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Case Study

Temporal resolution/acuity and temporal integration/
summation are two forms of temporal processing of the 
auditory system [1]. Temporal resolution is the ability of 
a listener to discern auditory events and/or to recognize 
alterations in auditory events across time. Temporal integration 
refers to a listener’s capacity to integrate acoustic information 
to facilitate detection, recognition, and/or discrimination 
across time. One means of demonstrating temporal resolution 
ability is to have listeners identify speech in competing “time-
varying” maskers. When maskers are time-varied; listeners 
experience a perceptual benefi t or a “release from masking.” 
That is, speech recognition in these maskers expose an 
individual’s temporal resolving capacity to get "glimpses" 
or "looks" of speech in the gaps or modulations of noise and 
to piece the signal together for speech identifi cation [2-4]. 
Listeners with sensorineural hearing loss, however, show 
diminished release from masking compared to normal hearing 

individuals in competing interrupted broadband noise [5-12] 
and time-varying maskers of interrupted speech babble [13] 
and amplitude modulated noise [14-20].

Poorer performance of listeners with sensorineural hearing 
loss in time-varying maskers has been attributed to impaired 
high-frequency auditory channels, which has at least two 
broad consequences: The fi rst is stimuli presentation at a 
reduced level. This results in stronger temporal masking as 
forward masking recovery depends on the sensory response 
evoked by the masking stimulus. Sluggish recovery from 
temporal masking in the time-varying is found in, hearing 
-impaired individuals relative to normal-hearing listeners 
[21,22]. The second consequence is reduced peripheral listening 
bandwidth. There are two means of looking at available 
listening bandwidth limiting temporal resolution [11,23]. One is 
spectral. Listeners with hearing impairment are characterized 
with cochlear auditory fi lters in the impaired region that are 
broadened and insensitive and consequently more vulnerable 
to competing noise [1]. In addition, performance is hindered 

Abstract

Objective: To explore the hypothesis that a low-frequency hearing loss would not signifi cantly impair 
an individual’s auditory temporal resolution performance. 

Background: Listeners with high-frequency sensorineural hearing loss demonstrate poorer temporal 
resolution performance. This detriment has been attributed to the absence of high-frequency hearing. It is 
believed that functional hearing in these individuals is restricted to low-frequency auditory channels where 
temporal resolution, albeit normal, is characteristically poorer to that of the high-frequency channels. From 
this, one could hypothesize that a low-frequency hearing loss would not impair an individual’s temporal 
resolution if high-frequency auditory channels remain intact. 

Methods: A patient with a unilateral rising low-frequency hearing loss underwent a battery of temporal 
resolution tasks (i.e., recognition of time compressed and reverberated words and words in interrupted 
noise). Performance differences between the two ears of the adult were compared to each other and to 
normal controls. 

Results: No statistically signifi cant differences in word recognition performance in quiet or in time 
compression, reverberation, and noise were observed between the normal and impaired ear. There was also 
no difference between the impaired ear and that of normal-hearing controls. 

Conclusion: These fi ndings support the hypothesis that a restrictive listening bandwidth impairs 
temporal resolution only when high-frequency channels are lost.
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when part or all of the signal is inaudible [24-26]. A number 
of investigators have proposed, however, that audibility is 
not solely responsible for diminished release in masking with 
hearing-impaired listeners [14-17,27-28]. It has also been 
proposed that a bandwidth with reduced high-frequency 
audibility limits performance also in the temporal realm. That 
is, hearing-impaired individuals are at a disadvantage when it 
comes to temporal processing owing to a loss of functioning 
high-frequency peripheral auditory channels [23,25,29-31]. It 
is believed that hearing in these individuals is limited to low-
frequency auditory channels where temporal resolution albeit 
normal is characteristically poorer relative to high-frequency 
auditory channels. As a consequence performance on temporal 
resolution tasks is diminished in individuals with high-
frequency hearing loss relative to normal-hearing individuals. 

