
001

Citation: Saranya M, Archana N, Lavanya SS, Ooviyavalli K, Sneha B, et al. (2024) Digital twinning of surveillance robot. Ann Robot Automation 8(1): 001-007.
DOI: https://dx.doi.org/10.17352/ara.000017

https://dx.doi.org/10.17352/araDOI:

E
N

G
IN

E
E

R
IN

G
 G

R
O

U
P

2994-418XISSN:

Introduction

In military applications, geofenced robots can be deployed
along the perimeter of military bases and installations to
enhance security. By restricting their operations to defi ned
boundaries, these robots can autonomously patrol the area,
detect intruders, and respond to security breaches. Non-
geofenced robots may pose security risks if they can access
sensitive or restricted areas. Unauthorized access to critical
infrastructure or classifi ed zones could be a signifi cant
concern. Managing and controlling non-geofenced robots can
be more complex, as their movements are less predictable.
This complexity may require more sophisticated planning and
monitoring. In environments where there are potential safety
hazards or risks, non-geofenced robots may require more
robust safety mechanisms and fail-safes to prevent accidents.

This project is aimed at developing a compact robot that can
guard a designated Area. To stay within an area, security
personnel use mapping software to create a geo-fenced
perimeter [1]. The robot then moves and detects objects using
a Light Detection and Ranging (LIDAR) sensor, which emits
a laser in a 360-degree sweep every 25 milliseconds around
the robot. This creates a point cloud, such as a 3-D image of
the surroundings showing the objects within the geo-fenced
area. Unlike the GPS in your smartphone, which fi nds locations
within a few meters from you, this robot uses a differential
GPS that fi nds objects within a few centimeters. That helps the
robot know exactly where it’s moving at all times. It makes
use of the scan and pose data from LIDAR to serve the purpose.
Digital twinning allows real-time monitoring of the robot’s
physical environment through a virtual model [2,3]. Security
personnel can remotely control the robot and receive live data.

Abstract

Surveillance robots provide troops with real-time information about their surroundings, including enemy positions, terrain, and potential threats. This information
is invaluable for making informed decisions and ensuring the safety of military personnel. Geo-fenced robots are robots equipped with technology that restricts their
movements within predefi ned geographic boundaries. These boundaries are typically established using GPS or other location-based technologies. In applications like the
military, geo-fencing can be used to establish secure zones. Geo-fencing helps prevent robots from entering hazardous areas, reducing the risk of damage to the robot and
potential harm to friendly forces or civilians This project aims at Digital twinning of robots by creating a virtual replica or model of a physical robot in a digital environment.
Digital twinning allows engineers and designers to simulate and test the robot’s behavior, performance, and capabilities in a virtual environment before building the
physical robot. This can lead to increased effi ciency, reduced downtime, and cost savings. In this project, LiDAR (Light Detection and Ranging) sensor data is integrated
with a digital twinned robot to create a virtual reproduction of the robot and its surroundings. LiDAR is a remote sensing technology that maps the robot’s surroundings
in fi ne detail using 3D point clouds by measuring distances using laser pulses. Here we make use of RPLIDAR A1 M8 and acquire data from it using ROS with the help of
a RaspberryPi4B Controller. Simulink is used to create a 3D model of the robot’s environment and the robot itself. Reinforcement learning and pure pursuit algorithms are
used for developing them. This project discusses the need for geofenced autonomous robots and emphasizes the security and reliability it brings to military applications.

Research Article

Digital twinning of
surveillance robot
Saranya M1*, Archana N2, Lavanya SS3, Ooviyavalli K4,

Sneha B5 and Sujana K6

1Assistant Professor (Sr. Gr.), Department of I&CE, PSG College of Technology, Coimbatore, India

2Assistant Professor (Sl. Gr.), Department of EEE, PSG College of Technology, Coimbatore, India

3UG Students, Department of I&CE, PSG College of Technology, Coimbatore, India

Received: 03 January, 2024
Accepted: 22 January, 2024
Published: 23 January, 2024

*Corresponding author: Saranya M, Assistant
Professor (Sr. Gr.), Department of I&CE, PSG College of
Technology, Coimbatore, India,
E-mail: msa.ice@psgtech.ac.in

