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Abstract

In the fi rst part of this work, the general Chemical and Biochemical Engineering (CBE) concepts and rules are briefl y reviewed, together with the rules of the control 
theory of Nonlinear Systems (NSCT), all in the context of (i) deriving deterministic Modular Structured Kinetic Models (MSDKM) to describe the dynamics of metabolic 
processes in living cells, and (ii) of Hybrid Structured Modular Dynamic Models (HSMDM) (with continuous variables, linking the cell-nano-scale MSDKM state variables to 
the macro-scale state variables of the bioreactor dynamic model). Thus, in the HSMDM model, both prediction quality and its validity range are improved. By contrast, the 
current (classical/default) approach in bioengineering practice for solving design, optimization, and control problems based on the math models of industrial biological 
reactors is to use unstructured Monod (for cell culture reactor) or simple Michaelis-Menten (if only enzymatic reactions are retained) global kinetic models by ignoring 
detailed representations of metabolic cellular processes. 

By contrast, as reviewed, and exemplifi ed in the second part of this work, an accurate and realistic math modelling of the dynamic individual GERMs (gene expression 
regulatory module), or genetic regulatory circuits (GRC), and cell-scale CCM (central carbon metabolism) key-modules can be done by only using the novel holistic ’Whole-
Cell Of Variable-Volume’ (WCVV) modelling framework, under isotonic/homeostatic conditions/constraints introduced and promoted by the author. An example was given 
in the same Part 2 for the case study of a dynamic model for the oscillating glycolysis coupled with the Tryptophan (TRP) oscillating synthesis in the E. coli cells.

As exemplifi ed in the present paper, the use of an HSMDM (WCVV) model can successfully simulate the dynamic of cell individual GERMs, and of GRC-s (i.e. operon 
expression here), simultaneously with the dynamics of the bioreactor. Among multiple advantages - state-variables prediction, of a higher accuracy, and detailing degree, 
over a wider time-range for the bioreactor dynamic parameters (at both macro- and nano-scale level); 

As exemplifi ed here, the immediate applications of such an HSMDM model are related to solving diffi  cult bioengineering problems, such as (i) in-silico off-line 
optimization of the operating policy of the bioreactor, and (ii) in-silico design/checking some GMOs of industrial use and able to improve the performances of the target 
bioprocess.
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Abbreviations and notations

aG: G-L-specifi c interfacial area; aL: L-G -interfacial area 
(identical to aG); aS: L-S-specifi c interfacial area; Aj: Atomic 
(molecular) mass of species j; a,b: Rate constants in the Hill-type 
kinetic expression; Cj: Species j concentration; Dj: Diffusivity of 
species j in a certain phase; D: Cell content dilution rate (i.e. 
cell-volume logarithmic growing rate); db: Bubble average 
diameter; dp: Particle diameter; dr: Reactor diameter; F: Feed fl ow 
rate; FL: Liquid feed fl ow-rate; g: Gravitational acceleration; [

2HgL
 ]: Concentration of the mercury ions in the liquid (bulk) 

phase of the bioreactor; Km: Michaelis-Menten constants; KG: 
G-L mass transfer coeffi cient (on the gas side); KH: Henry 
constant; KL: L-G mass transfer coeffi cient (on the liquid 
side); KS: L-S mass transfer coeffi cient (on the liquid side); k: 
Rate constants; nH: Hill-coeffi cient; nPD,nPR: Partial orders of 
reaction; nj: number of moles of species j; ns: number of species 
in the cell; NA: Avogadro number; p: overall pressure; Pj: Partial 

pressure of species j; 
4 3 3Re ( ) /d pL L L L   ---Reynolds 

number (liquid); Rg: universal gas constant; rj: species j 

reaction rate; / ( ),Sc DL L L S L  : Schmidt number (liquid); 

( ) / ,Sh k d Ds p S L : Sherwood number; T: Temperature; t: 

time; tc: cell-cycle time; uG: Gas superfi cial velocity; uL: Liquid 
superfi cial velocity; V: Volume; vm: Maximum reaction rate; X: 
Biomass in the bioreactor; Yj: Molar ratio of species j to the rest 
of the species in the mixture

Greeks

: Stoichiometric coeffi cients; , : Constants used in the 
evaluation of particle effectiveness in Table 8; G: Volume 
fraction of the gas in the bed; L: Volume fraction of the liquid 
in the bed; p: particle porosity; s: volume fraction of particles 
in the bed; : Optimisation objective function; : Thiele 
modulus; C: Carman shape factor (Trambouze et al., 1988); j: 
effectiveness factor of reaction j; μL: Dynamic viscosity of the 

liquid; : Density; π: osmotic pressure; : interfacial tension; L: 
power dissipated per unit mass of liquid; p: particle tortuosity

Superscript

*: Saturation

Index

App: Apparent; cell: Referring to the E. coli cell; cyt: 
cytoplasma; ef: effective; env: environment; G: referring to 
gas, or at the G-L interface; in: inlet; L: referring to liquid, or 
at the L-G interface; max: maximum; o: initial; p: particle; ref: 
reference value; s: referring to particle, or at liquid (L) – solid 
(S) interface, or referring to the steady-state; trans: referring 
to the transport.

