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Introduction

The fi eld of Flexible Robotics has come out as a niche 
ensemble of harnessing non-linearity in dynamics of the 
robotic system(s) in the recent past, subsuming technological 
challenges. However, there are still open areas of research in 
various facets of understanding the in-situ vibration in fl exible 
robotic systems, especially with respect to the formation 
of the spiraling trajectories during real-time operation. A 
near-perfect analytical model involving fl exible / complaint 
dynamics of jointed frames is the foundation for successful 
real-time control of multi-degrees-of-freedom Flexible 
Robotic Systems (FRS) as well as Compact Compliant Robot 
(C2R). Many of the features and physics of motion of FRS & C2R 
fi nally get translated into a modifi ed variety of Assistive Robotics, 
comprising the emerging domain of Compliant Bio-inspired 
Robot (CBR) (e.g., rolling-type, crawling-type, swagging-tail 
type, etc.). Novel robotic structures from the FRS, C2R & CBR 
families necessarily have low mass and very high fl exibility, so 
we can consider the large displacement behavior of such ultra-

high fl exible multi-body systems during real-time modeling. 
This modeling is worth studying because of the successful 
prototyping of various pertinent robotic systems that undergo 
medium to large trembling under run-time conditions (often 
leading to instability) as well as modal vibrations with high 
eigen vectors. 

In spite of carrying an engineering boon of possessing 
very low tare-weight the prime shortcoming for the practical 
usability of FRS is essentially linked to the perpetual trembling 
of its constituent members as well as the end-of-arm 
tooling (gripper). The source of this inherent vibration can 
be attributed to the internal stress/strain; however, this very 
vibration is structure- independent as well as design-invariant. 
The signature of natural vibration of FRS is quantitatively 
ascertained through two facets, viz. modal frequency & Eigen 
value. We do observe chronological built-up of trembling of 
the slender links of FRS and at times, shaking of the link-
joint interface zone due to the multi-dimensionality of the 
workspace. The development of a working prototype of FRS is 
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instrumental in bringing out the issues pertaining to its ready 
deployment in several social & non-manufacturing sectors. 
However, indigenous fi rmware of FRS is often customized, 
in order to suit the requirement for indoor assistive services, 
e.g., patients and elderly persons. The facets of rheology 
(stress-strain paradigms), randomized vibration, sensory 
instrumentation, and non-linear coupled dynamics are some 
of the paradigms that need extended research in a synergistic 
way. 

In this paper, we will focus on two representative varieties 
of fl exible robots, one each from the FRS & C2R family, designed 
and developed with complete indigenous technology. In the 
course of the detailing, focused references will be made to the 
novel prior arts of prototypes of our earlier fl exible robots, 
developed chronologically in the past six years. We will refer to 
the eight indigenously-designed & developed FRS, with specifi c 
reference to the novel vibration harnessing mechanisms. 
Chronologically, the prototypes are titled as: 1] DDFR (Direct 
Drive Flexible Robot~https://youtu.be/9uNW_CERa0o); 2] 
FSFR-I (Flexible Shaft-driven Flexible Robot: Type I~ https://
youtu.be/oJcsYMLCxzk); 3] FSFR-II (Flexible Shaft-driven 
Flexible Robot: Type II~ https://youtu.be/P9-FrIKBBSM); 4] 
PAR (Patient Assistant Robot ~ https://www.youtube.com/
watch?v=Nwbt94E8Tds&t=98s); 5] FUMoR (Flexible Universal 
Modular Robot ~ https://youtu.be/liKWRwHfHVA); 6] Flex2R 
(Flexible Rotary-joint Robot); 7] SAIPAR (Sensor Augmented 
Intelligent Patient Assistant Robot) and 8] FlexFAR (Flexible 
Feeding Assistant Robot). While Flex2R is a completely 
manually-operated experimental robotic system, dedicated 
to the study of run-time vibration and its measure via force 
closure of grasp using a novel sensor-augmented miniaturized 
robotic gripper, DDFR & FUMoR are manufactured with direct-
drive transmission. The rest of the prototypes are actuated with 
a loop-through drive mechanism, namely via fl exible shaft(s). 
The last two prototypes (SAIPAR & FlexFAR) are at advanced 
stages of manufacturing. Out of these varieties of FRS, we will 
focus on FUMoR in this paper. 

In-line with the development of the FRS-family hardware, 
we will delineate the working prototype of a C2R and design 
insight for a miniature CBR. While the prototype C2R is aimed 
at grasping semi-soft objects within a very compact workspace 
(e.g. table-top), the design of CBR is conceptualized with 
the fundamentals of perpetuality of the rolling motion over 
planar surfaces. The perpetuality of motion has been ensured 
through the novel design of a cam-like structure, called, 
a retainer ring, that utilizes the kinetic energy generated out 
of dynamic friction with the ground surface. The designed 
CBR has a gradual decrement of the external envelope with a 
fi nal aim of deployment for internal inspection of co-planar 
pipelines of smaller orifi ces (~ 35 - 50 mm.). The study of 
inherent vibration for the tiny CBR as well as small-sized C2R 
needs subtle dynamic modeling in order to establish a robust 
control system algorithm, either under tethered or wireless 
communication. 

Prior to the design of multi-degrees-of-freedom FRS, we 
must have a foolproof dynamic model that is commensurate to 
the expected work-output of the system [1,2]. Thus, we need 

to consider quantitative metrics for vibration attenuation with 
the help of a dynamic model before the onset of the design 
for manufacturing FRS [3]. Extended modeling of the spring-
mass tuple has been found to be very effective in establishing 
a new dynamic model of FRS [4]. Several other poignant 
methodologies have been reported for the reduction of vibration 
and subsequent real-time control of the FRS [5-8]. We may 
appreciate that non-fi eld trials on the real-time performance 
of mono-link fl exible manipulators (mostly without gripper) 
have accurized a considerable momentum in the recent past. 
A majority of these fl exible manipulators have been used 
extensively to validate a variety of novel control strategies [9-
11]. Nonetheless, the grasp-based design of the multi-link FRS 
having near-compliant sub-assemblies as well as a miniature 
gripper, remains an open research domain to date.

We have investigated interesting scenarios of control 
dynamics for a multi-degrees-of-freedom FRS fi tted with a 
mini-gripper [12], aided by a novel spring-structural model 
(for vibration signature of both manipulator-links & gripper) 
and strain gauge-induced model (for dynamic strain signature).  
Firmware of a multi-link serial-chain FRS using fl exible shafts 
for drive motion of the joints has been developed by the author’s 
group [13]. The complete design set-up with modeling for real-
time vibration, as well as a beta version of the hardware for a 
slender serial-chain three degrees-of-freedom fl exible robot 
meant for patient assistance, is described by the author [14].

It may be stated that an experiment-based case-study of 
the performance of the FRS-gripper amidst in-situ vibration 
demands a synergistic coupling of two metrics: a] optimization 
of design parameters of the FRS-gripper and b] joint-space 
redundancy of a general serial-chain slender manipulator, 
such as FRS. Topology optimization-based modeling & novel 
hypotheses towards decision matrix for robotic grasp have 
been delineated [15]. On the other hand, a novel theory and 
analytical model for joint-space redundancy of the serial-chain 
slender manipulator is reported [16]. Based on these earlier 
accomplishments, a new theology on deformation & defl ection 
for the time-specifi c adjudgment of natural frequency of 
vibration will be presented here.  

Oscillation dynamics and subsequent control systems of 
single-link FRS have been investigated wherein only tip-mass 
was considered for the modeling (in lieu of an actual gripper) 
[17,18]. Damping characteristics of a single-link fl exible 
manipulator having non-linearity as well as its stabilization 
pattern with respect to a specifi ed output metric have also 
been reported [19]. On the other hand, various mode forms of 
the oscillation frequency of a planar multi-link lightweight 
manipulator with time-varying boundary conditions have 
been investigated [20]. As a matter of fact, contemporary 
research on the vibration dynamics of FRS took cognizance of 
two celebrated theories of mechanics, namely, Timoshenko 
Beam Theory and Euler Beam Theory. Timoshenko Beam 
theory addresses two major verticals so far as the deformation/
defl ection of engineering entities are concerned, namely: 
a] shear deformation and b] factors dealing with rotational 
bending. The dynamics of natural (free) vibration of a multi-
link fl exible manipulator was studied analytically using 
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Timoshenko Beam Theory [21-23]. It was reported by the 
researchers that the eigenvalue problem involving the in-
situ oscillation of a fl exible arm is nearly identical to the 
solution of a ‘beam’ equation. However, the instantaneous 
deformation dynamics of FRS are ideally a mixed combination 
of ‘beam defl ection’ and ‘shear deformation’. The lemma of 
shear deformation in a fl exible hub-beam system was studied, 
wherein it was observed that shear deformation varies with the 
ratio of the length-to-equivalent diameter of the ‘beam’ in a 
signifi cant manner [24]. Lyapunov and passivity techniques 
have been utilized in these works so as to migrate from a 
partial differential equation-based model to one that is more 
reliable and sturdy [25]. Besides modeling using a ‘beam’ 
confi guration, paradigms such as the effect of centrifugal forces 
and speed of trajectories have been considered for the dynamic 
modeling of FRS [26]. The non-linearity in the dynamic 
control of FRS was transformed into a linearized dynamic 
model using the Lagrange-Euler method and the same was 
applied to a multi-link fl exible manipulator after validation 
via trapezoidal driving torques of varying slopes but constant 
magnitudes [27]. The classical treatise on the computation 
of potential & kinetic energy element by element in order to 
construct the Lagrange equation for a multi-body dynamic 
system can be referred to in this context [28]. While one group 
of researchers used the well-known Lagrange-Euler-assumed 
mode technique [29], the other group concentrated on the 
modeling of constant curvature using the Euler-Lagrange 
formalism for a single-link manipulator [30], accepting the 
fact that the exact solution of the concerned dynamic equation 
might not exist always. However, another contemporary study 
reveals the insuffi ciency of Lagrange modeling which can lead 
to the possibility of developing a new dynamic model of an FRS 
utilizing appropriate workspace-specifi c mathematical tools 
[31]. Rao, et al. [32] aimed at solving the governing differential 
equations of the single-link fl exible manipulators using the 
Galerkin method, where the solution has been approximated 
by a polynomial function. The paradigms of dynamic modeling 
of a single-link fl exible manipulator with two cables have 
been reported also [33]. A new technique of dynamic analysis 
for real-time grasp synthesis of a robotic gripper has been 
postulated also [34]. 