ORCiD: https://orcid.org/0000-0002-1470-5509

Keywords: Geofencing; Digital twinning LIDAR A1M8;
ROS

Copyright: © 2024 Saranya M, et al. This is an
open-access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

https://www.peertechzpublications.org

002

https://www.peertechzpublications.org/journals/annals-of-robotics-and-automation

Citation: Saranya M, Archana N, Lavanya SS, Ooviyavalli K, Sneha B, et al. (2024) Digital twinning of surveillance robot. Ann Robot Automation 8(1): 001-007.
DOI: https://dx.doi.org/10.17352/ara.000017

This enables them to respond to security incidents or conduct
surveillance from a central location. The digital twinned robot
is given with the occupancy grid which serves as its geofenced
area. The location of the existing geographic structure that
the robot might consider as an obstacle is also given in the
occupancy grid. Thus, if there exists an obstacle other than
these, then the robot takes an alternate path to move toward
the target.

Related works

A literature survey is the most important step in a
project development process. Before developing the tool,
it is necessary to determine the time factor, economy, and
company’s strength. Once these things are satisfi ed, then
the next steps are to determine which operation system and
hardware components are needed for the development of the
project. Before developing the project, the people need external
support. This external support can be taken from books or
websites.

A. Ramesh, in a paper published in 2013 [4], described an
autonomous robot as a machine able to extract information
from its environment and use knowledge about its world to
move safely in a meaningful and purposive manner. The
trajectory tracking task in non-holonomic systems can be
performed through differentiable control laws. The most
important feature of this work is that the complete modelling
and control are done in SIMSCAPE software which employs
a physical network approach that differs from the standard
SIMULINK modelling approach and is particularly suited to
simulate systems that consist of real physical components.
Thus, modelling is done with MATLAB- SIMSCAPE in which
physical units for parameters and variables and all unit
conversions are handled automatically.

 M. B. Emara, A. W. Youssef, M. Mashaly, J. Kiefer, L. A.
Shihata, and E. Azab, in the paper published in Jan. 2022
[5], briefed about a digital model for a three-wheeled
omnidirectional robot is created. This robot can potentially be
used in various industrial applications as it can move quickly
in any direction from any confi guration. A simulation program
- SIMSCAPE a MATLAB-based library - is used for creating
a digital twin model for the robot. A hardware prototype is
manufactured and a PID controller is used to measure and
validate the performance of the proposed digital model. Digital
twined models are created using real-time simulation software,
in which multiple aspects are studied regarding the system’s
control and modelling to ensure that the implementation of the
robot in real life is as cost-effi cient and error-free as can it be.

Luigi Girletti; Milan Groshev; Carlos Guimarães; Carlos
J. Bernardos Universidad Carlos III de Madrid, Antonio de la
Oliva in the paper published in Mar. 2021 [6] had Digital
Twin as one of the use cases targeted by the fourth industrial
revolution (Industry 4.0), which, through the digitalization
of the robotic systems, will enable enhanced automation and
remote controlling capabilities. Building upon this concept,

this work proposes a solution for an Edge-based Digital Twin
for robotics, which leverages the cloud-to-things continuum
to offl oad computation and intelligence from the robots to
the network. This imposes stringent requirements over the
communication technologies which are fulfi lled by relying on
5G.

Methodology

ROS provides the infrastructure and tools needed to create
and manage digital twins, especially in the context of robotic
and autonomous systems, where sensor data, control, and
communication are key components of the twin’s functionality
[7]. ROS packages and updates are primarily designed and tested
for Ubuntu. ‘roscore’ will provide the central communication
and naming services needed for your ROS nodes to interact
with each other. A Catkin workspace is a directory structure
where you organize and manage your ROS packages. All these
are confi gured and all the required packages and tools are
installed. Then if the LIDAR sensor requires specifi c drivers,
you’ll need to confi gure and launch them. Create a launch fi le
that launches your LIDAR node and any other nodes required
for your application [8,9]. Launch RViz and confi gure it to
visualize the LIDAR data. Open Simulink, create a new model
and save it. Confi gure the simulation parameters, such as
the simulation time, solver settings, and stop time. Once
the simulation is complete, you can observe and analyse the
response in the visualization blocks you added. This fl ow is
described in the Figure 1.

