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Abstract

Chronic Kidney Disease (CKD) refers to progressive and irreversible kidney function loss; it is currently an important health problem due to its high social costs. 
Decreased Glomerular Filtration Rate (GFR) causes accumulation of Uremic Toxins (UT) that must be excreted by the kidney, increasing their serum concentrations, 
toxicity, and hence disease progression. Dysbiosis is the alteration in the composition and structure of the intestinal microbiota and is related to systemic infl ammation. 
Patients with CKD present biochemical changes at the intestinal level that cause dysbiosis, altering the kidney-gut axis, which is implicated in the higher production of UT. 
Evidence suggests an association between UT and cardiovascular risk in CKD, and different mechanisms are involved in each of them. Modulation of the gut microbiota 
by specifi c nutrients is a new strategy for the nutritional approach to CKD. Novel strategies based on the use of probiotics and prebiotics aim to reduce the synthesis and 
accumulation of UTs to reduce disease progression; however, with current evidence, the effect and benefi t of supplementation cannot be concluded, so more research in 
humans is needed to identify useful bacterial strains and doses to obtain benefi cial effects in CKD patients.
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Introduction 

Chronic Kidney Disease (CKD) is the progressive and 
irreversible renal function failure; with a subclinical debut, in 
most cases the diagnosis is tardy, conferring a poor prognosis 
to patients [1-3]. Actually, is considered a public health problem 
due to the high social costs [1,4,5]. Literature reports that 
behavioral interventions are fundamental pillars to prevent the 
progression of the disease [6]. 

A kidney function is the excretion of Uremic Toxins (UT), by 
two mechanisms: one, by glomerular fi ltration, and the other 
by transporter-mediated tubular secretion; in CKD, decreased 
Glomerular Filtration Rate (GFR) leads to the accumulation 
of Uremic Retention Molecules (URMs) [7,8], resulting in the 
accumulation of UTs and increase in serum concentrations, 
thus contributing to the characteristic uremic syndrome 
[6,7,9]. 

In CKD there is an accumulation of UT produced by gut 
microbial metabolism of aromatic amino acids: tyrosine, 
phenylalanine, and tryptophan [6,7,10], evidence in vitro and in 
vivo shows that these UT are implicated in pathophysiological 
mechanisms of cardiovascular disease, the leading cause of 
death in renal failure patients [5,11-14]. This review presents 
an overview of gut microbiota alterations in CKD, the 
mechanisms underlying the main UT on disease progression 
and cardiovascular risk, and the nutritional strategies for these 
conditions.

Gut microbiota

The human gut microbiota is the community of more 
than 100 trillion microbial cells and more than 1000 species 
of bacteria that coexist in the host; in non-pathological 
conditions, the intestinal microbiota is mainly composed of 
Firmicutes, Bacteroidetes, Actinobacteria, Verrucomicrobia and, to a 



002

https://www.organscigroup.us/journals/archives-of-renal-diseases-and-management

Citation: De la Cruz-Ahumada CJ, Topete-Reyes JF, los Santos SR (2024) Gut microbiota alteration in CKD: From toxicity mechanisms to supplementation. Arch 
Renal Dis Manag. 9(1): 001-008. DOI: https://dx.doi.org/10.17352/2455-5495.000045

lesser extent, Proteobacteria; being Gram-negative Bacteroidetes 
and Gram-positive Firmicutes the most abundant [6,15]. 

The gut microbiota plays an essential role in the digestion 
of food and the metabolism of nutrients; also, it regulates 
the function of the immune system through the maintenance 
of epithelial homeostasis [6,15-17]; in addition, some 
microorganisms are involved in the synthesis of B vitamins, 
vitamin K and ascorbic acid, and the synthesis of Short-Chain 
Fatty Acids (SCFA) that participate in anti-infl ammatory and 
antiproliferative mechanisms [2,6].

Diet is an environmental factor that modifi es the 
composition of the intestinal microbiota, altering the metabolite 
profi le of each individual [18]; low-fi ber diets, for example, 
reduce SCFA synthesis, producing harmful metabolites such 
as lipopolysaccharides (LPS), thus contributing to intestinal 
dysbiosis [15,19,20]. 