It may be noted that the scaling parameters for any one 
of the models cited above, either run-time dynamics of the 
fl exible manipulator and/or its grip, are denoted as crisp 
values, which can be accurate or deterministic. However, the 
physical parameters that are associated with the vibration 
of FRS are often uncertain and as a natural consequence, we 
need to consider dynamic modeling that is based on interval 
or fuzzy mathematics. The concept of ‘Fuzzy Logic’ has 
transcended further research and has also provided a solution 
for many practical diffi culties in a variety of fi elds [35-39]. 
The applications of computational and fuzzy mathematics 
involving initial value problems have been addressed, which 
have much relevance to the dynamic modeling of multi-body 
systems [40,41].  The Eigenvalue problem in ‘the defl ection 
dynamics of ‘the beam’ has been solved both in the crisp 
case as well as by implementing fuzzy uncertainty [42-44]. 
Although many studies pertaining to modeling go with the 

Euler-Bernoulli equation, such as [45], we may conclude that 
governing differential equations and boundary conditions 
thereof lead to an eigenvalue problem irrespective of the 
methodology invoked for solving random vibration of FRS. 
Systematic comprehensive modeling of run-time vibration 
of a prototype single-link fl exible robot using a combined 
technique of Timoshemko Beam Theory and shear deformation 
has been reported by the author’s research group [46]. 

The paper has been organized into six sections. An overview 
of the fundamental modeling semantics of the perpetual 
vibration of serial-chain FRS is presented in the next section. 
Section 3 reports the paradigms of run-time vibration with 
inherent fl exibility, with illustration and physical prototypes 
built (FRS & C2R). The characteristics of the run-time data 
on vibration analysis and related modeling of the oscillatory 
behavior of the FRS are presented in section 4. Section 5 
addresses the preludes to the experimental investigation on 
run-time vibration of prototype fl exible robots and fi nally, 
section 6 concludes the paper.

Perpetual vibration of fl exible robots : modeling funda-
mentals

The most fundamental aspect of the real-time vibration of 
the fl exible robot is the instantaneous defl ection of its link(s) 
that can be quantifi ed through displacement vectors. This 
defl ection is assumed to be uniform and widespread inside the 
body of the link. In other words, the defl ection of the link is 
assumed to be homogeneous and uniformly distributed over 
the surface as well as inside the link-body. So, fundamentally, 
this run-time defl ection of FRS or C2R is very much an 
intrinsic property and it is highly dependent on the material of 
construction of the link. Of course, the stability of the link(s) 
of FRS or C2R post-vibration is always a technological issue 
that needs careful measurement of the stable defl ection values. 
Hence, at the nucleus of the analytical model supporting the 
vibration of FRS, we will study the vector analysis of the micro-
displacement of the ‘elements’ of the FRS link. This basic novel 
conceptual framework is represented schematically in Figures 
1a,b. 

The basic nature of the run-time defl ection of the FRS-link is 
highlighted in Figure 1a, wherein the link OA is getting displaced 
instantaneously to the position OB, with respect to the global / 
home reference frame [Xg Yg Zg]. The position vectors for points 

‘A’ & ‘B’ are respectively 0X


 & *X p


 in accordance with the 

zones of in-situ defl ection of the link, namely, ‘Ω’ & ‘Ω’. It is 
important to note here that there is no pre-assumed trajectory 
of this defl ection; rather we can’t predict this trajectory using 
mathematical tools a-priori. This is, in fact, the biggest irony 
for the design & run-time control of the fl exible robots. Thus, 

the very nature of the said trajectory, indexed by R


 needs to 

be ascertained only through repeated experimentations, using 
a range of ‘excitations’ (external force-functions). It is true 

that these three vectors ( ,0 *X X p
 

 & R


) may form a triad, 

which, at times, can be solved geometrically. However physical 
assessment of the defl ection can only be made via experimental 
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data. A large set of testings were reported on this facet by 
several research-groups and those do give a clear picture of the 
nature of this defl ection in quantitative terms. The schematic 
of Figure 1b essentially brings out this concept of experimental 
variation. We can observe that a representative cross-section 
of the FRS-link (at the zone Ω) is zoomed in to highlight the 
internal fi xed locations (the black dots) that undergo excitation 
by an external forcing function, ‘Pi’. In other words, all the 
elements inside a fi xed cross-section/zone of the FRS-link will 
undergo in-situ micro-deformation but the extents of such 
deformations are not similar all the time. The deformed state 
of the said cross-section has been demarcated by the zone 
Ω that contains the same internal elements but in deformed 
states. The curved line-segments of Figure 1b represents 
those unequal deformations of FRS-link at the element level. 
The modeling paradigms of the perpetual vibration of fl exible 
robots are highly dependent on the external excitation and 
the corresponding forcing function(s). Thus, we can assume 
that a separate forcing function, ‘P*j’ is acting over the other 
cross-section. This variational forcing function is the key to 
the detailed vibration study of the FRS subsequently. 

We shall now investigate another crucial aspect of the 
vibration model, namely, the Spring-Structural Model 
(SSM). The model has been conceptualized and expanded 
indigenously, with specifi c reference to serial-chain fl exible 
manipulators. Figure 2 illustrates the so-called longitudinal 
syntax of the in-situ defl ection of the FRS-link. We may note 
the presence of ‘lumped mass’ in Figure 2, which essentially 
symbolizes the mass of the specifi c cross-sectional area of the 
FRS-link. Nonetheless, this lumped mass can be extended to 
more than one cross-section as well, or in other words, the 
lumped mass is allowed to subsume a designated area of the 
FRS-link under study (for vibration). Here, the modeling of 
fl exibility has been proposed through a tri-junction, namely 
coupling of spring constant (KN), viscous damping coeffi cient 
(CN), and transient amplitude factor (TN). Hence, the quantum 
of the fi nal defl ection of the FRS-link will be governed by the 
numerical values of these three parameters. The proposed SSM 
is quite similar to Discrete Element Modeling (DEM) which 
defi nes the interaction of an assembly of ‘disks’ or ‘spheres’, 
using the proposition of a ‘chain of contacts’. Likewise, we 
have conceptualized SSM as the inter-zonal forcing function 
between the segmental links of the FRS.

It is also important to state that the concept of a semi-
stable datum in Figure 2 is largely imaginary unless the fl exible 
robot is mounted over a fi xed frame. For the sake of generality, 

we have visualized the SSM to be in slow rotation mode, i.e. the 
link(s) of the fl exible manipulator will be subjected to some 
twist or slow jerking (external excitation). It is interesting to 
note here that several cases of SSM may appear in the real-life 
operation of FUMoR, such as a] linear spring with non-linear 
dashpot; b] non-linear spring with linear dashpot, and c] non-
linear spring with non-linear dashpot.

In cases of FRS-prototypes with the standard design of 
links, run-time defl ection of such links was assumed small 
hitherto, so that the link transformation could be composed 
of summation of assumed link shapes. Thus, kinematics of 
both the rotary-joint motion and the link defl ection used to 
be described by usual 4 x 4 transformation matrices. This 
proposition might be valid for single-arm type FRS having the 
standard confi guration, as most of the hardware is made up of 
metallic materials, e.g. Mild Steel or Aluminium. Naturally, the 
‘quantum of defl ection’ in those single-link FRSs used to be 
negligible because of the structural rigidity; in fact, the major 
chunk of such defl ection could be sourced to the slenderness 
of the links only. That’s precisely why erstwhile researchers 
could afford to assume ‘small’ defl ections of the FRS-link(s).  
However, with the advent of a large variety of non-metallic 
materials (e.g. CFRP, ABS, Nylon), piggybacked with advanced 
manufacturing processes such as Rapid prototyping, we can no 
longer be able to assume ‘small’ defl ection(s) of FRS-link(s). 
In fact, run-time defl ections of these non-metallic links are 
substantial even at lower mode-shapes. In fact, traditional 
kinematic & dynamic models are somewhat simple and those 
can no longer be adequate to improve the grasp performance of 
the FRS in critical applications. Improvement in performance 
of the majority of the fl exible robotic systems does require the 
ability to model the system behavior with improved accuracy. 
While the foundation phase of research in FRS completely gets 
engulfed by the proposition of full linear dynamics (lumped 
mass & spring: a linear model of elasticity), later on, modeling 
for limited fl exibility was put forward using the lemma of 
limited distributed dynamics. True representation for modal 
frequencies and fl exibility thereof was brought in through planar 
non-linear model(s) that fi nally culminated into distributed 
frequency-domain analysis via truncated modal models of 
non-linear spatial dynamics. With this backdrop, new non-
linear equations of motion are developed for the arms of our 

Figure 1: Conceptual Framework of the In-situ Defl ection of the Link of Flexible 
Robot: [a] General View; [b] Intra-Link Assessment. 