As mentioned in the methodology here two laptops are
used. One for the master in which ‘roscore’ runs (one on the
left side) and the other one in which the Simulink model is
developed and receives data from the master. The Lidar (RP
Lidar A1 M8) is connected to the Raspberry Pi controller. This
Lidar is the one that publishes the required data.

Figure 1: Flow Chart of the process.

003

https://www.peertechzpublications.org/journals/annals-of-robotics-and-automation

Citation: Saranya M, Archana N, Lavanya SS, Ooviyavalli K, Sneha B, et al. (2024) Digital twinning of surveillance robot. Ann Robot Automation 8(1): 001-007.
DOI: https://dx.doi.org/10.17352/ara.000017

Implem entation

Digital twinning is a technology that involves creating a
virtual, digital replica or representation of a physical object,
system, or environment. Software plays a crucial role in the
implementation of digital twinning, as it is responsible for
modeling, simulating, and connecting the digital twin to its
physical counterpart. For digital twins of systems with control
systems, simulators like MATLAB/Simulink are used to model
and simulate the control algorithms and their interactions with
the physical system [10].

Software implementation

A. Developing a simulink model: This example uses a
model that implements a post-obstacle avoidance path
controller. The controller receives robot position and
laser scanning data from the simulated robot and sends
velocity commands to guide the robot along a specifi c
path. You can adjust parameters while the model
is running and observe the effect on the simulated
robot. The model is divided into four subsystems. The
following sections explain each subsystem [11].

Process inputs: The ‘Inputs’ subsystem processes all
the inputs to the algorithm. There are two subscribers to
receive data from the simulator. The fi rst subscriber receives
messages sent on the /scan topic. The laser scan message is
then processed to extract scan ranges and angles. The second
subscriber receives messages sent on the /ground_truth_pose
topic. The (x,y) location and Yaw orientation of the robot are
then extracted from the pose message.

Compute Velocity and Heading for Path Following: The
‘Compute Velocity and Heading for Path Following’ subsystem
computes the linear and angular velocity commands and the
target moving direction using the Pure Pursuit block. The
pure pursuit algorithm was originally devised as a method for
calculating the arc necessary to get a robot back onto a path.
Pure pursuit is a tracking algorithm that works by calculating
the curvature that will move a vehicle from its current position
to some goal position. The whole point of the algorithm is
to choose a goal position that is some distance ahead of the
vehicle on the path.

Adjust Velocities to Avoid Obstacles: The ‘Adjust Velocities
to Avoid Obstacles’ subsystem computes adjustments to the
linear and angular velocities computed by the path follower.
The Vector Field Histogram block uses the laser range readings
to check if the target direction computed using the Pure Pursuit
block is obstacle-free or not based on the laser scan data. If
there are obstacles along the target direction, the Vector Field
Histogram block computes a steering direction that is closest
to the target direction and is obstacle-free. The Vector Field
Histogram block is also located in the Mobile Robot Algorithms
sub-library. The steering direction is NaN value when there are
no obstacle-free directions in the sensor fi eld of view. In this
case, a recovery motion is required, where the robot turns on
the spot until an obstacle-free direction is available. Based on
the steering direction, this subsystem computes adjustments
in linear and angular velocities.

Send Velocity Commands: The ‘Outputs’ subsystem
publishes the linear and angular velocities to drive the simulated
robot. It adds the velocities computed using the Pure Pursuit
path following the algorithm with the adjustments computed.
The fi nal velocities are set on the geometry_msgs/Twist
message and published on the topic /mobile_base/commands/
velocity. This is an enabled subsystem that is triggered when a
new laser message is received. This means a velocity command
is published only when new sensor information is available.
This prevents the robot from hitting obstacles in case of a delay
in receiving sensor information.