Dysbiosis involves disturbances in the composition and 
structure of the gut microbiota resulting in endotoxemia, 
which is associated with elevated proinfl ammatory cytokines 
such as tumor necrosis factor  (TNF-) and interleukin-6 
(IL-6), and oxidative stress, triggering systemic infl ammation 
present in CKD [6,20-23]. 

In CKD, microbiota metabolism is considered a non-
traditional but modifi able risk factor infl uencing the progression 
of renal damage [24]; dysbiosis disrupts the kidney-gut 
axis, is linked to increased production of UT, combined with 
deterioration of renal function, maintains uremic status and 
results in accelerated decline in GFR [24]. 

Altered microbiota in CKD

Patients with CKD exhibit gut biochemical changes due to 
decreased fi ber intake, frequent use of antibiotics, and metabolic 
acidosis [6,25,26]; in addition, elevated uremia increases their 
fl ow into the gastrointestinal tract, where urease-expressing 
bacteria metabolize it into CO2 and ammonia, damaging the 
epithelial barrier, triggering the immune system response and 
resulting in dysbiosis, as shown in Figure 1 [7,27-29]. 

Evidence supports quantitative and qualitative alterations of 
the microbiota in CKD [16,23,30,31]; renal patients’ microbiota 
has fewer families of Lactobaci laceae and Prevotellaceae, and 
of SCFA-producing bacteria, especially butyrate, that protect 
against infl ammation [32], and 100-fold more species of 
Enterobacteriaceae and Enterococci [6,23]. Systematic reviews 
support the fi ndings of changes in the microbiota during 
CKD, showing an abundance of proteolytic bacteria that 
produce toxic metabolites, such as the phylum Proteobacteria 
and Fusobacteria, the genus Escherichia/Shigella, and a lower 
abundance of Roseburia, Faecalibacterium, Pyramidobacter, 
Prevotellaceae and Prevotella [23,33].

A study identifi ed that CKD patients have a lower abundance 
of Actinobacteria and a higher amount of Verrucomicrobia 
compared to healthy subjects, although the role of this change 
in CKD is unclear [23]. Other research concluded that end-
stage disease is characterized by a decrease in the number of 

Bacteroides and an increase in the amount of Escherichia and 
Shigella [25], Also, other investigations report that microbiota 
contains a considerable number of bacterial families with 
urease, uricase, and tryptophanase activity, and increase of 
Escherichia/Shigella, Subdoligranulum, Fusobacterium in stage 5 
of the disease [2,32]. 

Such alterations induce structural changes that affect 
intestinal epithelium, tight junctions and increase gut 
permeability, thus facilitating the leakage of bacterial 
metabolites into circulation and triggering immune responses, 
setting up an infl ammatory microenvironment that accelerates 
the progression of CKD [6,7,27,34,35]. Dysbiosis induces 
proliferation and abnormal differentiation of B and T 
lymphocytes, resulting in the production of auto-antibodies and 
infl ammatory molecules, also activates the renin-angiotensin 
system, along with increased UT production, contributing 
to the deterioration of renal function [33]. In CKD patients, 
dysbiosis is involved in establishing end-stage Protein-Energy 
Wasting (PEW) [35], and it is a determinant factor in altering 
neuroendocrine-immunological communication mechanisms 
in kidney disease [33].

Uremic Toxins (UT)

Renal function decline and uncompleted clearance of 
nitrogen compounds result in UT accumulation [36-38]. 
Several UTs are generated in the gut, as by-products of amino 
acid degradation by intestinal bacteria [37]; and they are 
associated with increased risk of CVD [2,26,30,34]. They include 
p-cresyl (pC), p-cresyl sulfate (pCS), p-cresyl glucuronide 
(PCG), indoxyl sulfate (IS), indole-3-acetic acid (IAA), and 
trimethylamine N-oxide (TMAO).

Evidence supports that serum IS concentration is predictive 
of CKD progression [39], and that pCS correlates negatively 
with GFR [40]. A study in hemodialysis patients identifi ed that 
infl ammatory markers, such as IL-6, are correlated to serum 
IS levels [2]; Yeh et al. in 2016 reported that IS and pCS activate 

Figure 1: Microbiota alterations in CKD patients.
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infl ammatory pathways that accelerate renal damage and 
increase cardiovascular risk [41]. Other studies have concluded 
that these UTs are determinants of increased expression of 
infl ammatory markers, and increased oxidative stress, which 
enhances endothelial dysfunction and progression of CKD 
[32,34].