Figure 2: Illustrative Schematic of the Longitudinal Syntax of In-situ Defl ection of a 
Serial-Chain Flexible Robot.
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FRS-prototypes, consisting of rotary joints that connect parts 
of the links. In our model, defl ection transformation is realized 
through a 4x4 transformation matrix, representing both joint 
as well as defl ected motion of the link-joint interfaces. The 
said defl ection transformation is mathematically represented 
in terms of the summation of ‘modal shapes’.  

Run-time vibration under inherent fl exibility

Customization of the design and fi rmware of higher-
order fl exible robots is highly challenging due to its inherent 
parameters related to run-time vibration. Although the 
design ensemble of serial-chain FRS has been refi ned over 
the years with novel research paradigms, it is still crucial to 
study the niche for perpetual vibration, especially in fl exible 
robots that have highly compliant links. In our endeavor of 
designing & prototyping various kinds of serial-chain FRS, we 
have observed that a fl exible robot with a gooseneck-styled 
slender link is dynamically more challenging than the same 
having a standard cross-section hollow cylindrical link. We 
made an experimental investigation towards ascertaining 
the most optimal cross-section of the FRS-link out of three 
possible alternatives, viz. circular, rectangular & square. 
Likewise, another crucial factor in judging run-time vibration 
is the ensemble morphology of the FRS-link: be it external or 
internal. While external metrics can be with varieties of links 
having either straight or tapered or stepped cross-sections, 
we can realize the physical hardware of the fl exible robot 
with two internal facets, viz., solid or hollow cross-sections. 
Naturally, the dynamics of FRS will alter signifi cantly as per 
the fi nalized design ensemble as discussed above. The other 
crucial parameter for vibration characterization is the material 
of fabrication of the FRS-link(s), which by & large, gets 
manifested through type of material (preferably non-metallic), 
density & Young’s Modulus. 

We have found from the chronological development of seven 
hardware of FRS that run-time vibration differs signifi cantly 
based on the joint paradigms. This facet will not be apparent for 
mono-link fl exible robots because joint dynamics is the least in 
such cases, except for the rotational motion of the base joint. In 
our fi rst prototype, christened as, ‘Direct-Drive Flexible Robot’ 
(DDFR), we have observed the infl uence of the mating pairs of 
the three revolute joints therein. Unlike the traditional way of 
fabricating revolute joints around a vertical axis, in DDFR we 
opted for revolute joints between two adjacent links in side-
by-side alignment. However, in our subsequent prototypes, 
namely, ‘Flexible Shaft-Driven Flexible Robots’ (FSFR-I & II) 
we used the vertical alignment of the revolute joints (refer: 
https://youtu.be/P9-FrIKBBSM). The run-time vibration gets 
heavily infl uenced by the joint sub-assembly that partakes 
link-joint interface as well. The concept of high-effi ciency 
revolute joint sub-assembly was used in a well-acclaimed 
prototype FRS of ours, namely, ‘Patient Assistant Robot–
Beta version’ (PARv1.0): its performance including vibration 
harnessing techniques can be viewed at: https://www.youtube.
com/watch?v=Nwbt94E8Tds&t=98s. In a nutshell, the design 
features of a typical revolute joint of FRS can be grouped on the 
basis of its type, mating pairs, alignment, and sub-assembly 
so far as vibration abetment is concerned. The other ancillary 

parameters that might have some infl uence over the harnessing 
of in-situ perpetual vibration of FRS are the drive mechanism 
and end-of-arm attachment. We have tried both types of drive 
mechanisms that are possible in FRS, viz. direct-to-joint (e.g. 
DDFR) and via fl exible shaft (e.g. FSFR-I, FSFR-II, PARv1.0). 
Flexible shaft-driven FRS is slightly robust so far as vibration 
attenuation is concerned and on the basis of this experience, 
we have fi nalized the design for manufacturing for our next 
two FRS-hardware, namely, Sensor-Augmented Intelligent 
Patient Assistant Robot: SAIPAR and Flexible Feeding Assistance 
Robot: FlexFAR, with multiple indigenously-manufactured 
fl exible shafts. Like the drive mechanism, we have also noticed 
moderate to heavy variation in vibration signature for FRS 
with different kinds of end-of-arm tooling, like tip-mass, 
miniature gripper & end-effector. 

The conceptual framework of the single-degree-of-
freedom fl exible robot with the slender gooseneck-styled 
fl exible link is illustrated in Figure 3a. The corresponding 
solid model through Computer Aided Design (CAD) is shown in 
Figure 3b. The mapping of the legends between the two fi gures 
may be noted.

It is crucial to note that the vibration and/or rheological 
features of the FRS do alter under two situations of end-of-
arm attachment, viz. end-/tip-mass vis-à-vis a mini-gripper 
(at the distal link of the FRS). With the advent of our expertise 
in prototyping multi-link FRS, we have brought in the concept 
of modularity in the hardware. The prototype development of 
the fl exible robot having CAD view as that shown above (Figure 
3b) has been accomplished with the coherence of prior arts and 
allied exposure through troubleshooting on earlier prototypes. 
Figure 4 presents the fi nal working-level prototype of the 
said fl exible robot, entitled, Flexible Universal Modular Robot 
(FUMoR). FUMoR is the fi rst on this kind of mono-link fl exible 
modular robot that uses a non-standard geometry of the link, 
namely, gooseneck-styled. The most pragmatic design aspect 
of FUMoRv1.0 is attributed to the gooseneck-styled link vis-à-
vis the standard confi guration of slender links of other types 
of FRS. The prototype FUMoR has one gooseneck link, one 
custom-built revolute joint, end-connectors & adapters for 
fi tting with the tripod base at one end, and a miniature gripper 
at the other end. The functionalities and grasp performance 
of FUMoR can be visualized at: https://youtu.be/liKWRwHfHVA

It is to be noted here that due to variation in the cross-
section of the gooseneck link of FUMoRv1.0, the spring-
dashpot model of vibration quantifi cation (Figure 2) in each 
‘segment’ of the gooseneck link will not be similar to one 
another. This dissimilarity in segments is essentially due to the 
variation in the profi le of the outer surface of the gooseneck 
link. In standard fl exible robots, e.g. DDFR, FSFR, and PAR 
we do not encounter this sort of variation in the profi le of the 
link. Although at times we can design for a tapered cross-
section of the FRS-link; that won’t alter the characteristics of 
the spring-dashpot model of run-time vibration. The gross 
nature of vibration of FUMoR is highly perpetual because of its 
inherent design and it can be explained pictorially through the 
schematic plot of Figure 5, in the form of perpetual cycles of 
oscillations (under external excitation). 
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From the operational aspect of the control system of FRS, 
we need to pay attention to two ensemble amplitudes, viz. a] 
the ‘fi nal’ amplitude of oscillation (after the grasp is over), 
i.e. {fi nal}

e and b] the ‘maximum’ amplitude of oscillation 
(occurring at any intermediate cycle, from the 1st. to the nth), 
i.e. {max}

e. We shall present the analytical lemma for these two 
amplitudes of oscillations in the next section.

The other important aspect of the spring-dashpot model is 
related to the inherent fl exibility in transverse/radial direction. 
This sort of fl exibility does arise in gooseneck-styled links due 
to the twisting nature of the material and /or manufacturing 
process. This twisting enhances the jerking in the system 
and it percolates into the infi nitesimal cross-sections of the 
link as well. This micro-variation of the cross-sections can 
be estimated theoretically through Independent Twin-Spring 
Architecture (ITSA). Figure 6 schematically illustrates the 
concept of ITSA, with reference to twisting cross-sections of 
FUMoR-link. 

It may be noted that different transverse planes, namely, A1-
A1’, A2-A2’,…., Aj-Aj’,…and fi nally, An-An’ have been constructed 

to segregate different cross-sections of the hollow tapered 
gooseneck link of FUMoR, as depicted in Figure 6 above. We 
can observe slight twisting with respect to the Newtonian 
Co-ordinates {X, Y, Z} in a few of these cross-sections and 
accordingly, local co-ordinates at each of these cross-sections 
(shown in red color in the diagram) bear the signature of the 
said twisting. Now, we need to be careful regarding the modeling 
of this twisting, which will get added to the natural vibration 
of the system. Since twisting the gooseneck link is a natural 
process, we will use the spring system model to showcase the 
vibration thereof. However, the so-called Omni directionality 
of the twist can only be modeled optimally through the 
conceptualization of two springs, working in quadrature. We 
have christened this novel model as: ‘Independent Twin-Spring 
Architecture’, which is entrusted to capture micro-vibrations 
in the gooseneck cross-sections. Theoretically speaking, ITSA 
can have different confi gurations as well, wherein the twin 
spring will have included an angle other than 900. Nonetheless, 
the conceptual framework of transverse fl exibility is ideal for 
modeling the vibration characteristics of FUMoR. Figure 7 
presents the ensemble disposition of transverse fl exibility. 