B. ROS in Raspberry Pi: Robot Operating System (ROS) is
a commonly used framework for designing complex
robotic systems. It is popular for building distributed
robot software systems, as well as for its integration
with packages for simulation, visualization, robotics
algorithms, and more. ROS has become increasingly
popular in industry as well, especially in the
development of autonomous vehicles [12,13]. ROS +
Raspberry Pi is such a powerful combination to create
smart robots, with a somehow low cost, and very small
electronic board embedded in the robot. The “default”
operating system for Raspberry Pi is Raspbian. However,
if you want to use ROS, you’d be better served by using
an Ubuntu version for the Pi. Installing ROS packages
and managing them on Raspbian can be quite diffi cult,
whereas on Ubuntu it’ll work almost out of the box, just
like on a standard computer or laptop.

C. ROS Network: A Robot Operating System (ROS) is a
communication interface that enables different parts
of a robot system to discover each other, and send and
receive data between them [14]. MATLAB® supports
ROS with a library of functions that enables you to
exchange data with ROS-enabled physical robots or
robot simulators. ROS Toolbox provides an interface
connecting MATLAB and Simulink with the Robot
Operating System (ROS and ROS 2). With the toolbox,
you can design a network of ROS nodes and combine
MATLAB or Simulink-generated ROS nodes with
your existing ROS network [15]. The toolbox includes
MATLAB functions and Simulink blocks to visualize and
analyze ROS data by recording, importing, and playing
back rosbag fi les. The toolbox lets you verify ROS nodes
via desktop simulation and by connecting to external
robot simulators. Use the ROS Logger app to record ROS
messages during Simulink® simulation, and obtain a
rosbag fi le with fully synchronized ROS messages saved
during simulation [16-18].

D. HECTOR SLAM package: hector_mapping is a SLAM
approach that can be used without odometry as well as
on platforms that exhibit roll/pitch motion. It leverages
the high update rate of modern LIDAR systems. To use
hector_mapping, you need a source of sensor_msgs/
LaserScan data. The node uses tf for the transformation
of scan data, so the LIDAR does not have to be fi xed
related to the specifi ed base frame [19]. hector_mapping

004

https://www.peertechzpublications.org/journals/annals-of-robotics-and-automation

Citation: Saranya M, Archana N, Lavanya SS, Ooviyavalli K, Sneha B, et al. (2024) Digital twinning of surveillance robot. Ann Robot Automation 8(1): 001-007.
DOI: https://dx.doi.org/10.17352/ara.000017

is a node for LIDAR-based SLAM with no odometry
and low computational resources. LIDAR scan data
may include information about the angular resolution,
which determines how densely measurements are taken
within the sensor’s fi eld of view. The higher angular
resolution provides more detailed data. The number
of individual measurements or scan points in a LIDAR
scan depends on the LIDAR sensor’s characteristics and
settings Figure 2.

Hardware implementation

In this project, the acquisition and processing of LiDAR
data were enabled by ROS (Robot Operating System) on a
Raspberry Pi, with seamless integration into MATLAB. The
hardware plays a crucial role in connecting the digital twin
to its physical counterpart, collecting data from sensors, and
controlling the physical system. This innovative hardware-
software synergy allowed for the collection of precise LiDAR
data and the utilization of MATLAB’s analytical capabilities
for advanced data analysis. The ROS-MATLAB interface is a
useful interface for robot algorithms in MATLAB and testing
it on ROS-compatible robots. The robotics system toolbox in
MATLAB provides the interface between MATLAB and ROS. We
can prototype our algorithm and test it on a ROS-enabled robot
or in robot simulators such as Gazebo. From MATLAB, we can
publish or subscribe to a topic, such as a ROS node, and we can
make it a ROS master. The MATLAB-ROS interface has most
of the ROS functionalities that we need. From the preceding
fi gure, you can understand, that MATLAB is equipped with
powerful toolboxes such as computer vision, control system,
and signal processing. We can fetch the data from the robot
through the ROS interface and process using this toolbox. After
processing sensor data, we can also send control commands to
the robot.