One way of showing the infl uence of restricted listening 
bandwidth on temporal resolving ability is to contrast listeners 
with simulated high-frequency impairment versus without. 
For example, Stuart, Phillips, and Green [32], mimicked a 
high-frequency hearing impairment with low-pass fi ltering 
(i.e., at 2000 Hz with a roll-off slope of 48 dB/octave) words in 
backgrounds of continuous and interrupted noise with varying 
signal-to-noise ratios (S/Ns) in normal-hearing adult listeners. 
In competing continuous noise, performance was equal with 
and without the simulated high-frequency loss. In competing 
interrupted noise, performance was signifi cantly poorer in 
the interrupted noise with the simulated hearing loss when 
compared to their performance without the simulated hearing 
loss. Stuart et al,. [32], argued the listener’s performance in 
both noises during simulated high-frequency loss could not be 
justifi ed by loss of signal audibility only. To wit, loss of high-
frequency auditory channels selectively impaired listeners 
in the interrupted noise only, a condition tasking temporal 
resolution. 

Scott, Green, and Stuart [33], also mimicked high-frequency 
hearing loss and examined word recognition in continuous and 
interrupted noises while S/N varied. Words were low-pass 
fi ltered (i.e., cutoff frequencies of 1000Hz, 1250Hz and 1500Hz) 
and presented in competing continuous and interrupted 
noise at three S/Ns (i.e., -10, 0, +10dB). Two main fi ndings 
were evident. First, word recognition performance improved 
with increasing low-pass cutoff frequency for both noises as 
expected due to the gain of spectral information with decreased 
fi ltering. More important, in the interrupted versus continuous 
noise, was an increase in the release from masking. That is, 
an advantage in the interrupted noise condition, relative to 
the continuous condition at equivalent S/Ns, was more with 
increasing low-pass cutoff frequency. In other words, as 
listening was progressively increased to the higher frequencies 
the perceptual advantage due to the temporal release of 
masking improved. 

Elangovan and Stuart [34], demonstrated the performance 
superiority observed in the interrupted versus continuous 
noise did not diminish with high-pass fi ltering simulating 
low-frequency hearing loss (i.e., release from masking in 
interrupted noise remained intact). They examined high-pass 
fi ltering at three different cutoff frequencies (i.e., 1000, 1250 

and 1500 Hz) to simulate low-frequency hearing impairment. 
Overall performance diminished in both noises with increasing 
restrictive fi ltering attributed to decreased audibility. However, 
the release of masking in the interrupted noise was preserved 
with high-pass fi ltering. They reported an average word 
recognition performance advantage of approximately 35% to 
40% at -10 S/N, and 35% at 0 S/N in the interrupted noise 
conditions over the continuous noise conditions, regardless 
of high-pass fi lter cutoff. They concluded that losing low-
frequency auditory channels does not signifi cantly impair 
temporal resolution abilities. 

The hypothesis, that impairment of low-frequency auditory 
channel functioning does not signifi cantly weaken temporal 
resolution, was explored in this study with an adult with a 
unilateral low-frequency hearing loss. It was maintained that 
performance on tasks of temporal resolution among hearing 
impaired listeners is not only governed by restrictive listening 
bandwidth but also where that loss of restrictive listening 
bandwidth is located. With a high-frequency hearing loss, 
temporal resolution task performance is hampered by the loss 
of audibility and a loss in temporal resolution from absent 
high-frequency auditory channels that have the best temporal 
resolution. Further, with a low-frequency hearing loss, the 
defi cit of low-frequency channels should not signifi cantly 
hinder an individual’s temporal resolution if undamaged high-
frequency channels remain. Performance differences between 
the two ears of the adult with the unilateral low-frequency 
hearing loss were compared to each other and normal-
hearing controls on three temporal resolution tasks. It was 
hypothesized that there should be no difference between the 
two ears neither of the adult participant nor with the control 
group of normal-hearing listeners. 

Method 

Patient 

A 23-year-old adult female was referred to the East 
Carolina University Speech Language and Hearing Clinic 
at for a suspected hearing loss on the left side following a 
failed hearing screening. Over two appointments she received 
a complete audiologic workup to rule out retrocochlear 
pathology. Her history was unremarkable with the exception 
noise exposure from loud music concerts, occasional tinnitus 
following such, and both maternal and paternal grandfathers 
presenting with amplifi cation use following adult acquire 
hearing loss (i.e., presbyacusis). She reported no complaints of 
listening diffi culty. 