Abbreviations

DAE: Differential-Algebraic Equations set; G-L: gas-liquid; 
G•: Gene; Gmer: mer plasmids generating mer operons in the 
cell; GmerX (or GX): mer genes (generic X, including 5 lumped 
genes denoted by G (lumped genome), GR, GT, GA, GD in 
(Figures 1-4); GRC: Genetic Regulatory Circuit; HSMDM: hybrid 
structured modular dynamic (kinetic) models; L-S: liquid-
solid; MetG, MetP: Metabolites; M-M: Michaelis Menten; MM1, 
MM2, PHM: reduced (apparent) kinetic models given in Table 8; 
NADPH: nicotinamide adenine dinucleotide phosphate; NutG, 
NutP: Nutrients; nM: Nano-molar; ODE: Ordinary Differential 
Equations Set; P•: Protein; PmerX: mer proteins [generic P, 
including 5 lumped proteins denoted by P (lumped proteome), 
PR, PT, PA, PD in (Figures 1-4)]; QSS: Quasi-Steady-State; 
RSH: Compounds including thiol redox groups; S: Substrate; 
SCR: Semi-Continuous Reactor; TF: Transcription Factor; 
TPFB: Three-Phase Fluidized Bioreactor; WCVV: Variable 
Volume Whole-Cell; X: Biomass; [.]: Concentration”

1. Introduction

In the last decades, there has been a tendency to replace the 
complex processes of fi ne chemical synthesis, highly energy-

Note

Part 1: (General concepts) of this paper is in-press with Current Trends in Biomedical Eng & Biosci., (Juniper, Irvine CA, USA), 22(1), 556080-556104 (2023), DOI: 
10.19080/CTBEB.2023.22.556080

Part 2: (Mathematical modelling framework) of this paper will soon appear in Annals of Reviews & Research, (Juniper publ, Irvine CA, USA)

Part 3: (Applications in the bioengineering area) of this paper will soon appear in Archives in Biomedical Engineering & Biotechnology, (Iris publ, San Francisco CA, USA), 
2023, ISSN: 2687-8100.

If parts 2 and 3 are not available, the reader is asked to consult the references [1-4].

Keywords

Biochemical engineering concepts; Deterministic Modular Structured Cell Kinetic Model (MSDKM); Hybrid Structured Modular Dynamic (kinetic) Models (HSMDM); 
Whole Cell Variable Cell Volume (WCVV) modelling framework; Whole Cell Constant Cell Volume (WCCV) modelling framework; Individual Gene Expression Regulatory 
Module (GERM); Genetic Regulatory Circuits (GRC), or Networks (GRN); Chemical and Biochemical Engineering Principles (CBE); Rules of the control theory of nonlinear 
systems (NSCT); Kinetic model of glycolysis in E. coli; Glycolytic oscillations; Three-Phase Fluidized Bioreactor (TPFB) for mercury uptake; Fed-Batch Bioreactor (FBR) 
for Tryptophan (TRP) production; E. coli GMO cells; Tryptophan production maximization in a FBR; Design GRC of a Genetic Switch (GS) type; Operating policies of a Fed-
Batch Bioreactor (FBR) for monoclonal Antibodies (mAbs) production maximization; Mercury-operon expression regulation in modifi ed E. coli cells; Cloned E. coli cells 
with mercury-plasmids; Gene knockout strategies to design optimized GMO E. coli for succinate production maximization; Pareto optimal front to maximize biomass and 
succinate production in Batch Bioreactors (BR) using GMO E. coli cells.
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consuming and generating large amounts of toxic waste, with 
biosynthesis processes (using isolated and purifi ed enzymes, 
or cell cultures as bio-catalysts). The motivation is given by 
the multiple advantages offered by enzymatic processes [3]: 
i) very high selectivity; ii) very high conversion; iii) does not 
generate toxic by-products; iv) very mild reaction conditions, 
easy to achieve without high costs (low temperatures of 20-
60°C, normal pressure, pH within controllable limits). Thus, in 
recent years, a signifi cant number of enzymatic or biological 
industrial processes have been reported [5-8] to obtain 
chemical products/derivatives in the fi ne organic synthesis 
industry, the pharmaceutical industry, the food industry, 
or the detergent industry, by using various bioreactors with 
cell or enzyme cultures [5,8]. Among these new processes is 
the production of derivatives of monosaccharides, organic 
acids, alcohols, amino acids, etc., using mono- or multi-
enzymatic reactors, or bioreactors with cell cultures used in 
the production of yeast, food additives, recombinant proteins 
(enzymes, vaccines), biopolymers [5,6,9]. The development of 
a sustainable biological process must consider several aspects 
related to the characteristics of the biocatalyst, the integration 
of the process and the minimization of costs, satisfying 
economic, environmental / safety, and social objectives [10-
12].

When scale-up a new biological process (of known kinetics) 
several biochemical engineering problems must be solved, 
consisting of:

i) Choosing the type of biological reactor most suitable for 
the studied bioprocess [6,13,14];

ii) Choosing the optimal mode of operation of the selected 
bioreactor (discontinuous BR; semi-continuous (fed-
batch) FBR with a variable feeding; discontinuous with 
intermittent addition of biomass/substrate BRP; or 
continuous stirred tank reactor CSTR, with continuous 
feeding and evacuation of the liquid-phase (chemostat), 
etc. [6]); 

iii) Choosing how to use the biocatalyst (biomass in a free 
state or immobilized on a suitable solid/gel support 
to increase its stability [13,14,16]). As discussed in the 
literature, the biocatalyst contributes the most to the 
production cost [3,16]. 