A. Raspberry PI 4B: Raspberry Pi 4 Model B is the
latest product in the popular Raspberry Pi range of
computers [18]. It offers a ground-breaking increase
in processor speed, multimedia performance, memory,
and connectivity compared to the prior-generation
Raspberry Pi 4 Model B+ while retaining backward
compatibility and similar power consumption. For the
end user, Raspberry Pi 4 Model B provides desktop
performance comparable to entry-level x86 PC systems.
This product’s key features include a high-performance

64-bit quad-core processor, dual-display support at
resolutions up to 4K via a pair of micro-HDMI ports,
hardware video decodes at up to 4Kp60, up to 4GB of
RAM, dual-band 2.4/5.0 GHz wireless LAN, Bluetooth
5.0, Gigabit Ethernet, USB 3.0, and PoE capability (via a
separate PoE HAT add-on). The dual-band wireless LAN
and Bluetooth have modular compliance certifi cation,
allowing the board to be designed into end products with
signifi cantly reduced compliance testing, improving
both cost and time to market. The Pi4B requires a good
quality USB-C power supply capable of delivering 5V at
3A. If attached downstream USB devices consume less
than 500mA, a 5V, 3.5A supply may be used.

B. RPLIDAR A1M8: RPLIDAR A1 is a low-cost 260-degree 2D
laser scanner (LIDAR) solution developed by SLAMTEC.
The system can perform a 360-degree scan within a
6-meter range. The produced 2D point cloud data can be
used in mapping, localization, and object/environment
modelling. RPLIDAR A1’s scanning frequency reached
5.5 Hz when sampling 360 points each round [19]. It
can be confi gured up to 10 Hz maximum. RPLIDAR A1 is
basically a laser triangulation measurement system. It
can work excellently in all kinds of indoor environments
and outdoor environments without sunlight. The A1
M8 is a compact and precise measurement device with
dimensions measuring 98.5mm in length, 70mm in
width, and 60mm in height. It boasts an impressive
distance range capability, covering distances from
as close as 0.15 meters to as far as 6 meters, making
it suitable for a wide range of applications. Its
0-360-degree angular range ensures a comprehensive
fi eld of view, while its high-resolution measurements
offer accuracy with a distance resolution of less than
0.5mm and an angular resolution of equal to or less
than 1 degree. The A1 M8 operates at a sample frequency
between 2000 and 2010Hz, providing real-time data
acquisition, and it can scan at a rate ranging from 1 to
10Hz, with a typical scanning rate of 5.5Hz, making it
a versatile tool for various sensing and measurement
needs.

C. Power supply: The Raspberry Pi makes use of portable
power banks that are used for the power supply. The
power bank has a port that supports TYPE C cable with
weight of around 434g and a capacity of 20000mAh.This
power bank makes use of a Lithium Polymer Battery.

D. Communication protocol: A wireless connection is a
convenient way of staying connected to a network.
Unlike with a wired connection, you can roam around
with your device without losing connectivity. Because of
this, wireless features have become a standard in most
devices. Any device connected to a Local Area Network
is assigned an IP address. In order to connect to your
Raspberry Pi from another machine using SSH or VNC,
you need to know the Raspberry Pi’s IP addresses. We
use a WPA_SUPPLICANT.CONF fi le to confi gure the Wi-
fi module. We have to enter our Wi-fi network name

Figure 2: Connecting MATLAB and ROS.

005

https://www.peertechzpublications.org/journals/annals-of-robotics-and-automation

Citation: Saranya M, Archana N, Lavanya SS, Ooviyavalli K, Sneha B, et al. (2024) Digital twinning of surveillance robot. Ann Robot Automation 8(1): 001-007.
DOI: https://dx.doi.org/10.17352/ara.000017

(SSID) and the password that we normally use to login
to our network. This makes Pi connect to the network
whenever powered

Results and Discussion

In this project, LiDAR data acquisition was successfully
integrated with the ROS framework on a Raspberry Pi, and
further data processing was carried out in MATLAB. The
effective capture of precise environmental information has
been demonstrated by our results, enabling robust 3D mapping
and object detection. The potential for real-world applications
in autonomous navigation and environmental monitoring is
revealed by the observations. The feasibility and versatility
of LiDAR technology when combined with ROS and MATLAB
are emphasized by this project, underlining its practicality for
various domains, from robotics to geospatial analysis.