We now describe the different action mechanisms of each 
UT:

p-cresyl (pC) and p-cresyl sulfate (pCS): UT p-cresyl 
(pC) is a uremic toxin that binds to albumin for excretion 
by glomerular fi ltration [42], has a low molecular weight 
(MW: 108. 14 g / mol); it is synthesized from the catabolism 
of tyrosine and phenylalanine and is metabolized in the 
gut microbiota to its conjugates p-cresyl sulfate (pCS) and 
p-cresyl glucuronidate (pCG) [43]. Heir serum concentration 
is associated with GFR [44]. In the early stages of CKD, levels 
increase to 20.1 mg/L, and in the terminal stage, they reach 
40.7 mg/L, with concentrations up to 17 times higher than in 
healthy subjects [42]. 

Their metabolites have been associated with immune 
system dysfunctions [45-48]. Evidence in vitro found that 
pCS suppresses STAT5 signaling and signifi cantly reduces 
peripheral B cells [46], represses certain functions in innate 
immune system cells, decreases IL-12 synthesis, and increases 
IL-10 synthesis in peritoneal macrophages [47]. Another 
research reported that pCS interferes with antigen presentation 
by decreasing HLD-DR expression, reducing the adaptive 
immune response [48].

pCS is associated with cardiovascular damage and all 
its causes of mortality in CKD patients [43,49] due to the 
proinfl ammatory effect [12,50,51]. It is implicated in the 
formation of free radicals produced by leukocytes, endothelial 
cells, vascular smooth muscle cells, and renal tubular 
cells, and in the reduction of glutathione levels [52]. In vivo 
research reports certain mechanisms of damage of this UT, 
it causes mitochondrial damage by inducing AMPK-mediated 
mitochondrial hyperfusion [53]. Intervenes in endothelial 
dysfunction by correlating negatively with thrombospondin 
desintegrina metalloproteinase (ADAMTS) activity and 
positively with the markers of endothelial activation/damage 
ANGPT2 and MMP-7 [13]. An experiment in the cell model 
identifi ed that it induced osteogenesis by triggering pERK / 
pJNK / pP38 MAPK signaling pathways and NF-B translocation, 
which results in uremic vascular calcifi cation [54].

Indoxyl sulfate (IS) and indole-3-acetic acid (IAA): In the 
colon, intestinal bacteria break down tryptophan into indole-
3-acetic acid (IAA) and indole [55]; indole then enters portal 
circulation and the liver to be hydroxylated by cytochrome P450 
2E1 (CYP2E1), then is sulfated by sulfotransferase 1A1 (SULT1A1) 
to produce indoxyl sulfate (IS) [37]. The evidence suggests that 
accumulation of these UTs in CKD is associated with a decline 
in renal function and a worse prognosis [55]. IS plasma levels 
in CKD patients are 54 higher than in healthy subjects [45]. IS 
favors dysbiosis by downregulating tight junction-expressing 
proteins, such as occludin and claudin-1; moreover, it favors 
oxidative stress-producing free radicals [2]. 

Several studies correlate these UT to increased cardiovascular 
risk [2,56]; certain evidence in CKD patients associate IS with 
adverse cardiovascular events independently of renal function 
[57], while others report an increased risk of mortality in CKD, 
but no increased risk of cardiovascular events [43]. Evidence 
in vitro identifi es that IS promotes vascular smooth muscle 
cell (VSMC) proliferation and increases extracellular matrix 
(ECM) production and deposition, thus inducing calcifi cations 
[14], an additional investigation suggests that IS induces a 
macrophage-mediated infl ammation which blocks cholesterol 
passage to high-density lipoproteins (HDL) [14]. It is also 
reported that it induces oxidative stress in endothelial cells 
[45]. An experimental study in rats showed that exposure to 
IS induces arterial thrombosis by decreasing aortic levels of 
sirtuin 1, a class III histone deacetylase involved in oxidative 
stress [58]. However, evidence in humans is limited [57].