Audiometric workup 

The test environment was a double wall sound-treated 
audiometric suite. The patient presented with normal hearing 
sensitivity on the right side defi ned as having pure-tone 
thresholds at octave and inter-octave frequencies from 250 
to 8000 Hz of ≤ 20 dB HL. Figure 1 illustrates her audiogram. 
Spondee recognition thresholds (SRTs) were consistent with 
three-frequency pure tone averages in the right and left ears 
(cf. 8 and 23 vs. 8.3 and 26.6, respectively). Word recognition 
was excellent in the right (98%) and left ear (96%). 
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Otoscopy was unremarkable bilaterally. Tympanometry 
indices of static admittance, tympanometric width, and 
equivalent ear canal volume were normal bilaterally [35]. 
Acoustic refl exes were present in the right ear and absent in 
the left with ipsilateral presentation of puretone stimuli from 
500 Hz to 4000 Hz in octave steps. Contralateral acoustic 
refl exes were absent with stimulation on the left side with pure 
tone activator stimuli of 500 and 1000 and elevated at 2000 and 
4000 Hz. Contralateral acoustic refl exes on the right side were 
present with pure tone activator stimuli of 500, 1000, 2000 
and 4000 Hz. Tone decay tests [36], were negative bilaterally 
with 500, 1000, and 2000 Hz pure tone stimuli. Absolute 
and interpeak auditory brainstem response wave latencies 
were within acceptable clinical normative data bilaterally 
with click stimuli presented at 90 dB nHL at rates of 7.7 and 
77.7/s. Wave V/I amplitude ratios were within acceptable limits 
bilaterally also. Interaural latency differences were minimal. 
Annual hearing assessment and hearing conservation was 
recommended to the patient. 

Following the audiometric workup, the patient was also 
referred to an ear, nose, and throat physician considering the 
previously undiagnosed unilateral hearing loss and unexplained 
air-bone gap on the left side at 250 Hz. The physician reported 
normal fi ndings but did recommend a limited magnetic 
resonance imaging study as a further precaution to rule out 
retrocochlear pathology on the left side. The patient was 
noncompliant with this recommendation and chose annual 
hearing assessment. 

Auditory temporal resolution assessment 

Auditory temporal resolution capacity was assessed with a 
battery of word recognition tests. It included word recognition 
in noise (continuous and interrupted) and word recognition 
with temporal distortions (i.e., time compression and 
reverberation). Test stimuli were played from a compact disc 
player (JVC Model XL-FZ258) via a clinical audiometer (Grason 
Stadler GSI 61 Model 1761-9780XXE) and insert earphones 
(Etymotic Research Model ER-3A). 

Stimuli were presented monaurally at 30 dB SL re the 
patient’s SRTs. 

Compact disc recordings of 50 monosyllabic word lists of 
the Northwestern University Auditory Test No. 6 (NU-6) served 
as the test stimuli. Compressed 45% and 65% NU-6 stimuli 
were obtained from the Tonal and Speech Materials for Auditory 
Perceptual Assessment, Disc 2.0 compact disc [37]. Uncompressed 
NU-6 stimuli were obtained from the Speech Recognition and 
Identifi cation Materials, Disc 1.1 compact disc [38]. The recorded 
stimuli were routed from the compact disc player through a 
multi-effect digital signal processor (DigiTech Model Studio 
400) to create reverberant listening. Reverberation times were 
1.75 and 2.25 s. Custom-made compact disc recordings of the 
NU-6 stimuli and competing noises were used to assess word 
recognition in competing noises at seven S/Ns [11,39]. Testing 
of ears and word recognition conditions were counterbalanced. 
S/N was counter balanced with a digram-balanced design [40], 
while NU-6 lists were Latin square design counterbalanced. 

Results 

The patient’s word recognition scores in noise are 
presented and those for time compression and reverberation 
are found in Figures 2 and 3, respectively. Two standard 
deviations (plus/minus) from the mean from a normative adult 
normal-hearing group (n = 12) are depicted with broken lines. 
Recall from above and plotted in Figure 3 are excellent word 
recognition performance (i.e., 98% and 96% for the right and 
left ear, respectively) in quiet (0.0s reverberation and 0% time 
compression). As expected, performance was superior in the 
interrupted noise, performance decreased with poorer S/N, and 
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Figure 1: The patient’s audiogram.
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Figure 2: Continuous and interrupted noise word recognition performance as a 
function of signal-to-noise ratio. Right and left ears are represented by circles and 
crosses, respectively. Plus/minus two standard deviations from the mean from a 
normative normal-hearing group (n = 12) are displayed with broken lines. 
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Figure 3: Reverberation and time compression word recognition performance as a 
function of time (s) and percent compression (%). Right and left ears are represented 
by circles and crosses, respectively. Plus/minus two standard deviations from the 
mean from a normative normalhearing group (n = 12) are displayed with broken 
lines.
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performance decreased with increasing reverberation and time 
compression. Performance was essentially within normal limits 
bilaterally. Most important is the observation that performance 
between ears is essentially equivalent. 