The importance of optimal operation of biological 
reactors

In the case of biological reactors (with free, or immobilized 
biomass), the trend in the biosynthesis industry is to use 
complex systems, with more effi cient genetically modifi ed 
micro-organisms (GMO), and employ sophisticated but 
effi cient immobilization systems, which prevent premature 
inactivation of the biomass due to mechanical and chemical 
stress from the bioreactor environment. Thus, modern 
biological processes, together with the multi-enzymatic 
ones, prove to be very effective in the biosynthesis of 
numerous chemical compounds, thus competing in terms of 
effi ciency with organic chemical synthesis, proceeding with 

high selectivity and specifi city, by reducing consumption 
of energy and generating less environmental pollution [3]. 
This characteristic of industrial biosynthesis is exploited for 
various economic purposes (industry, medicine, environment, 
agriculture, fuel production) [17,18]. In this context, the in-
silico derivation of an optimal operating policy of the industrial 
bioreactors becomes a challenging engineering problem.

As reviewed in the literature [1-4,19-22], and shortly in the 
Part-1 of this work, the in-silico (math/kinetic model-based) 
numerical analysis of biochemical or biological processes, 
by using the CBE concepts / numerical rules is proved to be 
not only an essential but also an extremely benefi cial tool 
for engineering evaluations aiming to determine the optimal 
operating policies of complex multi-enzymatic reactors [9,23-
26], or bioreactors [3,4,6,19,27,28]. 

Among these numerical tools, is the deterministic modular 
structured cell kinetic models (MSDKM - with continuous 
variables, based on cellular metabolic reaction mechanisms). 
and the hybrid structured modular dynamic models (HSMDM) 
(with continuous variables, linking the cell-nano-scale 
MSDKM state variables to the macro-scale state variables of 
the bioreactor dynamic model) are the essential ones., proved 
by the exponential-like increase in the reported applications in 
the last decades.

In Part-2 of this work, special attention is paid to the 
authors’ contributions related to the dynamics simulation 
of the Gene Expression Regulatory Modules (GERM) and of 
Genetic Regulation Circuits/Networks (GRC/GRN) in living 
cells, by introducing and promoting the concepts of a novel 
dynamic modelling framework of the cell processes, that is the 
so-called “WHOLE-CELL VARIABLE CELL VOLUME” (WCVV) 
for isotonic/homeostatic cell systems. The advantages of using 
the more realistic WCVV math modelling approach to simulate 
the cell metabolic processes have been proved and shortly 
reviewed when building-up dynamic modular models of CCM-
based syntheses, and GRC-s inside living cells. 

The MSDKM models can also be used to evaluate the cell 
metabolic fl uxes, thus assisting the in-silico design of GMOs. 
This area belongs to the border fi eld of Synthetic Biology 
defi ned as “putting engineering into biology” [29]. By inserting 
new genes (plasmids) or knock-out some of them, modifi ed 
CCM / GRC-s can be obtained inside a target micro-organism, 
thus creating a large variety of mini-functions / tasks (desired 
‘motifs’) to the mutant (GMO) cells in response to external 
stimuli [3,4,30-50]. 

Translation of the CBE and NSCT concepts/rules (see Part 
1-2 of this work) in Systems Biology, Computational biology, 
and Bioinformatics is leading to obtaining extended structured 
cellular kinetic models MSDKM including nano-scale state 
variables adequately representing the dynamics of the cell key-
reaction-modules. If the MSDKM model is further linked to 
those of the bioreactor macro-scale dynamic model, the result 
is the HSMDM dynamic model that can satisfactorily simulate, 
for instance, the self-regulation of the cell metabolism and its 
adaptation to the changing bioreactor environment, utilizing 
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complex GRC-s, which include chains of individual GERMs. 
The HSMDM kinetic models are related to solving various 
diffi cult bioengineering problems, such as (i) in-silico off-
line optimization of the operating policy of various types of 
bioreactors, and (ii) in-silico design/checking some GMOs of 
industrial use, able to improve the performances of several 
bioprocess/bioreactors.

Besides, the use of extended HSMDM models presents 
multiple advantages, such as (i) a higher degree of accuracy and 
the prediction detailing for the bioreactor dynamic parameters 
(at a macro- and nano-scale level); (ii) the prediction of the 
biomass metabolism adaptation over tens cell cycles to the 
changing conditions from the bioreactor; (iii) prediction of the 
CCM key-species dynamics, by also including the metabolites 
of interest for the industrial biosynthesis (Part 2, [4,5]); (iv) 
prediction of the CCM stationary reaction rates (i.e. metabolic 
fl uxes) allow to in-silico design GMO of desired characteristics.

As proved by Maria [1-4,51], and Yang, et al. [52], the 
modular structured kinetic models can reproduce the dynamics 
of complex metabolic syntheses inside living cells. This is 
why, the metabolic pathway representation of GRC and CCM 
in dynamic models, with continuous and/or stochastic variables 
seems to be the most comprehensive mean for a rational design 
of the regulatory GRC with desired behaviour [53]. The same 
MSDKM can satisfactorily simulate, on a deterministic basis, 
the self-regulation of cell metabolism for its rapid adaptation to 
the changing bioreactor reaction environment, using complex 
GRC-s, which include chains of individual GERMs.

