuracy improvements can support their widespread 
adoption. Continuous integration of real-time data ensures 
that models remain accurate and responsive, providing reliable 
insights for effective pipeline management. An incremental 
implementation strategy, starting with individual pipelines 
and expanding to complex networks, can increase reliability 
and enable comprehensive system predictions. Furthermore, 

refi ning feature engineering processes by capturing relevant 
parameters accurately and structuring data effectively can 
boost predictive capabilities. Involving domain experts in 
model validation and refi nement is essential to ensure the 
predictions remain accurate and contextually relevant across 
different operational conditions. Traditional statistical metrics 
such as R² and Mean Squared Error (MSE) can sometimes 
obscure deeper insights; therefore, visualizing model outputs 
helps highlight errors and understand model performance, 
allowing for a nuanced evaluation of predictive accuracy and 
robustness. By following these recommendations, the industry 
can achieve signifi cant improvements in operational effi ciency, 
cost reduction, and predictive accuracy. This will facilitate 
better decision-making and more effective management 
of hydrocarbon transportation infrastructures, setting new 
standards for pipeline management and fl ow assurance. 

Conclusion

This research demonstrates the signifi cant advancements 
achievable through the integration of AI-based smart proxy 
models for oil rate prediction and pipeline monitoring in 
the oil and gas industry. By leveraging MPFM and refi ning 
traditional simulation outputs, the dual-model approach 
showcased substantial improvements in predictive accuracy, 
computational effi ciency, operational effectiveness, and cost 
management. 

Model 1, which employed high-precision real-time MPFM 
data, demonstrated a strong correlation between predicted 
and actual oil rates, underscoring the model’s reliability and 
precision. This approach reduces dependency on extensive 
MPFM deployments by focusing on critical control points 
within the pipeline network, thereby achieving signifi cant cost 
savings without compromising measurement accuracy. Model 
2, which integrated traditional OLGA simulation outputs with 
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AI enhancements, addressed common issues such as high 
runtimes and numerical convergence problems. This model 
provided rapid and reliable insights into pipeline fl ow dynamics, 
signifi cantly enhancing the effi ciency of operational decision-
making processes. The ability to utilize OLGA output data as 
new input features when direct prediction was not feasible 
further highlighted the model’s versatility and robustness. The 
dual model approach not only enhanced localized precision 
through Model 1 but also extended analytical capabilities across 
the entire pipeline network through Model 2. This harmonized 
approach facilitates more informed and proactive management 
of pipeline operations, improving safety, reliability, and 
effi ciency. The integration of real-time measurements and 
advanced simulations sets new standards for fl ow assurance 
and pipeline management. 

Beyond oil rate prediction, the methodologies developed 
in this study have potential applications in other areas of the 
oil and gas industry, such as midstream projects and complex 
pipeline network design. The models’ ability to simulate 
various pipeline confi gurations and operational scenarios 
quickly and accurately supports effi cient and cost-effective 
pipeline network design and operation. 

This research successfully demonstrates the development 
and application of an AI-based dual-model approach for 
improving oil rate prediction and operational effi ciency 
in pipeline management. The models have proven their 
effectiveness based on the comprehensive dataset derived 
from the mentioned oil fi eld. Critically, the design of these 
models is not limited to specifi c datasets or fi eld conditions. 
Their fl exibility and modular architecture allow for easy 
adaptation and application to any other oil and gas fi eld. 
This scalability ensures that the approach can be universally 
applied, making it a valuable tool for the broader industry. 
Through the intelligent integration of real-time data and 
advanced simulation techniques, the models are trained to 
detect actual operational anomalies with high precision. After 
proper training and calibration against empirical data, these 
models can reliably identify discrepancies such as oil leakages 
by comparing actual and predicted results. Any signifi cant 
variations in pressure and oil rates are promptly fl agged as 
potential indications of leakage. This capability is especially 
critical in offshore pipeline operations, where rapid detection 
and response to such anomalies are challenging yet vital for 
environmental protection and operational safety. Moreover, 
the models excel in operational environments demanding quick 
responses, such as offshore settings, where environmental 
considerations are paramount. The speed and accuracy of our 
AI-based smart proxy models make them not only practical but 
also indispensable tools in the quest to enhance pipeline safety 
and effi ciency while minimizing environmental risks. 

In summary, the approach detailed in this study sets 
new benchmarks for predictive accuracy and operational 
responsiveness in the oil and gas industry. It underscores 
the potential of AI-driven technologies to transform pipeline 
management across diverse environments, offering a robust 
solution to one of the industry’s most pressing challenges. 
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