They are also implicated in fi brosis mechanisms [12]; the aryl 
hydrocarbon receptor (AhR) recognizes IS or IAA and triggers 
signaling pathways activating nuclear factor kappa light chain 
enhancer of activated B cells (NFkB) and the expression of 
adhesion molecules; in addition, it induces the production of 
ROS activating p38 and p42 / p44 mitogen-activated protein 
kinases (MAPKs), promoting liberation of proinfl ammatory 
and profi brotic cytokines, such as transforming growth factor 
beta (TGF-) and alpha-smooth muscle actin (-sma) [2,14]. 
IS has also been associated with an increase in IL-6 [12]. 

Trimethylamine N-oxide (TMAO): Trimethylamine 
N-oxide (TMAO) is a low-molecular-weight metabolite (75 
Da) derived from the metabolism of choline, carnitine, and 
betaine by intestinal bacteria; its synthesis involves two 
steps: release by gut microbiota from dietary Trimethylamine 
(TMA) precursors, actively absorbed into the bloodstream 
for oxidation to TMAO by the liver enzyme monooxygenase. 
Subsequently, TMAO and TMA can convert to dimethylamine 
(DMA) [59-62]. The elimination occurs via urine by glomerular 
fi ltration [61]. Consumption of foods such as meat, eggs, dairy 
products, and saltwater fi sh which are dietary sources of TMAO 
may infl uence its serum concentration as well as its metabolic 
precursors [60], however, the composition of gut microbiota is 
the main factor that regulates circulating TMAO concentration, 
along with BMF enzymatic activity and renal function [60,61]. 

The serum levels of TMAO increase as renal function 
decreases [61,62]. Various papers documented an increase in 
TMAO in CKD, with participation in renal fi brosis [37]. Hsu 
et al. in 2020 reported that stage 2-4 CKD children presented 
higher serum levels of DMA, TMA, and TMAO than in stage 1, 
whereas urinary levels of DMA and TMAO in advanced stages 
were lower [59]. Missailidis et al. reported that patients in 
stage 5 CKD had a 13-fold increase in TMAO levels compared 
to controls, and in stages 3-4 TMAO levels were inversely 
correlated with GFR [60]; Pelletier in 2019 confi rmed increased 
TMAO in hemodialysis patients [61].

High levels of TMAO in CKD are associated with increased 
cardiovascular risk and it is an independent predictor of 
mortality in stages 3-5 [2,60], evidence shows that elevated 
serum TMAO levels in CKD patients are associated with a 70% 
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higher risk of mortality [63]. Animal studies have reported 
that this UT enhances systemic infl ammation through 
macrophage activation and foam cell formation; it is also 
involved in proatherogenic mechanisms, including disruption 
of cholesterol transport and platelet response, promoting 
thrombosis [60,62]. Zhang et al. reported in 2021 that mice fed 
choline and TMAO increased phosphorylation of SMAD family 
member 3 (Smad3) in the kidney, an important regulator of the 
TGF- signaling pathway in fi brotic kidney disease [62]. 

Supplementation of prebiotics and probiotics in CKD 

Manipulation of the gut microbiome in CKD patients by 
supplementation with probiotics, prebiotics, or synbiotics has 
the target to reduce the synthesis and accumulation of UT, 
and to increase SCFA synthesis, to reduce disease progression 
[64]. Studies have been conducted on the use of probiotics, 
mainly Lactobacillus and Bifi dobacteria, as well as prebiotics in 
CKD, aimed at reversing intestinal dysbiosis [2], to increase 
SCFA concentration, as butyrate, which has protective effects 
maintaining intracellular intestinal pH, improving the 
composition of the gut microbiota [2]; and decreasing oxidative 
stress, systemic infl ammation, and UT production [65].

Prebiotics are non-host-digestible food components that 
selectively induce the growth or activity of a limited number 
of intestinal microorganisms that contribute to well-being 
[6,66]. The main prebiotics are inulin, fructooligosaccharides, 
galactooligosaccharides, soy oligosaccharides, 
xylooligosaccharides, and pyrodextrins [6]. Although the 
impact on the intestinal microbiota of prebiotic treatment 
has not been investigated by omics sciences [66], they appear 
to be a strategy within nutritional treatment to regulate the 
fermentable carbohydrate-protein balance in the colon [26]; 
here is evidence of their effect on the symptomatology of 
patients with CKD. 