As exemplifi ed in Parts 3 and 4 of this work, the MSDKM 
and HSMDM models (developed under the novel WCVV math 
modelling framework) can simulate the dynamics of the 
bioreactor simultaneously with those of the cellular metabolic 
processes occurring in the bioreactor biomass. 

This work is aiming at proving, by using a relevant case 
study, the feasibility, and advantage of using the relatively 
novel HSMDM concept by coupling the GRC-based cell 
structured deterministic nano-scale models with the macro-
scale state-variables of the analyzed bioreactor. The resulted 
hybrid dynamic model was successfully used for engineering 
evaluations and to design a GMO E. coli.

For more case studies on using MSDKM and HSMDM 
models, under the WCVV modelling framework, the reader is 
asked to consult the following works [3,4,55-58]:

1) In-silico design of a genetic switch in E. coli with the role 
of a biosensor [3,4,54-58]; 

2) An HSMDM math model able to simulate the dynamics 
of the mercury-operon expression in E. coli cells, and its 
self-regulation over dozens of cell cycles, simultaneously 
with the dynamics of the macro-level state variables 
of a semi-continuous reactor (SCR) of a Three-Phase 
Fluidized Bioreactor Type (TPFB). The same extended 
model was used for the in-silico designing of cloned E. 
coli cells (with variable mer-plasmid concentrations) 

aiming at maximizing the biomass capacity of mercury 
uptake from wastewaters [59-62]. This case study is 
also approached here.

3) An HSMDM math model able to simulate the dynamics 
of key-species of the CCM of E. coli cell coupled with the 
simulation of the macro-scale state variables of a Batch 
Reactor (BR). The HSMDM model was used for the in-
silico design of a GMO E. coli with a maximized capacity 
of both biomass and succinate (SUCC) production. The 
used numerical techniques were those of the gene 
knock-out, and of the Pareto-front for multi-objective 
problems [30]. 

4) The use of an HSMDM math model for the in-silico design 
of a GMO E. coli with a modifi ed glycolytic oscillator [31-
37,63-73]. The HSMDM model can be further extended, 
becoming the core of a modular dynamic model used to 
simulate the CCM and regulation of various metabolite 
syntheses, with application to in silico reprogramming 
of the cell metabolism to design GMO of various 
applications [3,4,32,74]. One example is the in-silico 
off-line optimization of the operating conditions of a 
fed-batch bioreactor (FBR) with GMO E. coli to maximize 
the production of tryptophan (TRP). Thus, compared to 
a simple batch bioreactor (BR) using a wild E. coli cell 
culture, the TRP production was increased by 73% (50% 
due to the in-silico design of a novel GMO E. coli strain, 
and 23% due to the model-based off-line optimization 
of the variable feeding of the FBR). [3,4,27,31,34,71,75]. 
Complex MSDKM structured models including CCM 
and GRC modules are able to predict conditions for 
oscillations occurrence for various cell processes [1-
4,31-34,37,51, 52,63,64,]. As studied by Yang et al. [52], 
“all biochemical reactions in organisms can not occur 
simultaneously due to constraints of thermodynamic 
feasibility and resource availability, just as all trains 
in a country cannot run simultaneously. Therefore, 
oscillations provide overall planning and coordination 
for the inner workings of the cellular system. This 
seems to be contrary to the theoretical basis of genome-
scale metabolic models (GEMs), which are based on the 
steady-state hypothesis and fl ux balance analysis [76], 
but just as computers will not operate in the same way 
as the human brain, this difference can be understood 
and accepted, so that non-equilibrium theory and the 
steady-state hypothesis have been and will continue to 
coexist and guide our reasoning.”[52] (see also Part 3 of 
this work).

5) The use of an extended HSMDM math model to simulate 
the dynamics of the nano-scale CCM key-species, and 
of the Tryptophan (TRP)-operon expression, and its self-
regulation, together with the dynamics of the macro-
scale state-variables of a FBR including genetically 
modifi ed E. coli cultures. Eventually, this dynamic model 
was used to design/check a GMO E. coli and to determine 
the multi-control optimal operating policy of a bioreactor 
(FBR) to maximize the Tryptophan (TRP) production 
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[3,4,27,33-36,74,75,77-86]. (See also Part 3 of this 
work).

6) An MSDKM math model able to simulate the dynamics 
of key-species of the CCM of E. coli cells involved in the 
synthesis of Phenyl-alanine (PHA). The HSMDM model 
was used to in-silico re-confi gure the metabolic pathway 
for Phenyl-alanine synthesis in E. coli [54] to maximize its 
production. That implies modifying the structure and 
activity of the involved enzymes, and modifi cation of 
the existing regulatory loops. Searching variables of 
the formulated mixed-integer nonlinear programming 
(MINLP) multi-objective optimization problem are 
the followings: the regulatory loops (that is integer 
variables, taking a “0” value when the loop has to be 
deleted, or the value “1” when it has to be retained); the 
enzyme expression levels (that is continuous variables), 
and all these in the presence of the stoichiometric and 
thermodynamic constraints. To solve this complex 
optimization problem, two contrary objectives are 
formulated: maximization of the PHA selectivity, 
with minimization of cell metabolites’ concentration 
deviations from their homeostatic levels (to avoid an 
unbalanced cell growth). The elegant solution to the 
problem is the so-called Pareto-optimal front, which is 
the locus of the best trade-off between the two adverse 
objectives. Choosing two problem-solution alternatives 
from this Pareto-curve [3,54] is to observe the large 
differences between the two pathways into the cell, fully 
achievable by using genetic engineering techniques to 
produce desirable GMOs.