The criteria for selecting an appropriate model for the 
purpose of synthesizing the real-time vibration of FRS will thus 
be as follows: a] orientation of the cross-section with respect 
to the vertical axis or plane of vibration; b] defl ection of the 
cross-section with respect to the vertical axis and c] inherent 
fl exibility or elasticity in the radial direction. Out of these three 
criteria, we need to dwell more on ‘b’, namely the semantics 
of run-time defl ection of the cross-section, which has many 
interesting theoretical paradigms pertaining to oscillatory 
motions. In fact, the mathematical facets of such oscillations 
are universal to both FRS and C2R. The common thread for 
this modeling is the non-linear dynamics of the oscillatory 
system with or without the presence of damping. The ideation 
of boundedness of the dynamic equation and stability of the 
oscillatory system (FRS or C2R) are two vital aspects of such 
modeling. We will bring out the conceptual framework and 
novel modeling of this oscillatory motion, as applicable to our 
prototypes, in the next section. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Index: Ai: ith. Gooseneck Link; A*i: Deflected Posture of the ith. Link; B: Vertical Support (imaginary); C: Axis of the Base Joint (Revolute); 
DP: Pesudo Datum; DR: Real Datum; E: Gripper; F: Object being Grasped; G: Revolute Joint Assembly; h: Height of the Flexible Robot 
(undeformed posture); h’ : Height of the Flexible Robot (after deflection); I: Centre of Gravity of the Flexible Link; Ji: Rotation of the Base 
Joint (for ith. Link); Ki

j: jth. Imaginary Spring for the ith. Link; WL: Self-Weight of the Link; WP: Payload of the Gripper; Possture I: Original 
Stable Disposition of the Link; Posture II: Deflected Disposition of the Link (after attaining stability, post-vibration) 

Figure 3: Layout of Single Degree-of-Freedom Flexible Robot: [a] Schematic View; [b] 3D Solid Model (CAD) View.

Figure 4: Photographic View of the Working Prototype of Flexible Universal Modular 
Robot [“Namyomeet”].
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We will now study the prototype hardware of a novel C2R, 
which has been designed with two focused intentions, viz.: 
a] highly slender & low tare-weight links and b] adaption to 
multiple grippers having design variations in the jaws. Both 
of these objectives have been successfully accomplished 
through our novel hardware. Like FUMoR or for that matter 
any other FRS, perpetual vibration is a concern here too, which 
was studied in depth before the grasp. Figure 8 shows the 
photographic views of the prototype C2R in working postures 
using two different grippers for the grasp of a semi-soft object.

It is important to note that in all experiments with 
the prototype C2R selection of the rotational speed of the 
joint-motor(s) becomes instrumental so far as the proper 
functioning of the control system is concerned, amidst slow 
jerking/vibration of the system. Object manipulation (by the 

gripper-jaws) was carried out with a slow speed at the wrist, 
which is approximately 25% of the base rotation speed (~ 
3 - 4 rpm). We have also incorporated a time delay between 
every incremental angle of rotation so as to ensure jerk-
free movement of the wrist & gripper assembly during task 
execution. The customized program module has been made 
interactive in order to systemize multiple grippers. In order 
to combat the run-time vibration of the prototype C2R, two 
posture-driven strategies have been implemented in order 
to evolve an effective control strategy. This novel control 
semantics has become a boon for the prototype C2R, wherein 
objects are being grasped through two modes, namely: a] 
in-plane grasping and b] off-plane lifting. Both of these two 
strategies have been found to be very effective in minimizing 
the system trembling or run-time vibration. The real-time 
performance of this prototype C2R can be viewed at: https://
www.youtube.com/watch?v=lpkQ8JM1-rY and https://www.
youtube.com/watch?v=K6OZYSr-8pk.

Source identifi cation and characteristics of run-time 
data on vibration 

A] Towards identifi cation of source of vibration: Beam-
theory re-visited Contrary to the traditional proposition of 
non-linear analysis of in-situ defl ection of FRS or CBR, the 
alternate approximations towards solving the said transient 
Finite Element (FE) analysis involve the defi nition of a set 
of generalized deformation parameters, degenerated at the 

…

T: Time-period of oscillation; �� Ampliture of oscillation; e: Ensemble Amplitudes 

Cycle ‘i’  Cycle ‘(i+1)’  Cycle ‘(i+n)’  

Figure 5: Pictorial Representation of Perpetual Oscillations in FUMoR under Successive Cycles.

Independent Twin Spring 
Architecture 

Figure 6: Schematic of the Twisting Cross-sections of FUMoR and Relevance of ‘ITSA’.

Figure 7: Schematic of the Ensemble Layout of Transverse or Radial Mode of 
Flexibility.
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element level or the formulation of 3D degenerated beam 
elements. Another formulation in this context consists of 
deriving the ‘beam equation’ for the in-situ vibration directly 
from a 3D non-linear theory that accounts for ensemble 
fi nite rotations of the joints of the FRS or CBR.  Nonetheless, 
the solution of any 3D non-linear model necessarily calls for 
assumptions and therefore, we need to introduce approximate 
beam kinematics in the said dynamics model of vibration as 
assumptions. This transformed 3D non-linear theory with 
approximate beam kinematics leads to the so-called concept of 
‘Geometrically Exact Beam Theory (GEBT)’. New formulations 
of run-time dynamics for our prototype FRS & CBR have been 
achieved by successfully adapting the basic lemma of GEBT. 

It is prudent and computationally or scientifi cally perfect 
to employ an updated Lagrangian formulation for the said 
novel modeling using GEBT, wherein vibration-induced 
rotations of the fl exible/compliant systems are described as 
increments with respect to the previous confi guration. The 
resulting mathematical formulation becomes a set of Eulerian 
transformations with regard to the rotational degrees-of-
freedom of the specifi c fl exible system. Our novel mathematical 
formulae allow, on the other hand, a relatively simple 
derivation of fully linearized static and dynamic operators, but, 
on the other hand, these operators are non-symmetric in a 
general case of FRS or CBR. Nonetheless, ‘symmetry’ is shown 
to be recovered at equilibrium post-vibration so far as statics 
of the vibrating bodies are concerned, provided appropriate 
conditions of conservativity of external loads to these fl exible 
robots are respected. 

We have used the celebrated Euler-Bernoulli beam theory 
for the FE-based dynamic analysis of the prototype FUMoR. 
We have assumed that the end-displacement of the FRS, 
namely, that of the pair of jaws of the miniature gripper can be 
separated into two parts, respectively dependent on position 
and time as shown below:  

( , ) ( ). ( )w x t x x                  (1)

Where, w(x,t): overall displacement of the gripper-jaws;     
Ʌ(x): component of the displacement as a function of position 
and (t): component of the displacement as a function of time. 
The governing equation that was used for estimating these 
two components of displacement under FEA to ensure simple 
harmonic motion is presented below: 

4 2( ) 1 ( ) 2
4 2( ) ( )

EI x t

kA x tx t


   
  
 

   
                 (2)

Where, E: Young’s modulus of the material; I: Moment of 
inertia of the ‘beam’ (gripper-jaw / body); A: Cross-sectional 
area of the ‘beam’; k: Linear mass density of the ‘beam’ (= A; 
: material density); : Frequency of vibration of the ‘beam’. 
Now, segregation of the position variable of eqn. 2 will lead to 
the following FE-equation:

( ) ( ) ( ) ( ) ( )1 2 3 4x C Sinh x C Cosh x C Sin x C Cos x                          

                (3a) 

where, {C1,..C4} are constants and      

12 4A

EI

 
 

 
 
 

                              
                  (3b)

Likewise, we can get the following extraction of eqn. 2 for 
the time variable, as used in FE-analysis:

2 ( ) 2 ( ) 02
t

t
t


 

  


               (4)

The FE-analysis-based solution for eqn. 4 will be:

( ) ( ) ( )5 6t C Sin t C Cos t                   (5)

where, C5 and C6 are constants.

Finally, the combined FE-equation for the displacement of 
the gripper-jaw /body becomes:

( , ) ( 1 2 3

) { ( ) ( )}54 6

w x t C Sinh x C Cosh x C Sinh x

C Cosh x X C Sin t C Cos t

  

  

  

    
                  (6)

where, the constants {C1, C2, C3, C4} can be obtained from 

the boundary conditions and {C5, C6} are obtainable from the 

initial conditions under the FE-analysis.

The above formulation proves that an appropriate 
description of the fl exible members in many cases requires 
the use of ‘beam’ formalism that incorporates inherent non-
linear effects of the run-time vibration of such fl exible / 

 
 
 
 
 
 
 
 

Figure 8: Photographic Views of the Prototypes of Compact Compliant Robot Fitted with Two Different Grippers.
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complaint robotic gadgets in a systematic manner. ‘Geometric 
Stiffening’ is one such source of non-linearity that can be 
studied extensively in the case of FRS. Effective modeling of 
our prototype FRS was carried out by incorporating the theory 
of geometric stiffening. It is, therefore, essential to rely upon 
a tailor-made GEBT, which should have important kinematic 
assumptions, like i] the fl exible beam will be straight initially; 
ii] cross-sections of the beam remain in plane and do not 
deform during elastic deformation of the fl exible frame (unless 
it is a soft fl exible member); iii] the neutral axis of the fl exible 
beam undergoes shear deformation and iv] the rotational 
kinetic energy of the cross-sections is taken into account 
(especially true for CBR). In a nutshell, we need to consider 
the episodes of turn, twist, and defl ection of the segmented 
infi nitesimal cross-section(s) of the fl exible link/body/
member, by defi ning the coordinates of any arbitrary point 
inside the said infi nitesimal cross-section(s). It is important 
to note that the positional paradigm of any point inside the 
cross-section will have an additional vector component due to 
the inherent vibration of the FRS or at times, CBR. However, 
this additional vector will be manifested in those two Cartesian 
axes that are in quadrature to the third axis, representing the 
direction of in-plane as well as in-situ vibration. 