A. Occupancy grid

The output generated by LiDAR Hector SLAM shown in
Figures 3,4, holds a crucial role, wherein it is converted into
an occupancy grid. This occupancy grid, serving as a two-
dimensional representation of the robot’s environment, forms
the foundation of our path planning and obstacle avoidance
systems in the robot’s navigation. Through the conversion of
Hector SLAM data into this grid, the robot is endowed with a
comprehensive understanding of its surroundings, enabling
informed decisions to be made in real time. The integration of
LiDAR data and occupancy grid mapping signifi cantly bolsters

the robot’s autonomy, allowing obstacles to be identifi ed
and optimal paths to be charted, thereby ensuring safety and
effi ciency in its movements.

B. LIDAR scan data

Each data point in a lidar scan data set typically includes
information about the 3D coordinates (x, y, z) of the point, the
intensity of the returned laser pulse, and sometimes additional
attributes like the return number and scan angle. Lidar scan
data is commonly represented as a 3D point cloud, which is
a collection of these data points in a Cartesian coordinate
system [20]. These point clouds can be used to create detailed
and precise 3D models of the environment. Lidar scans are
often taken at specifi c angles, and this information is typically
included in the data. Scan angle data helps in determining the
direction from which the lidar sensor acquired each point.
The timestamp at which each data point was acquired can
be included to help with data synchronization or time-based
analysis. Range data is a collection of distance measurements
[21]. Each measurement represents the distance from the
lidar sensor to a specifi c point or surface in the environment.
Rosinit is used to initialize ROS, and by default, a ROS master is
created in MATLAB, along with the initiation of a global node
that is linked to the master. The global node is automatically
employed by other ROS functions. All nodes within the ROS
network can be viewed using rosnode list, with the initial node
being the global node generated by rosinit [6,22,23]. To observe
the available topics in the ROS network, a rostopic list can be
used. There are four active topics: /pose, /rosout, /scan, and /
tf. The default topics, rosout, and tf, are consistently present
within the ROS network. Specifi c details about a particular
topic can be obtained by executing rostopic info, which, when
used, demonstrates that /node_1 publishes messages. to the /
pose topic, while /node_2 subscribes to that topic for message
reception.

C. HECTOR SLAM data

The hector SLAM output of this project is given in the
Figure 5. Hector SLAM is a real-time SLAM algorithm used for
mapping an environment and localizing a robot within that
environment. Hector SLAM was developed for mobile robots,
especially those with 2D Lidar sensors, and is known for its
effi ciency and accuracy. Hector SLAM uses a scan-matching
approach to build and update the occupancy grid map. It
correlates consecutive Lidar scans to estimate the robot’s
pose (position and orientation) and the location of obstacles
on the map. This is done by aligning the new scan with the
previously built map. Simultaneously with mapping, Hector
SLAM performs robot localization. It estimates the robot’s pose
within the environment by comparing the current Lidar scan
with the previously created map. This information is crucial for
the robot to know where it is on the map.

A robot may construct an accurate depiction of the
environment, including the location and shape of objects, by
integrating many Lidar scans to generate a precise map of
the surrounding area. Lidar data is also necessary for path
planning and navigation algorithms. Lidar scan data can

Figure 3: Occupancy Grid.

Figure 4: LIDAR Scan Data.

006

https://www.peertechzpublications.org/journals/annals-of-robotics-and-automation

Citation: Saranya M, Archana N, Lavanya SS, Ooviyavalli K, Sneha B, et al. (2024) Digital twinning of surveillance robot. Ann Robot Automation 8(1): 001-007.
DOI: https://dx.doi.org/10.17352/ara.000017