7) A HSMDM model to simulate the dynamics of the key 
species and the FBR state variables used for monoclonal 
antibodies (mAbs) production. This extended dynamic 
model was used for the in-silico off -line derivation of the 
multi-objective optimal control policies to maximize 
the mAbs production in an industrial FBR [6].

2. The use of a hybrid WCVV-GRC structu-
red kinetic model to optimize a SCR-TPFB 
bioreactor used for mercury uptake from 
wastewaters by immobilized E. coli cells clo-
ned with mer-plasmids

The case study purpose – an overview

This section 2 exemplifi es the use of a complex HSMDM 
to solve an engineering problem at an industrial pilot scale, 
that is the use of a complex cell WCVV structured kinetic model 
of the mer-operon GRC expression (Figure 1) in an HSMDM 
model to optimize a pilot-scale semi-continuous (SCR) TPFB 
bioreactor (Figure 2) used for mercury uptake from wastewaters 
by immobilized E. coli cells cloned with mer-plasmids. The 
developed HSMDM dynamic model links the cell-scale 
model part (including the dynamics of the nano-scale key-
state variables/species) to the biological reactor macro-scale 
key-state variables for improving the both model prediction 
quality and its validity range. Eventually, the HSMDM model 
was used to in-silico design a GMO (i.e. an E. coli cloned with 

mer-plasmids in a degree to be determined) for improving its 
capacity for mercury uptake from wastewaters (Figure 3).

The {cell + TPFB} HSMDM dynamic model of the E. coli 
cloned bacterium can simulate the self-control of the GRC re-
sponsible for the mer-operon expression, and predict

a) The infl uence of the TPFB bioreactor control variables 
[such as the feed fl ow-rate (FL), the mercury ions 

concentration [ 2HgL
 ]in in the feeding liquid], and the 

biomass concentration in the bioreactor [X];

b) The infl uence of various bioreactor running parameters 
[such as the size of the solid porous particles (dp) of 
pumice on which the biomass was immobilized; the 
concentration [Gmer] of the mer-plasmids used in the 
cloned E. coli cells) on the bioreactor’s performance 
to uptake the mercury ions from wastewaters and in 
eliminating these ions as mercury vapours entrained 
by the continuously sparged air into the bioreactor 
[3,4,7,59-62,87].

This HSMDM dynamic model is a worthy example of applying 
WCVV models, and the GERMs properties (P.I.-s) described 
in Part 2 of this work, to adequately represent a complex 
modular GRC-s for the mer-operon expression in E. coli cells. 
The structured GRC-WCVV model was proposed by Maria [59-
61] to reproduce the dynamics of the mer-operon expression 
in Gram-negative bacteria, such as E. coli, and Pseudomonas 
sp., for the uptake of mercury ions from wastewaters under 
various environmental conditions. The complex structured 
dynamic modular model was constructed and validated by 
using the Philippidis et al. [88-90] experimental data, and the 
Barkay et al. [91] information on the mer-operon expression 
characteristics. 

Finally, this structured cellular GRC model was included 
in an HSMDM dynamic model of the SCR-TPFB bioreactor 
by Maria et al. [59-62] to simulate its dynamics over a wide 
range of operating conditions, that is FL = [0.01-0.04] L/min.; 

[
2
LHg 

]in = [10-40] mg/L; [X] =[250-1000] mg/L; dp = [1-4] 

mm; [Gmer] = [3-140] nM. 

As evidenced by this application, the current trend in 
bioengineering is to use multi-layer (hybrid) HSMDM models 
[3,4,92] to extend the detailing degree of the developed 
bioreactor dynamic models, by also including the dynamics of 
the concerned cell key-species metabolism. Exemplifi cation 
is made in this section by coupling an unstructured dynamic 
model of a TPFB, used for mercury uptake from wastewaters 
by immobilized E. coli cells, with a cell simulator of the GRC 
controlling the mercuric ion reduction in the bacteria cytosol. 
The obtained results reported:

a) A signifi cant improvement in the model prediction 
quality (ca. 3%-12% in state variables, and up to 40% in 
reduction rate vs. experimental information);

b) A signifi cant improvement in the detailing degree [i.e. 
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simulation of 26+3 (cell + bulk) state-variable dynamics 
(nano- and macro-levels) by the HSMDM model vs.- 
only 3 (bulk, macro-level) state-variable dynamics by 
the overall unstructured Monod / Michaelis-Menten 
kinetic model]. The major advantages of the hybrid 
HSMDM model come from the possibility of predicting 
the bacteria metabolism adaptation to environmental 
changes over a large number of cell generations (cell 
cycles), and also the effect of cloning cells with certain 
plasmids to modify its behaviour under stationary or 
perturbed conditions. 

This section exemplifi es the possibility of coupling an 
unstructured TPFB dynamic model including macro-scale state 
variables [93] used to simulate the dynamics of the mercury 
uptake by immobilized E. coli cells on pumice milli-meter size 
support, with a structured E. coli cell model of Maria [59-62]. 
The advantage of using such a hybrid (bi-level) modelling 
approach is related to the improvement of the prediction 
accuracy of the reactor performance/state variable dynamics, 

and of the prediction of the bacteria metabolism adaptation 
to environmental ‘step’-like changes in the environmental 
mercury content [ 2HgL

 ]env through the modelled cell GRC 
related to the mer-operon expression, and by mimicking the 
whole-cell growth under balanced conditions. 