B] Run-time vibration: Novel paradigm of oscillatory 
spirals Let us now take a re-look over eqn. 6 from a slightly 
different perspective. The displacement equation, so model, 
can also have another incarnation that symbolizes the 
oscillatory behavior of the FRS or C2R. This analysis is more 
akin to constructing the fi rst recurrence map (Poincare Map) 
of the continuous dynamical system having a specifi c lower 
dimensional subspace that matches well with the perpetual 
oscillation of the FRS in real time. Irrespective of the design 
of such FRS or C2R, recurrence maps can be generated for any 
type of fl exible/compliant robotic system: be it with the single-
link system (like FUMoR) or with multiple degrees of freedom. 
Traditionally, recurrence maps are used to ascertain the stability 
or boundedness of the dynamic system and in most practical 
situations we compare such maps, such as displacement versus 
velocity plots or plots with displacements in two quadrature 
axes.  In cases of FRS or C2R, the said recurrence nap takes 
the shape of a ‘basic spiral’ that recreates itself as the time of 
operation progresses. The locus of this special is the root cause 
of the oscillation. Figure 9 schematically illustrates the concept 
of basic spiral in reference to the oscillatory motion of the FRS-
links / gripper and body-segments of C2R, post-defl ection. The 
spiral is plotted as the instantaneous variation of oscillatory 
velocity with respect to the distance from the neutral axis of 
the FRS-link. The pattern of the said spiral is typical in the case 
of forced vibration without damping. 

The nucleus of any oscillatory motion of FRS or C2R is the 
incipient deformation and subsequent defl ection of the neutral 
axis of the link of such a fl exible system. This deformation 
can take place in two predominant pathways; out of which 
one incarnation is illustrated in Figure 9a that is typical of 
FUMoR. The representative link of FUMoR is shown in the 
Figure: under the ‘underformed’ as well as ‘deformed’ state. 
The ‘double buldge’ of the neutral axis may be noted, which 

is the characteristic feature of a gooseneck-styled link. The 
analytical framework of this double buldge type deformation of 
the neutral axis is explained through the formation of a ‘basic 
spiral’ as shown in Figure 9b. The basic spiral is plotted as a 
variation of oscillatory velocity ( x ) versus the magnitude of 
the defl ection (measured as the distance from the neutral axis 
of the fl exible link: x) in real-time. The spiral starts from ‘A’, 
which is a representative point on the lowermost fi ber of the 
fl exible link, symbolizing a negative distance from the neutral 
axis (say, -xA). The oscillation starts setting in along the curved 
pathway (AE) and attains the maiden oscillatory velocity (+ve) 
at ‘E’ (say, E Ex ), corresponding to a location ‘B’ on the neutral 
axis where x = 0. The oscillation sets in now and the basic spiral 
traverses through location ‘C’, symbolizing the uppermost 
fi ber of the fl exible link. Incidentally, locations ‘A’ & ‘C’ are 
equidistant from the neutral axis, or in other words, |-xA| = 
|xC|. As the oscillatory motion passes over ‘C’ and moves 
again towards the upper-side of the neutral axis it attains an 
oscillatory velocity in the reverse direction at ‘E*’ (say, - E*x
). This pattern continues till ‘D’, which is again on the neutral 
axis (x = 0); however, jerky oscillation begins along the curved 
pathway DF. The fl exible link attains a positive jerky oscillation 
velocity at ‘F’ (say, Fx : numerically, |BF|) that subsequently 
becomes the gateway of the full-fl edged oscillatory velocity of 
the fl exible link with vigorous vibration as time progresses. 
This pathway is nearly exponential; with a generic marker ‘G’ 
that signifi es substantial vibrational amplitude, as the system 
does not have any viscous damping. 

It may be noted here that the natural frequency of vibration 
of the fl exible link/system is directly proportional to the run-
time oscillatory acceleration. The theoretical estimation of the 
pattern of such acceleration can be deduced from the basic spiral 
(Figure 9b). We assume linear oscillatory acceleration here that 
follows an approximately straight line at some sectors of the 
basic spiral. However, the full-fl edged vibration, especially 
under undamped conditions, will have exponential growth of 
the oscillatory acceleration. Figure 10 analytically depicts the 
basic sprial for the oscillatory acceleration of the fl exible link. As 
illustrated in Figure 9b, the pattern of the oscillatory acceleration  
( x ) in Figure 10 remains approximately the same, except AE & 
DF sectors. While AE signifi es maiden oscillatory acceleration 
(+ve), DF represents the same under jerky conditions, prior to 
the setting of vigorous oscillation. Analytically, at ‘B’: x = 0 
but x  ≠ 0, bearing two values, viz. Ex  and - E*x . Likewise, at 
locations ‘A’, ‘C’ & ‘D’:   x= 0 although numerical values for 
xA, xC & xD are non-zero fi nite. As explained earlier, these three 
points and also ‘B’ are representative locations in the fl exible 
link fi ber, namely on the neutral axis (point ‘B’), uppermost 
fi ber (point ‘C’), and lowermost fi ber (points ‘A’ & ‘D’). The 
reason for adopting a curved pathway in three sectors, viz. EC, 
CE* & E*D to characterize the fast progress of the oscillation, 
especially during the gripping phenomena by FUMoR.  

Although the basic spirals of Figures 9b,10 are celebrated, 
there can be two more types of advanced spirals that represent 
the run-time oscillation of FRS or C2R in practical applications 
of robotized gripping. These advanced models for studying the 
oscillation behavior involve non-linear spring equations in 
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order to attain stability during the robotic grasp. We will use 
the concept of a recurrence map to ascertain the boundedness 
of the solution of the dynamic equation of the FRS or C2R. 
We have modeled such a dynamic equation of motion in two 
verticals, viz. i] forced vibration: without considering any in-
situ damping & ii] forced vibration: in the active presence of 
viscous damping. The novel dynamic equations of oscillatory 
motion of the fl exible system are proposed respectively (in 
cases of without and with damping in generalized form) as 
follows:

. ( ) ( )nmx kx x FCos t or FSin t                 (7)

and,

. ( ) ( )nmx cx kx x FCos t or FSin t                   (8)

where, 

m: equivalent mass of the fl exible system; x: displacement 
of the non-linear spring system k: spring constant of the virtual 
spring; F: amplitude of the external forcing function (cosine or 

sine); c: coeffi cient of viscous damping;  ,  coeffi cients of non-
linearity in respective cases of the system with and without 
viscous damping;

x : acceleration of the spring system; x : velocity of the 

spring system; n: exponent of non-linearity; : angular 
velocity of rotation of the spring -mass system; t: time-period 
of oscillation.

The oscillatory nature of the fl exible system (FRS or C2R) 
under these two cases of non-linear forced excitation can be 
modeled using two spirals, as depicted in Figures 11,12 below. 
We can observe the increasing number of spirals and ensemble 
exponential curves in these plots, due to the combined effect 
of ‘’, ‘’ & ‘n’. Essentially these two spirals signify the 
‘unbounded trajectories’ of the oscillation and related velocity 
and/or acceleration vectors in the plane of defl ection of the 
FRS. In other words, a specifi c trajectory may wind around the 
origin several times depending upon the severity of the forced 
vibration due to external impulse, but eventually, the trajectory 
takes off in an unbounded form that appears to be near-
exponential. The nature of the spirals compels us to go for a 

 
  

Neutral Axis 
(undeformed) 

Neutral Axis [deformed]   
(Double Buldge) 

POSTU

FLEXIBLE LINK 

’DOUBLE BULDGE’ type  
Deformation of Neutral Axis 

Figure 9: Schematics of the Oscillatory Motion of a Flexible Link: [a] Deformation of Neutral Axis [b] Basic Spiral.

 At points A,C & D:: 
x ≠ 0   but �  = 0 

X: Distance from the 
neutral axis of FRS-link 

Maiden Oscillatory 
Acceleration (+ve) 

Jerky Oscillatory 
Acceleration (+ve) 

Maiden Oscillatory 
Acceleration (-ve) 

Full-fledged Oscillatory 
Acceleration Pathway (+ve) 

At point ‘B’:: x=0  
but  �  ≠ 0 

Figure 10: Schematic of the Oscillatory Acceleration of the Flexible Link as part of the Basic Spiral Motion.
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numerical solution of the oscillation velocity and acceleration 
because analytical or closed-form solutions to these non-
linearities can’t be obtained. However, an analytical solution to 
the basic spiral can be attempted through ordinary differential 
equations, baring non-linearity effects. We will delineate the 
analytical treatments for the basic sprial and perpetual spirals 
of oscillation for our FRS & C2R prototypes later in this section.

While analyzing the spirals in case of external forced 
excitation without damping of Figure 11, we can clearly 
observe a vivid zone of successive spirals, namely the planar 
zone inscribed by HIJF*H, which means all the other specials, 
containing the points A, B, C, D, E, F, E*, G & H are inside this 
zone. We can also observe that by virtue of the characteristics 

of the basic spiral (Figures 9b,10), at ‘B’ although x = 0. its fi rst 
derivative is non-zero (can be either +ve or –ve, depending 
upon the nature of oscillation). On the other hand, at points A, 
C, D, H, G & J we have zero velocity of vibration, despite these 
locations being at fi nite distances from the neutral axis of the 
FRS-link. As the maiden oscillation sets in by the principle of 
motion under a basic spiral, jerky oscillatory velocity steps up in 
either direction with respect to the neutral axis. This gives +ve 
and –ve velocity vectors along the curved paths of DF, HI, E*H, 
FG, GF* & F*H.