A study conducted in patients with terminal CKD and 
supplemented with a prebiotic (starch with high corn-resistant 
amylose content) for 8 weeks concluded that the use of this 
prebiotic decreases intestinal infl ammation and oxidative 
stress [34]. Likewise, Sirich et al. supplemented patients on 
hemodialysis therapy with this type of resistant starch for 
6 weeks and found a signifi cant reduction in IS and pC [67]; 
another investigation, also in patients on replacement therapy 
using the same type of supplement, reported decreased levels 
of total and LDL cholesterol, and infl ammatory markers: 
TNF-, IL-6, IL-8 and C-reactive protein (pCr) [68]. 

Other types of prebiotics studied for the reduction of UT, 
are oat and barley beta-glucans; a study performed with 
healthy subjects supplemented with this class of prebiotics 
identifi ed that the serum level of pCS decreases, while the 
level of IS remains unchanged [21]. A 3-month, double-blind, 
randomized, controlled trial supplemented patients with 
end-stage CKD with 12 g of short-chain fructoligosaccharide 
(FOS)-type prebiotics, with no signifi cant reduction in serum 
or urinary levels of pCS, IS, or IAA, markers of intestinal 
permeability such as zonulin: or markers of infl ammation IL-6 
and pCr [26].

Probiotics are live microorganisms that are benefi cial 
to host health in adequate amounts [19,65]. Some of their 
functions include increasing the fermentation of dietary fi ber, 
reducing intestinal pH, decreasing uremia by degrading urea 
and uric acid, and modulating the composition of the intestinal 
microbiota [65]. Evidence suggests that the gut microbiota 
of CKD patients receiving probiotic supplementation utilizes 
metabolic waste as a substrate, leading to a decrease in toxic 
metabolites [65]. There are contradictory results on the effect 
of probiotics on the composition of the microbiota: in some 
studies, an increase in the proportion of genera with no effect 
on the composition and diversity of the gut microbiota has 
been observed, while in others changes in its composition have 
been observed [19].

Evidence suggests that probiotics positively affect the 
immune system, generating increased expression of anti-
infl ammatory cytokines, such as IL-10, and decreased 
expression of proinfl ammatory cytokines, such as IL-6 and 
TNF [65]. Studies with probiotic supplementation in CKD 
patients reported encouraging results against uremia and 
infl ammation, although long-term studies are needed [27]. 
SYNERGY (Symbiotics alleviating renal failure by improving 
gut microbiology) is one of the fi rst trials in this fi eld, no 
changes in GFR or proinfl ammatory markers were found, but 
changes in the nutritional status of patients were observed by 
increasing serum albumin levels and slowing the progression of 
proteinuria, as well as signifi cant increases of Bifi dobacterium 
in the composition of the microbiota [69]. 

A randomized clinical trial administering a probiotic 
supplement containing 16 × 109 CFU/day of L. casei shirota 
to patients with stage 3-4 CKD for two months, reported a 
decrease in serum urea levels; similar results were observed 
in a pilot study using different bacterial strains (L. acidophilus, 
B. longum and S. thermophilus) were used at doses of 9 × 109 
CFU/day for three months, fi nding a reduction in urea nitrogen 
levels; meanwhile, a placebo-controlled clinical trial with oral 
administration of B. longum capsules to HD patients reported a 
reduction in serum phosphorus concentration [65]. Meanwhile, 
an animal model study reported that treatment with 1 x 10 CFU/
kg/day of Lactobacillus increases urinary protein excretion 
[70].

The identifi cation of bacterial strains or intermediate 
metabolites as therapeutic targets to modulate altered gut 
microbiota could be a target in the treatment of CKD [6,19]. 
Modulation of the gut microbiota by prebiotics and probiotics 
provides an attractive approach in CKD with interesting 
fi ndings in animal models for the reduction of UT and intestinal 
permeability [24,70,71].

Conclusion

Uremic toxins accumulated as a result of impaired renal 
function modulate pathways of oxidative stress, systemic 
infl ammation, and dysbiosis in the context of CKD, so the 
study of their pathophysiological mechanisms is important to 
better understand their role in CKD progression.
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Restoration of the gut microbiota in CKD patients by 
prebiotic and probiotic supplementation is an alternative 
treatment but requires further research and evaluation to 
identify the type of prebiotic or useful bacterial strains, dose, 
and duration of treatment for benefi cial effects in CKD patients.
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