If successful, such an approach can support the idea of 

I. Improving the bioreactor performances, by employing 
an off-line in-silico (model-based) multi-objective 
optimization procedure to determine the optimal 
operating policy of the bioreactor [59-62];

II. Improving the quality of process monitoring (control), 
by using an optimal operating policy determined with 
a reduced unstructured dynamic model obtained by 
lumping the extended HSMDM model [9,59,87];

III. In-silico design cloned E. coli with an increased content 
of mer-plasmids. Such a facility is offered only by the 
complex HSMDM dynamic model of increased predictive 

Figure 1: Time-dependent mercury transfer between the E. coli cell and the three-phase fl uidized bed bioreactor (TPFB), according to the proposed hybrid dynamic model 
HSMDM of Maria [59-62]. Enzyme concentrations in E. coli determine the apparent reaction rates in the bioreactor model (especially PT lumped permease, and PA lumped 
reductase), while the reactor state-variables (e.g. [Hg2+]L, nutrients) determine the cell metabolism and mer-operon expression adaptation. 
E. coli cell model notations: The simplifi ed GRC pathway of the mer-operon expression for the mercury ion uptake in E. coli cells includes 7 gene expression lumped 
regulatory modules (GERMs), by which 4 of type [G(PP)1] (see the Part-1 of this work) that is: 2 modules for mediated transport of [Hg2+]env into the cytosol (catalysed 
by PT) and its reduction (catalysed by PA); 5 regulatory modules of mer operon expression including successive synthesis of the corresponding proteins, that is: PR [ the 
transcriptional activator of other protein syntheses; its synthesis being triggered by the import of the mercury ions immediately linked as Hg(SR)2 into the cell]; the lumped 
PT permease; the lumped PA reductase, and of the control protein PD. One additional GERM regulatory module of the simplest type [G(P)1] (see Part 1 of this work) deals 
with the lumped proteome P and genome G replication into the cell (by thus mimicking the cell ”ballast”). The mer-operon GRC is placed in a growing cell, by mimicking the 
homeostasis, and cell response to stationary and dynamic perturbations in the environmental [Hg2+]env. The reductant NADPH and RSH are considered in excess of the 
cell. Notations: P = lumped proteome; G = lumped genome; NutG, NutP = lumped nutrients used for gene and protein synthesis, respectively; P• = proteins; G• = genes; RSH 
= low molecular mass cytosolic thiol redox buffer (such as glutathione). Perpendicular arrows on the reaction path indicate the catalytic activation, repressing, or inhibition 
actions. The absence of a substrate or product indicates an assumed concentration invariance of these species;  / Θ positive or negative feedback regulatory loops.
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Exemplifi cations of such modular GRC models used for the 
in-silico design of GMOs–s of industrial use include several 
case studies discussed by Maria [1-4,92] (Figure 5), and in 
Part 3 of this work. Due to the cell metabolism complexity, 
and the existence of control parameters at the cell-level 
(related to the strain phenotype), but also at the bioreactor 
macro-level (control state-variables), in-silico optimization 
of an industrial bioprocess by using GMOs often translated in 
a multi-objective optimization problem [27,30,34,35,55,59-
62,74]. Such an optimization problem is diffi cult to solve by 
using common numerical algorithms. A couple of case studies 
exemplify their own positive experience with using HSMDM 
including cell structured models of CCM, and of various GRC-s 
for optimizing industrial bioreactors, or for the design of some 
GMO–s for improving certain bioprocesses of practical interest 
are presented in Parts 3 and 4 of this work, and by Maria 
[1,2,3,4,27,30,33,36,59-61,74,92]. 

Mercury ion reduction in bacteria cells – the apparent 
kinetics

”Bacteria resistance to mercury is one of the most studied 
metallic-ion uptake and release processes (see the review of 
Barkay et al. [91]) due to its immediate large-scale application 
for mercury removal from industrial wastewaters [93-94]. 
The bacteria response to the presence of toxic mercuric ions 
in the environment 2Hgenv

  is surprising. Instead of building 

carbon- and energy-intensive disposal ’devices’ into the cell 
(like chelate-compounds) to ’neutralize’ the cytosolic mercury 

2Hgcyt


 and thus maintain a tolerable level, a simpler and 

more effi cient defending system is used. The metallic ions 
2Hgcyt


 are catalytically reduced to the volatile metal 
0Hgcyt , 

Figure 2: Simplifi ed scheme of the three-phase fl uidized bed reactor (TPFB). 
Notations: 1 - mercury ion fed solution including nutrients (C/saccharides, N/ureea, 
P/salts, mineral sources, pH-buffer additives, anti-bodies, etc.); 2  - liquid outlet; 3 - 
Hg vapour in air fl ow; 4 - sterile air input; 5 -  immobilized bacteria on porous support; 
6 - air bubbles.
The bioreactor performance depends on the following running parameters: 
suspended biomass concentration and effi  ciency; porous support size, feed fl ow 
rate, inlet [Hg2+], nutrients, additives, aeration rate, pH, etc. In turn, the biomass 
effi  ciency (mercury overall reduction rate) depends on the mer-operon enzymes, 
especially PT, and PA concentration (dependent on the cell resources/phenotype, 
and environmental [Hg2+]).