To assess statistically if differences between ears existed, 
critical differences were examined and applied for right and 
left ear comparisons [41,42]. A Bonferroni correction was 
undertaken to maintain a type I family-wise error of .05. A 
per comparison signifi cance level of  = .002 was therefore 
adopted. There were no signifi cant differences (p > 0.002) 
found in 19 comparisons between ears (i.e., one in quiet; two 
each in reverberation and time compression; and seven each in 
continuous and interrupted noise). 

Discussion 

The performance of this listener with unilateral hearing 
impairment was consistent with normal-hearing adult 
controls. This was true regardless of ear (i.e., normal or 
impaired) and whether word recognition performance was in 
quiet, noise, or with temporal alterations of time compression 
and reverberation. It is argued that fi ndings of this study 
and those from previous work support the notion that a 
restrictive listening bandwidth impairs temporal resolution 
only when high-frequency channels are lost (i.e., the temporal 
resolution capacity of high-frequency hearing channels are 
characteristically better than low-frequency channels). 

Stuart and colleagues have demonstrated listeners with 
high-frequency hearing impairment perform poorer than 
normal-hearing controls with this word recognition in noise 
paradigm [11,43]. This poorer performance is interpreted to 
refl ect some defi cit in temporal resolution in these hearing-
impaired listeners. The fact that listeners with noised-induced 
hearing impairment [9] and simulated high-frequency loss [32], 
performed signifi cantly poorer only in interrupted noise, and 
not in continuous noise compared to normal-hearing listeners, 
is in agreement with the notion that signal audibility loss 
alone is not responsible. Additional data supplied by simulated 
hearing loss supports the notion that a restrictive listening 
bandwidth may affect temporal resolution performance. Scott 
et al., [33], demonstrated with increasing loss of highfrequency 
channel information the overall advantage in interrupted 
noise (i.e., release from masking) progressively deteriorated. 
Elangovan and Stuart [34], saw the contrary with increasing 
loss of low-frequency channel information simulating low-
frequency hearing loss: the perceptual advantage in interrupted 
noise (i.e., the release from masking) was maintained with the 
restricted listening bandwidth. In other words, the Elangovan 
and Stuart [34], results and the present study imply that 
the defi cit of low-frequency auditory channels does not 
signifi cantly impair the temporal resolution to the extent that 
the loss of high-frequency auditory channels do. 

In stark contrast to this case study, Stuart and Carpenter 
[43], revealed a selective defi cit in auditory temporal resolution 
with an adult with a precipitous severe high-frequency 
unilateral hearing loss with the same battery of tests employed 
herein. Word recognition was excellent and not signifi cantly 

different between the normal and hearing impaired ears 
in quiet. Word recognition performance was, however, 
signifi cantly impaired in conditions of interrupted noise, 
reverberation, and time compression in the hearing-impaired 
ear relative to performance in the normal-hearing ear and that 
of normal-hearing controls. It was proposed that a restricted 
listening bandwidth was accountable in this case study in a 
detrimental way for the performance reduction on temporal 
resolution tests. 

It is suggested that utilization of temporal resolution 
tasks could be of benefi t in a clinical test battery. Such test 
battery may expose impairments that may not be detected in 
the presence of excellent word recognition in quiet. The use 
of interrupted noise as a competitor with monosyllabic stimuli 
is a viable alternative. Normative data is available for young 
normalhearing adults with NU-6 stimuli [11,32,39,44], older 
normal-hearing adults [11], preschool children [45] and school 
aged children [46]. Further, utilizing word recognition in 
time-varying backgrounds may help confi rm an individual’s 
complaint of diffi culties understanding speech in adverse 
listening conditions (i.e., reverberant and or fl uctuating noisy 
background conditions). 
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