be used by robots to plan collision-free routes across their
surroundings [24]. To increase the accuracy of the maps it
generates, Hector SLAM uses methods such as loop closure
detection. This aids in fi xing mistakes that have accumulated
over time. It is capable of adapting to environmental changes,
including moving objects and updating the map as necessary.
Autonomous systems rely on Lidar scan and Hector SLAM data
to comprehend and navigate their surroundings. Hector SLAM
uses real-time processing of the extensive spatial information
provided by Lidar to produce precise maps that allow the robot
to locate itself inside it. This is essential for effi cient and safe
navigation in a variety of applications, such as robotic systems,
drones, and autonomous cars. The future scope of the project is
to automate the robot to change its direction when an obstacle
is found in the direction in which the robot traverses [25].
This can be done by communicating the output received from
Simulink back to the robot developed by making use of a motor
driver. The mapping that can be obtained from Hector SLAM
helps in providing a detailed representation of the environment,
thus enabling path planning, aiding in localization, facilitating
collision avoidance, and ensuring the robot has an up-to-date
understanding of its surroundings [25,26]. This will make the
robot to be used in geofencing applications in the military.
Digital twinning provides a valuable framework for enhancing
the capabilities of military robots operating within geofenced
areas. It improves their ability to navigate, adapt to changing
conditions, and contribute to the success of military missions
while maintaining a high level of safety and effi ciency.

Conclusion

The data from the Lidar is displayed using rviz. We could
visualize the mapping of the data obtained. This data has to
be brought to MATLAB using ROS. The Simulink model takes
scan and pose data from the Lidar and helps us to predict the
robot’s behavior. Here the model developed makes use of a
reinforcement learning algorithm and pure pursuit algorithm to
move towards its target. Also, the robot is given the occupancy
grid that replicates the environment and the existing path in
which the robot could move. Any new obstacle found will be
displayed in the grid. Thus, digital twinning technology helps

in real-time remote monitoring and also helps to predict
the performance of the robot in an uncertain situation. To
automate the robot to change its direction when an obstacle
is found in the direction in which the robot traverses. This can
be done by communicating the output received from Simulink
back to the robot developed by making use of a motor driver.
The mapping that can be obtained from Hector SLAM helps in
providing a detailed representation of the environment, thus
enabling path planning, aiding in localization, facilitating
collision avoidance, and ensuring the robot has an up-to-date
understanding of its surroundings.

References

1. Abdulnabi, Sujatha BR. Autonomous Army robot with Geo-fencing technology.
IJARCCE. 2021; 10: 855-862.

2. Kousi N, Gkournelos C, Aivaliotis S, Lotsaris K. Digital Twin for Designing
and Reconfi guring Human–Robot Collaborative Assembly Lines. Applied
Sciences. 2021; 11(10): 4620.

3. Digital twin for Interacting Mobile Robots (2023) Odense Robotics. https://
www.odenserobotics.dk/projects/digital-twin-for-interacting-mobile-robots/.

4. Ramesh A. Mathematical Modelling and Control of a Mobile Robot for Path
Tracking. 2013;5

5. Emara MB. Digital twinning for closed-loop control of a three-wheeled
omnidirectional mobile robot, Procedia CIRP. 2022. https://www.sciencedirect.
com/science/article/pii/S2212827122004231.

6. Girletti L, Groshev M. An Intelligent Edge-based Digital Twin for Robotics. 2020
IEEE Globecom Workshops (GC Wkshps).

7. Get started with Ros Get Started with ROS - MATLAB & Simulink. https://www.
mathworks.com/help/ros/ug/get-started-with-ros.html.

8. Ros Robotics projects. https://subscription.packtpub.com/book/iot-and-
hardware/9781783554713/8/ch08lvl1sec62/getting-started-with-the-ros-
matlab-interface.

9. González R, Mahulea C. A MATLAB-based interactive simulator for Mobile
Robotics. 2015 IEEE International Conference on Automation Science and
Engineering (CASE). https://www.semanticscholar.org/paper/A-Matlab-
based-interactive-simulator-for-mobile-Gonz%C3%A1lez-Mahulea/1278348e1
49e7cf281e75b0785f75c877e0eecb6

10. Statefl ow Onramp Self-Paced Online Courses - MATLAB & Simulink. https://
matlabacademy.mathworks.com/details/statefl ow-onramp/statefl ow

11. Path following with obstacle avoidance in Simulink® Path Following with
Obstacle Avoidance in Simulink - MATLAB & Simulink. https://www.mathworks.
com/help/nav/ug/path-following-with-obstacle-avoidance-in-simulink.html.