However, the most interesting feature of this oscillatory 
motion happens at ‘J’, once the vibration becomes a heavy 
jerky motion. The oscillation suddenly picks up substantially 

At points A, C, D, H, G & J:: 
x ≠ 0   but  �  = 0 

X: Distance from the 
neutral axis of FRS-link

Very high Oscillatory 
Velocity (+ve) 

Jerky Oscillatory
Velocity (+ve) 

Ω HIJF*H :  Zone of Successive Spirals  

Full-fledged Oscillatory 
Velocity Pathway (+ve) 

At point ‘B’:: x = 0   
         but  �≠ 0 

Full-fledged Oscillatory 
Velocity Pathway (-ve) 

Very high Oscillatory 
Velocity (-ve) 

Figure 11: Analytical Model of the Oscillatory Vibration of the Flexible Link under Forced Excitation without Damping.

 

Ω HIJKLF*H :  Zone of Successive Spirals  

At points A, C, D, H, G , K*& L:: 
x ≠ 0   but  �  = 0 

X: Distance from the 
neutral axis of FRS-link 

Very high Oscillatory 
Velocity (+ve) 

Jerky Oscillatory 
Velocity (+ve) 

Full-fledged Oscillatory 
Velocity Pathway (+ve) 

At point ‘B’:: x = 0   
but  �    ≠ 0 

Full-fledged Oscillatory 
Velocity Pathway (-ve) 

Very high Oscillatory 
Velocity (-ve) 

Figure 12: Analytical Model of the Oscillatory Vibration of the Flexible Link under Forced Excitation with Damping.
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and grows linearly with a very high gradient in two divergent 
pathways, namely JK & JL. These two pathways symbolize 
full-fl edged oscillatory velocity vectors, both in +ve and –ve 
directions with respect to the neutral axis. The magnitude of 
this ‘very high’ oscillatory velocity can be judged with respect 
to an arbitrary point ‘M’ on the neutral axis. This means after 
a fi nite time-period of initial jerky motions, the vibration 
becomes extremely severe and it engulfs every portion of the 
FRS-link, including the neutral axis. This rapid increase in the 
oscillation along JL & JK pathways (after a momentary pause 
at ‘J’) signifi es modal vibrations. Thus, the unbounded zone, 
immediately after the point ‘J’ on the neutral axis along the 
+ve ‘x’ is termed the ‘zone of perpetual vibration’. 

In contrast to the analytical lemma of Figure 11, we defi ne 
a slightly different form of cascading spirals when damping 
is allowed in the modeling. Figure 12 pictorially explains the 
situation of oscillatory vibration of the fl exible link due to the 
presence of an external forcing function with viscous damping.

In the case of external forced vibration-induced oscillatory 
motion of the FRS-link under the infl uence of viscous 
damping, as shown in Figure 12, let us take a close look at the 
nature of successive spirals. The zone of successive spirals, viz. 
HIJKLF*H has non-standardness at two locations, namely: at 
the IJ section and at the KK* subsumed section.  While at the 
IJ section, the spiral separates out through the JOM pathway 
by tracing a near-exponential curve, it leaves the remaining 
part JK section as residue. But interestingly KK* subsumed 
section provokes the sprial to trace out high-gradient descent 
along the KLN pathway. This smooth shift of trajectories along 
two divergent pathways (JOM & KLN) is the effect of viscous 
damping, which cools down the jerkiness of the oscillation to a 
substantial extent. Accordingly, the curved pathway of IJOM is 
the effective culmination of damping in the FRS-body in real-
time operation of the system. 

C] Analytical lemma of the oscillatory spirals: Let us focus 
on the analytical aspects of the oscillatory spirals of the fl exible 

robotic members. Taking the clue from the ‘basic spiral’ of 
Figure 9b, we can observe that fundamentally the built-in 
pattern of these spirals (Figures 11,12) is different from the 
traditional archimedan or logarithmic spirals. In other words, 
composition-wise this pattern is not truly of mathematical 
spirals; the physical interpretation of these spirals can be 
attributed to that of a whirlwind. Thus, close observation of 
Figure 11 reveals that the ensemble pattern is composed of three 
units, namely: i] Outermost spiral: HIJF*H; ii] Inner spirals: 
AECE*DFGF* and iii] Straight lines: JL & JK. This grouping of 
the constituent curves is shown geometrically in Figure 13, 
highlighting the major measurands in terms of the spread of 
the locations along the neutral axis of the FRS-link. 

By virtue of the pattern, we have assumed the Cartesian 
origin of measurement at point ‘B’ [i.e. (0,0)] and fi tted ellipse 
as the basic curve for [i] & [ii] and usual equation for the 
straight line for [iii] as detailed below:

Case [i]: Outermost spiral:

22 2 22 2 2 21 . . .2 2
xx s x x x xs n n
xn

 


    


  


           (9)

Where, x: linear distance of any arbitrary location of the 
FRS-link from its neutral axis; sx : oscillatory velocity of a 
constituent fi ber of the FRS-link (during spiral formation) 
at a specifi c time-instant; : maximum linear spread of the 
outermost spiral from the neutral axis before vigorous vibration 
creeps in; nx : maximum oscillatory velocity of the outermost 
(nth.) spiral at a specifi c time-instant. 

Case [ii]: Inner spirals:

22
2 2 2 2 2 4 21 tan . . tan ;2 2( tan )

{ , ..... .}1 2

xx s r x r x rs
r r

where x x x etcs n n

 


    

  




  

 
       
                             (10)

Figure 13: Zonal Measurands of the Constituent Curves under Representative Oscillatory Vibration of the Flexible Link.
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where, r: variable linear spreadsof the inner spirals, n 
terms of longitudinal distances from the neutral axis of the 
FRS-link; : angular measure of the oscillation velocities at 
various spirals; n: total number of inner spirals. The other 

two variables, viz. ‘x’ & sx have the same meaning as detailed 

under eqn. 9. The peak oscillatory velocities at various inner 
spirals (corresponding to different values of ‘n’) are indexed as 

1 2,n nx x   ,…., assuming gradual progress/ascent of the jitter. 

Case [iii]: Straight lines:

We consider an imaginary point on the straight line pathway 

of the oscillation curve having Cartesian ordinate of x

Accordingly, the following equation can be deduced from 
the geometry:

tan .xx
x x

 
 






  
     


            (11) 

    

These analytical facets will help in pinpointing the vibration 
measures in absolute terms from a theoretical perspective. 
The mathematical treatment toward the graphical assessment 
of oscillatory velocities at various junctures of the vibration 
will be useful for the a-priori estimation of the probable jitter 
during the robotic grasp.

D] Novel formulation of non-linear oscillatory dynamics: 
In accordance with the analytical formulations stated above, 
let us look back over eqns. 7 & 8, wherein we can virtually 
segregate the linearized dynamic expression for the oscillation 
of FRS-link from the unbounded phase of the same. The 
bounded format of such subsumed dynamic equation of in-
situ random vibration will always lead to geometric curves 
(repeated combination of sine & cosine under time vs. defl ection 
plot) as per the solution of the second-order Ordinary 
Differential Equation (ODE). The ‘defl ection’ values of the said 
plot are the amplitudes of oscillation frequency that represent 
the natural vibration (fundamental & modal) of the system, 

. 0viz mx kx      

It may be mentioned that the non-linearity of the run-
time vibration creeps into the system rather slowly but it 
literally engulfs the entire plane of vibration with unbounded 
trajectories within a short time period. We have observed the 
pattern of this unboundedness in the plots of oscillation velocity 
& oscillatory accelerations, vide Figures 11,12. In an extension 
of these two plots, the concept of unbounded solution of the 
oscillation is illustrated in the characteristic curve of time vs. 
amplitude of vibration (‘t’ vs. ‘X’) in Figure 14 below.

As can be seen from Figure 14, ideally the oscillation will be 
bounded by the upper & lower limit lines of oscillation, viz. AA* 
& BB* for the linear dynamic equation. However, in the case 
of non-linearity, the curve deviates from the usual geometric 
nature and follows unscheduled behavior. This can be viewed 
through the curved pathway of the amplitude, namely 
‘abcdefghij’. We can also observe that while vertices ‘b’, ‘c’, and 

d’ are somewhat bounded by the limit lines, the non-linear 
dynamics get triggered off at ‘f’ & ‘i’, symbolizing the onset of 
jerky vibration. All of these happenings are realized completely 
under the natural condition of operation of the robotic system. 
As a matter of fact, we have observed a natural non-linearity 
effect in the case of FUMoR during trials of its run and especially, 
during experimentations on grasp. The analytical form of this 
non-linearity is nothing but the incorporation of a non-linear 
spring model in the system dynamics. This natural or sort of 
‘inherent’ non-linearity in the dynamics in case of run-time 
operation of FUMoR (without considering viscous damping) 
can be expressed mathematically as enumerated below:

0mx kx nx


                   (12)

As can be seen from eqn. 12, the effect of the exponent ‘n’ is 
minimal (being in the denominator), unlike that in eqns. 7 & 8. 
However, it is interesting to note that theoretically there can be 
four combinations possible and all those can be representative 
of the run-time dynamics for different prototypes of the FRS 
or C2R. With reference to the system dynamics of eqns. 7 & 8, 
these combinations are: i] for .xn::  ‘’  can be  +ve or –ve; ii] 
for .xn:: ‘n’ can be +ve or –ve; iii] for .xn:: ‘’ can be +ve or –ve 
and iv] for  .xn:: ‘n’ can be +ve or –ve. Nonetheless, eqns. 7 & 8 
will have transcendental solutions, which can be tricky for any 
analytical procedure subsequently. Hence, if we consider ‘x-n 
‘for the dynamic modeling of FUMoR [under case (ii) above], 
the effect of non-linearity can be small (refer eqn. 12). It may 
be noted that this marginal non-linearity appears in FUMoR 
because of its single-link structure. This small quantum of 
non-linearity can be taken as ‘constant’ for ease of analytical 
lemma via the solution of the corresponding ODE. Accordingly, 
we can recast eqn. 12 as:

1
0 ( . ) 0,1 1mx x k mx x k wheren nx x


          

 
 
 

 
 

                     (13)

Since xn+1 > xn, numerically (1/xn+1) is indeed very small so far 
as the solution of the ODE of eqn. 13 is concerned. Thus, it can 
be rearranged algebraically and considered as ‘constant (T)’ for 
all practical purposes, so far as the study on the variation of ‘x’ 

AA* & BB*: Limit Lines of Oscillation  
(for Linear Dynamic Eqn.) 