Figure 3: The present case study - In-silico design of a cloned E. coli with a maximized capacity of mercury uptake from wastewaters [9,59-62,88]. [Down-right] Prof. G. 
Maria and late Prof. W. Deckwer at the 2nd Croatian-German Conference on Enzyme Reaction Engineering, 21-24 Sept. 2005, Dubrovnik (Croatia), sharing opinions about the 
bioprocess of mercury removal from wastewaters by using cultures of cloned E. coli cells.

power. In general, such in-silico investigations to design 
GMOs are supported by the tremendous improvement 
in the computing power over the last decades, and by 
the continuous expansion of the available information 
from cellular bio-omics databanks (see Parts 1-2 of this 
work), despite steady efforts necessary to elaborate 
such detailed HSMDM cellular numerical simulators.
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Figure 4: The reduced cell model, accounting for the mer-operon expression (5 GERMs), coupled with 2 kinetic modules referring to the main enzymatic reactions. See also 
the (Figure 1) caption. Adapted from [5,6,59-62].

Figure 5: Some applications of GRC models [1,2,5,6,92].

less toxic, and easily removable outside the cell (as 
0HgL  in 

the liquid environment of the TPFB) by simple cell membranar 
diffusion. Such a process involves fewer cell resources and is 
favoured by the large content (milli-molar concentrations) of 
low molecular-mass thiol redox buffers (RSH) able to bond 

and transport 
2Hgcyt


 in the cytosol as Hg(SR)2 and of NAD(P)H 

reductants able to convert it into neutral metal 
0Hgcyt . (see the 

overall reactions in Table 1). A genetic regulatory circuit (GRC) 
responsible for the involved mer-operon expression controls 
the whole process, by including seven genes of individual 
expression levels of 7 encoded proteins, of which expression 
is induced and adjusted according to the level of mercury Hg 
(SR)2 and other metabolites into the cytosol (Figure 1). The 
whole process is tightly cross- and self-regulated to hinder 
the import of too large amounts of mercury into the cell, 
which eventually might lead to the blockage of cell resources 
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(RSH, NADPH, key-metabolites, and key- proteins), thus 
compromising the whole cell metabolism.

While the role of each mer-gene and mer-protein in the 
mercury ion reduction process is generally known, not all the 
regulatory loops of the mer-operon expression are perfectly 
understood, and the way by which the cell adapts itself 

to variations of mercuric ion concentrations 2Hgenv
 in the 

environment. Philippidis et al. [88-90] proposed a reduced 
apparent (unstructured, global) kinetic model, of the Michaelis-
Menten (M-M) type, to quickly simulate the main steps of 
mercury uptake by E. coli, that is the membranar transport of 

environmental 2Hgenv
  into the cell (of rt rate) and its reduction 

Figure 6: The macroscopic model of the three-phase fl uidized-bed bioreactor (TPFB) with suspended immobilized E. coli on pumice beads. The Michaelis-Menten mercury 
reduction model rate constants depend on the mer-plasmid level [59-62].

Figure 7: Three-phase fl uidized bed (TPFB) reactor parametric sensitivity related to the variations in the inlet [ 2Hg L
 ]in, leading to variations of the following operating 

variables: outlet [ 2Hg L
 ](top-left); outlet [ L

0Hg ](down-left); 2Hg L
  conversion (top-right); and outlet [

G
0Hg ](down-right). Nominal conditions: [Gmer] = 3 nM; FL  = 0.02 L/

min; biomass cX  = 1 g/L; particle size d p = 1 mm. The notation “in” refers to the bioreactor inlet. Simulations are made using the HSMDM structured kinetic model of the 
TPFB bioreactor.
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(rP rate, see Table 1). To highlight the slowest process step, 
separate experiments have been conducted with cultures of 
intact cells or ’permeabilized’ cells (with a more permeable 
cell membrane to metallic ionic species). The results clearly 
showed that membranar permeation is the rate-controlling 
step, being one order of magnitude slower than the cytosolic 
mercuric ion reduction. Identifi cation of rate constants of the 

two main reactions for cloned E. coli cells with an increasing 
copy number of mer-plasmids, in the range of [Gmer] = 3-140 
nM, compared to those identifi ed for [Gmer] = 1-2 nM (for 
wild-types of E. coli) reveals the following aspects (Table 1): 

(i) The rate constants are strongly dependent on the mer-
plasmid (genes) level in the cloned cells of E. coli, the real 
reaction mechanism inside the cell being more complex 

Figure 9: Three-phase fl uidized bed (TPFB) reactor parametric sensitivity related to biomass concentration  CX variations, leading to variations of:  outlet [ 2Hg L
 ](top-left); 

outlet [ 0Hg L ](down-left); 2Hg L
  conversion (top-right); outlet [ 0HgG ](down-right). Nominal conditions: [Gmer] = 3 nM; FL = 0.02 L/min; [ 2Hg L

 ]in = 20 mg/L; particle size dp = 1 

mm. Simulations are made using the HSMDM structured kinetic model of the TPFB bioreactor.