12. Kholandy A. Mobile Robot Simulation and Controller Design with MATLAB
Simulink, Academia.edu. 2014. https://www.academia.edu/6834350/Mobile_
Robot_Simulation_and_Controller_Design_with_Matlab_Simulink

13. Ed (2023) Install Ros Noetic on Raspberry Pi 4 - the robotics back, End. https://
roboticsbackend.com/install-ros-on-raspberry-pi-3/

14. Ed (2023b) Install Ubuntu 22.04 on Raspberry Pi 4 (without a monitor) - the
robotics back, End. https://roboticsbackend.com/install-ubuntu-on-raspberry-
pi-without-monitor/

15. Castro S. Getting started with MATLAB, Simulink, and Ros, Student
Lounge. 2017. Available at: https://blogs.mathworks.com/student-
lounge/2017/11/08/matlab-simulink-ros/

16. Filename Open and parse rosbag log fi le - MATLAB. https://www.mathworks.
com/help/ros/ref/rosbag.html

Figure 5: Hector SLAM Data.

007

https://www.peertechzpublications.org/journals/annals-of-robotics-and-automation

Citation: Saranya M, Archana N, Lavanya SS, Ooviyavalli K, Sneha B, et al. (2024) Digital twinning of surveillance robot. Ann Robot Automation 8(1): 001-007.
DOI: https://dx.doi.org/10.17352/ara.000017

17. Chaiprabha K, Chancharoen R. A deep trajectory controller for a mechanical
linear stage using digital twin concept, MDPI. 2023. https://www.mdpi.
com/2076-0825/12/2/91 (Accessed: 19 January 2024).

18. Raspberry Pi - GPIO connectorTutorialspoint. https://www.tutorialspoint.com/
raspberry_pi/raspberry_pi_gpio_connector.htm

19. Rplidar A1M8-R6 360 degree LIDAR Laser Range Scanner (12m). http://obrotu.
com/rplidar-a1m8-r6-360-degree-lidar-laser-range-scanner-ss-NOnAV9F9.

20. Pi Read Lidar Laser Scan Data Over ROS from Raspberry Pi - MATLAB
& Simulink Example. https://www.mathworks.com/help/supportpkg/
raspberrypi/ref/read-lidar-laser-scan-data-over-ros-from-raspberry-pi.html.

21. Kousi N, Gkournelos C, Aivaliotis S, Digital twin for adaptation of robots’
behavior in fl exible robotic assembly lines. Procedia Manufacturing.
2019; 28: 121-126. https://www.sciencedirect.com/science/article/pii/
S2351978918313623 (Accessed: 19 January 2024).

22. rde Koning R, Torta E, Pauwels P, Hendrikx RWM, van de Molengraft MJG.
Queries on Semantic Building Digital Twins for Robot Navigation. 2021; 3081:

32-42. https://pure.tue.nl/ws/portalfi les/portal/197547153/CIB_W78_2021_
paper_78.pdf

23. Baidya S, Das SK, Uddin MH, Kosek C, Summers C. Digital Twin in Safety-Critical
Robotics Applications: Opportunities and Challenges. 2022 IEEE International
Performance, Computing, and Communications Conference (IPCCC).

24. Alsaleh S, Tepljakov A, Tamre M, Kuts V, Petlenkov E. Twin D. Simulations
Based Reinforcement Learning for Navigation and Control of a Wheel-on-Leg
Mobile Robot. Asmedigitalcollection.asme.org. https://asmedigitalcollection.
asme.org/IMECE/proceedings/IMECE2022/86649/V02BT02A025/1156863

25. Avila EA, Chapa rDP, Arenas ID, Hurtado CV. A Digital Twin implementation
for Mobile and collaborative robot scenarios for teaching robotics based on
Robot Operating System. 2022 IEEE Global Engineering Education Conference
(EDUCON). https://ieeexplore.ieee.org/document/9766583/

26. Digital Twinning for Common Robot Applications (no date) Yaskawa Motoman
Robotics. https://www.motoman.com/en-us/about/blog/digital-twinning-for-
common-robot-applications.

https://www.peertechzpublications.org/submission