Onset of Non-linear Dynamics   

Figure 14: Characteristic Curve of Time versus Amplitude of Vibration Plot with 
Built-in Non-linearity.
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and ‘t’ is concerned. The root locus analysis of eqn. 13 reveals 
the analytical expressions for the amplitude & phase angle of 
the fundamental natural frequency of vibration of the system 
(‘n_f’ & ‘’) as:

0 0 4. .( . ) ( ) ( )
_ _2

m k k k
n f n fm m m

  
 

        
      

               (14a)

1 1tan 4 ( ) tan 2 ( )m k m k                 (14b)

Equation 14a brings out the fact that the unbounded natural 
frequency of vibration (i.e. in case of non-linearity) is always 
much higher than the corresponding natural frequency under 
the bounded case, which is (k/m)1/2. Likewise, the variation in 
phase angle is also large comparatively for unbounded case, 
because ‘tan ’ is an increasing function, and numerically, the 
‘tangent’ of the phase angle of natural vibration is ‘2(k.m)1/2’ 
(refer eqn. 14b).

Let us now expound on the analytical lemma of the 
defl ection due to vibration of the FRS-link, namely, ‘x(t)’, both 
under bounded (linear) as well as unbounded (non-linear) 
thresholds. We will investigate our cases considering the non-
linear spring model (with and without damping) for both free 
and forced vibration. The standard equation for ‘x(t)’ in the case 
of free vibration without damping with a linear spring model 
will be the template for our lemma. We know that the solution 
for ‘x(t)’ for the template case along with its ODE is given by:

0 ( )
k k

mx kx x t ASin t BCos t
m m

                 (15)

Where, the natural frequency of vibration (n) is numerically 
equal to (k/m)1/2 and {A, B} are constants that can be evaluated 
from the boundary conditions posterior. In line with the 
solution of ‘x(t)’ as per eqn. 15 the next step of our synthesis 
will take care of free vibration with a non-linear spring model 
(without damping) as per eqns. 12 & 13. The nonlinear equation 
of motion of this kind is solved by the Modifi ed Lindstedt 
Poincare Method (MLPM) by numerical method. However, no 

attempt has been made yet to solve this equation analytically. 
With the approximation proposed in eqn. 13, we have attempted 
the analytical near-optimal solution for ‘x(t)’ as shown below 
(along with its ODE):

. .
. 0 ( )

k knmx kx x x t ASin t BCos t
m m

 


        
 

                  (16)

Figure 15 shows the general pattern of defl ection (‘X’) 
versus time (‘t’) plot of the oscillatory non-linear motion of 
the robotic system. This pattern will get slightly modifi ed if the 
vibration is forced (externally excited) or if the system is under 
viscous damping. It may be noted that the boundary pattern 
of the plot is analogous to that of Figures 11,12 with an overall 
increasing trend for the amplitude of oscillation. This is quite 
natural because both the oscillatory velocity & acceleration 
have a spiraling effect of jerking with a gradual progression 
of vibration.

The characteristic pattern of the above plot indicates two 
distinct ‘zones’, through which ensemble oscillation of the 
robotic system (e.g. prototype FUMoR) gets manifested. These 
two zones have virtual boundary curves along +ve and –ve 
directions of ‘X’, which are essentially the ‘Non-Linear Bounds’ 
(NLB). We have a total of four NLBs in the plot, separated into 
the said two zones. The fi rst zone from the left-hand side 
(ZONE1), symbolizing the onset of jerky oscillations is coined 
as, the ‘zone of Elliptical Spirals’ because the corresponding 
oscillation velocities of the robotic system are consecutive 
elliptical spirals (Figure 11). There a saddle point immediately 
after zone1, which is approximately analogous to point ‘J’ 
in Figures 11,13 and point ‘L’ in Figure 12. The other zone 
(ZONE2), symbolizing vigorous oscillation of the robotic system 
especially during grasping, is coined as, the ‘zone of Exponential 
Ascent’ because the corresponding oscillation velocities, as well 
as oscillatory accelerations, have steep ascent that is analogous 
to the lines JK & JL in Figures 11,13 and lines LM & LN in Figure 
12. The approximate numerical evaluation of the amplitude 
of this ensemble vibration and its phase angle can be made 
through the fi tting of experimental data in eqns. 14b & 16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Non-Linear Bounds

Non-Linear Bounds

ZONE1: Elliptical Spirals ZONE2 Exponential Ascent

Figure 15: General Pattern of Defl ection verusTime Plot of the Oscillatory Non-linear Motion of the Robotic System.
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The fundamental frequency as well as phase angle of the 
free vibration of FRS-link, following the non-linear equation 
of motion under the effect of viscous damping can be evaluated 
as per the model proposed below:

 

24( )
. 0 ;_ 2

1 2tan 4( )

k m cnmx cx kx x d f m

k m c


 

 

       

   

 

 
       
                            (17)

where ‘c’ is the coeffi cient of viscous damping. The ODE of 
eqn. 17 is analogous to eqn. 8.

We have modeled the analytical near-optimal solution for 
‘x(t)’ via the non-linear dynamic equation of motion under 
viscous damping as shown below (along with its ODE):

/2. 0 ( )

2 24( ) 4( )

2 2

n ct mmx cx kx x x t e

k m c k m c
ASin t BCos t

m m



 

      

     


 
 
  

 

  (18)

The characteristic plot of amplitude of vibration versus 
time of operation of the robotic system in case of vibration 
under viscous damping will be more or less similar to that 
of Figure 15. As an effect of damping, the spread of the non-
linear bounds will be restricted to some extent; but, overall, 
the pattern of oscillation will remain same. Like before, the 
approximate numerical evaluation of the amplitude of the 
vibration and its phase angle can be made through fi tting 
experimental data in eqns. 17 & 18. 

When a non-linear dynamic oscillatory robotic system 
undergoes external excitation over and above its tare-weight 
& graspable payload, a new dimension of the analytical lemma 
creeps in. If we use linear spring for the dynamic modeling 
under external excitation without considering the damping 
effect, then we know that the defl ection equation of the FRS-
link (along with the ODE) will be in the form below:

 ( ) ( ) ( ) ( )

( ) ,2 21

mx kx FSin t x t ASin t BCos t

F k k
Sin t where n

mn

  

 
 

    

 




      (19)

The above-cited linear dynamic equation will alter if the 
case effect of viscous damping is taken into consideration. 
Accordingly, the defl ection equation of the FRS-link (along 
with the ODE) will be as follows:

( ) ( ) 1 exp ( )
2

24 1 2, ; tan 4
2

F ct
mx cx kx FSin t x t Sin tdk m

km c
where km cd m

  

 

      

   

  
    

 

  

                (20)

Where, ‘d’ & ‘’ are respectively the amplitude and phase 
angle of the damped natural frequency of vibration of the FRS-
link using a linear spring model.

Equations 19 & 20 will alter under the non-linear spring 
model of forced vibration. The defl ection equation of the FRS-
link along with its ODE devoid of viscous damping has been 
modeled as follows:

( )

( ) 1 ( )_

1, ; tan [2 ( ) ]_

nmx kx x FSin t

F fx t Sin tud nl nlk

kfwhere m kud nl nlm
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  
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 

     

 
 
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               (21)

where ‘f
ud_nl’  & ‘nl’ are respectively the amplitude and 

phase angle of the undamped natural frequency of vibration 
of the FRS-link without viscous damping using a non-linear 
spring model. The corresponding defl ection equation of the 
FRS-link along with its ODE in the presence of viscous damping 
has been modeled as stated below:

( )

( ) 1 exp ( )_2

4 ( ) 1, ; tan [2 ( ) ]_ 2

nmx cx kx x FSin t

F ct fx t Sin td nl nlk m

m kfwhere m kd nl nlm
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
  
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  
 

     

  
    
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                  (22)

where ‘f
d_nl’  & nl’ are respectively the amplitude and 

phase angle of the damped natural frequency of vibration of 
the FRS-link with viscous damping using a non-linear spring 
model.

Preludes to the experimental investigation of vibration 
of fl exible robots

There are two fundamental pathways for the experimental 
manifestation of the tailor-made defl ection model of a 
fl exible robot, namely: a] via angular measurement & b] via 
Cartesian frame measurement. Both of these methods rely on 
the global Cartesian frame of reference, which may or may not 
coincide with the fi rst link of the multi-link FRS / C2R or the 
fi rst body segment of the CBR. The commonality between the 
experimental study for FRS and CBR is the evaluation of the 
rotational momentum of either the fl exible link (for FRS) or the 
body-segment (for CBR). Figure 16 schematically illustrates the 
representative CBR, having two body-segments and a pair of 
grippers. This specifi c design of the CBR is a direct adaptation of 
the prototype C2R and can be viewed as the alteration of design 
morphology (‘links’ are transformed to ‘chambers’ etc.). As the 
schematic unfolds, we can be sure of angular measurements 
so as to calculate the ensemble defl ection of the system due to 
run-time vibration. 
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The commonality of both methods is the evaluation of 
the displacement of the infi nitesimal cross-section of the 
fl exible link that will have a direct functional relationship 
with the rotation vector of the fl exible link using Euler angle 
parenthesis. Cartesian coordinates of each & every point inside 
these infi nitesimal cross-sections of the fl exible link(s) need to 
be defi ned a-priori, which can be treated as the primary pre-
requisite for building up the defl ection model of the system. 
Accordingly, all such coordinates must have a component, 
signifying the effect of vibration. However, this effect due to 
in-situ vibration will be attributed only to two quadrature axes, 
leaving apart the axis around which rotation is taking place. 
For example, if the rotation occurs around the X-axis, then 
defl ection due to vibration will be apparent in the Y & Z axes. 
It may be stated that all points inside the said infi nitesimal 
cross-sections will be twisted as well as slightly deformed 
to the corresponding points under the defl ected postures of 
those infi nitesimal segments. In fact, the twisting effect of 
vibration/trembling should be inspected with due priority as 
the effect can be infused to the adjacent links as well. The 
basic ingredient for experiments on twisting due to vibration 
is to design and fabricate slender plate-type links. This is 
unique in many aspects, be it the extended zone of twist or 
procrastination of vibration. Accordingly, the design thought 
process for FRS needs a paradigm shift and conceptually, the 
usual hollow cylindrical shaped links are to be altered to fl at-
type slender links with fi xtures in between. 

Figure 17 pictorially describes a typical experimental test 
bed that is equipped with two fl at-type slender links. The 
set-up has been fabricated in the form of a Flexible Rotary-
Joint Robot (Flex2R) that has been used for the evaluation of 
force closure of grasp under different conditions of run-time 
vibration: both natural and under external excitations of the 
fl exible link.  

The crux of the design of Flex2R can be coined with the novel 
paradigms of an adjustable, re-positionable uni-directional 
joint that pivots the fl exure of the system in real-time. This 
joint is unique in the sense that we can usher in several grasp 
trials for a large variety of tiny objects. Figure 18 schematically 
explains the overall workability of this joint along with the 
complete assembly of the test-bed prototype Flex2R.

The combined effect of turn, twist & deformation of 
these infi nitesimal segments of a specifi c fl exible link will be 

apparent in the quadrature axes to the direction of the principal 
stress. Mathematically, we can compute the positional vector 
due to the said combined effect through the vector cross-
product of unit vectors along the Cartesian coordinates 
of the original state and the defl ected state of the fl exible 
link(s). The global coordinate system for this computation 
need not be always at the end-point of the fl exible link and 
if we assume that the global coordinate frame is located at a 
fi nite vector distance with respect to the fl exible link then we 
have to factor in another positional vector. Nonetheless, the 
rotation vector, symbolizing the vibration, can be applied to 
all coordinate reference systems that are part & parcel of the 
said FRS or CBR. Likewise, Cartesian reference frames can be 
put up at any location inside the fl exible link(s), depending 
upon the modeling requirement. The said position vectors can 
be computed accordingly, i.e. based on the specifi c fi xations of 
the co-ordinate frames. Figure 19 postulates this lemma on co-
ordinate frames, as a precursor for experimental investigation 
on the run-time vibration of FRS or CBR. The successive 
position vectors, Pi & Pi* are being mapped via the series of 
revolute joints of FRS, viz. Ji, Ji*,…..Jn & Jn+1.

We may note the angular postures of the joints and thereby, 
variations in the position vectors. These are the important 
theoretical frameworks for the evaluation of the vibration 
through the frequency analysis method. The turn & twist of 
the joints and more importantly, the link-joint interface zone 
are crucial for the enhancement of defl ection and thereby the 
natural frequency of vibration and fi nally, modal frequencies. 

The other important paradigm of the vibration analysis 
of fl exible robots is related to the evaluation of the dynamic 
‘distance function’ of the arbitrary position of a point inside 
the infi nitesimal cross-section. The dynamicity of the said 
distance function is mainly attributed to the run-time shear 
deformation of the fl exible link, wherein cross-section(s) do 
not remain orthogonal to the neutral axis of the said ‘beam’. 
The micro-rotations, leading to trembling and subsequently, 
vibrations of the fl exible link, do occur along the quadrature 
axes with respect to the basic axis of shear deformation. 
Analytically, this leads to equations of ‘curvature’ of the neutral 
axis of the fl exible ‘beam’ that can happen in two postures, viz. 
‘single-curve’ & ‘double-bulge’.  This paradigm is illustrated 
through the analytical postulation of Figure 20 below, which 
depicts the spring effect of defl ection and subsequent vibration. 

 

Index: A: Main chamber of the CBR; B: Retainer 
Ring; C: Front Tapering Chamber of CBR; D: 
Backend Gripper; E: Frontside Gripper; F: 
Adapter for Backend Gripper; G: Adapter for 
Frontside Gripper; H: Electronics & Control Board 
of the CBR; I: Servomotor; J: Tether; K: Bottom 
Surface of the Navigational Plane. 

Figure 16: Schematic Disposition of a Representative Compliant Bio-Robot with Two Body Segments.
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Index:   A: Base of Flex2R; B: Vertical Trunk (Cylindrical Pipe) of Flex2R; 
C: Epicentric Boss; D: Rotating Shaft;  E: Ultra Thin Flexible Arm; F: 
Connecting Flexible Plate to Flexible Arm; G: Miniature Gripper; H: Gripper 
Controller Unit; I: Support Frome for the Controller; J: Sensor Wires; K: 
Modular Screw Connections; L: Modular Adjustable Junctions; R1: Primary 
Rotation of the System (Flex2R); R2: Auxiliary Rotation of the System; Tr: 
Radial Trembling of the System; Ta: Axial Trembling of the System 

Figure 17: Schematic of the Flexible Rotary-Joint Robot as the Experimental Test-Bed for Vibration Study.

Vertical Stand 

Flexible Manipulatpor: Flex2R 

Force for Lowering the Link (FL) 

Flexible Links 

Flexible 
Links 

Gripper Controller 

Datum (Reference Plane) 

Miniature Gripper 
(SIMRoGv2.0) 

with Object 

Rotary Joint 

Screwed Joint 

Adjustable, Re-posiotonable, 
Uni-directional Joint 

Figure 18: Schematic Showing the Ensemble Disposition of the Test-bed Prototype Flex2R.

Conclusion

The fi eld of Assistive Flexible Robotics is a niche ensemble 
of harnessing non-linearity in the dynamics of the robotic 
system(s). The most challenging episode of real-time 

control of in-situ vibration of fl exible robots is harnessing 
its perpetuality. As soon as one set of vibrations retreats or 
subsides down to a reasonable extent, another set of vibrations 
stages in, which fi nally transforms the fl exible robot into a 
perpetually vibrating system. This perpetual vibration gives 
enough jitter to the run-time control of the FRS & CBR. The 
theoretical perspective of the sourcing of this vibration is, thus, 
very important for the application technologists because the 
fi nal fi ne-tuning of the system controller will depend on the 
formulation as well as experimental investigation. The spiral 
pattern of the oscillation as proposed in this paper and its run-
time behavior can lead to optimal synthesis of the design of the 
links of a new fl exible manipulator. The test data are generated 
mostly from the sensors, mounted on the FRS or CBR, which 
need to be processed through an analytical model to arrive at 
the frequency of oscillation. 

The present work can be extended to various other dynamic 
models using uncertainty-based mathematical formulation 

Figure 19: Analytical Postulation on Co-ordinate Frames for FRS or CBR for Vibration 
Study.



018

https://www.peertechzpublications.org/journals/annals-of-robotics-and-automation

Citation: Roy D (2023) Vibration of flexible robots: Dynamics and novel synthesis of unbounded trajectories. Ann Robot Automation 7(1): 001-019. 
DOI: https://dx.doi.org/10.17352/ara.000016

Index: Fext_i: External Force of Excitation at the 
ith. FRS-Link; {Fspring_i, Fspring_j}: Imaginary Spring 
Forces respectively at ith. & jth. locations of the 
FRS-Link;  Fsping_em: Imaginary Spring Force at 
the ‘End Mass’ location of the FRS -Link; �jt_int_i: 
Internal Joint Torque at the ith. FRS-Link; Ji: 
Revolute Joint of ith. FRS-Link; Ji+1: Location of 
the Revolute Joint of (i+1)th. FRS-Link (not 
shown in the fig.); Wi: Payload /End-Mass at the 
Free End of the FRS-Link; Li: Total Length of the 
FRS-lInk; Di: Area of Cross-section of the FRS-
Link; A-A’: Section -Plane’ [X Y Z]: Cartesian 
Co-ordinate System (Frame of Reference)  

Figure 20: Schematics Showing Spring-effect of Defl ection and Subsequent Vibration of FRS-Link.

by incorporating interval algebra and sigmoid function. The 
other domain that can be explored is the recast of the dynamic 
equation of motion of an FRS-link using the curvilinear 
Gaussian function. All these treatments will essentially bring 
out the threshold from ‘defl ection’ to ‘deformation’ of a fl exible 
link. These novel mathematical techniques will certainly boost 
the real-time control of a fl exible robot, wherein a perfect 
mix of two celebrated approaches, namely, the reinforcement 
Learning Method’ (RLM) and ‘The Gaussian Mixture Model’ 
(GMM) can be subsumed evenly. These novel pathways will 
usher in a totally resurgent fl exible robot that will be a true 
companion to various social and non-industrial applications 
including assistance to humans.
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