Figure 8: Three-phase fl uidized bed (TPFB) reactor parametric sensitivity related to inlet liquid fl ow rate FL variations, leading to variations of:  outlet [ 2Hg L
 ](top-left); outlet 

[
0Hg L ](down-left); 

2Hg L


 conversion (top-right); outlet [ 0HgG ](down-right). Nominal conditions: [Gmer] = 3 nM; [ 2Hg L
 ]in = 20 mg/L; biomass  CX = 1 g/L ; particle size dp = 

1 mm. Simulations are made using the HSMDM structured kinetic model of the TPFB bioreactor.
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than those suggested by the two apparent reaction rates 
(rt and rP) of Philippidis et al. [88-90];

(ii) Such reduced/global kinetic models can approximately 
represent the overall mercury uptake by the cells, and 
the steady-state process effi ciency, being useful for 
the bioprocess scale-up engineering quick but rough 
calculations [93];

(iii) The unstructured models can not represent the mer-
GRC response to various inducers, the cell response to 

stationary or dynamic perturbations in the mercury 

level (
2Hg L


= 2Hgenv
 ) in the bioreactor liquid-phase, 

and in its quasi-constant feeding. Also, the apparent 
M-M kinetic model can not explain and simulate/predict 
the self-regulation of the whole transport-reduction 
process, how the mer-gene expression is connected to 
the cell volume (biomass) growth, and the cell content 
dynamics and replication;

(iv) When an immobilized biomass alternative is used, 

Figure 10: Three-phase fl uidized bed (TPFB) reactor sensitivity related to particle size dp variations, leading to variations of: outlet [
2Hg L


](top-left); outlet [ 0Hg L ](down-left); 

2Hg L
  conversion (top-right); outlet mercury in the outlet-gas [ 0HgG ](down-right). Nominal conditions: [Gmer] = 3 nM; FL = 0.02 L/min; [

2Hg L


]in = 20 mg/L; biomass CX= 1 

g/L. Simulations are made using the HSMDM structured kinetic model of the TPFB bioreactor.

Figure 11: The nano-scale cellular enzymatic process in the immobilized E. coli bacteria: mer-operon (4 gene lumps) expression (Figure 4), and the main enzymatic reactions 
(mercury permeation, and its reduction). Adapted from [5,59-62].
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several global Michaelis-Menten simplifi ed kinetic 
models (denoted by MM1, MM2, PHM) were proposed 
by Deckwer et al. [93] (Table 8). By including these 
reduced global models in the TPFB bioreactor model 
(Table 7), the rapp mercury reduction apparent reaction 
rate results.

The TPFB bioreactor reduced model (with global kinet-
ics) and its nominal operating conditions

 To exemplify the construction of an un-structured dynamic 
model for the approached mercury removal process, the TPFB 
bioreactor of Deckwer et al. [93] was approached. The main 
characteristics and the nominal operating conditions of this 
TPFB bioreactor under a semi-continuous (SCR) operation are 
presented in Table 2 (with biomass immobilized on pumice), 
and Table 6 (with biomass immobilized on pumice). As a fi rst 
step in the engineering analysis of this TPFB bioreactor, it is 
important to emphasize, the requirement that the elaborated 
math model should be able to simulate the mercury removal 
under a wide range of operating conditions (especially those 

related to the mercury inlet concentration [ 2c
Hgenv ] in ). 

Besides, the dynamic model must include the ranked infl uential 
factors on the mercury uptake effi ciency in the approached 
TPFB bioreactor for further operating decisions. 

The used lab-scale TPFB bioreactor (Figure 2, and Figure 3, 
up-right) includes a resistant E. coli cell culture. The bioreactor 
is completely automated being able to maintain its control 
parameters of [Table 2 (pumice), and Table 6 (alginate)] at their 
optimal set-point, by ensuring a constant pH, temperature, a 
constant inlet feed fl ow-rate, and inlet mercury concentration 

[
2Hg L


] in, a constant sparkling air inlet feed fl ow-rate, and a 

constant concentration of nutrients used as C/N/P source for 
the biomass optimal growth. 

Initially, to study this bioprocess, Deckwer et al. [93] 
used E. coli bacteria immobilized on alginate beads (Table 
6 (alginate)), but further tests have been extended by using 
immobilized biomass on porous pumice granules of 0.9 mm to 
4 mm diameter (Table 2 (pumice)). The pumice carrier checked 
in the present paper is particularly attractive, the carrier 
exhibiting a high BET area and porosity, and a large pore 
size (even higher than 10 μm), thus allowing a good diffusion 
of the substrate (mercuric ions) to the cells from inside the 
support. The operating conditions are tightly controlled, that 
is the liquid fl ow rate, the aeration rate (pO2), pH, and the 
temperature required by an equilibrated bacteria growth [Table 
2(pumice), and Table 6 (alginate)]. The suffi cient supplied 
oxygen guarantees a good cell metabolism and a high content 
of cytosolic NADPH necessary for mercury reduction. Besides, 
the continuously bubbling air plays also the role of volatile 
metallic mercury carrier, by removing it from the liquid 
system. Eventually, the mercury vapours from the air leaving 
the system are condensed and recovered [93]. A background 
pollution of ca. 100 nM is considered in the input water (that is 
ca. 0.02 mg/L, which is smaller than the metabolic regulation 
threshold of 0.05 mg/L), thus maintaining active the mer-
operon into the E. coli cell. The biomass content of the support 
is variable (ca. 0.6-3 gX/L, according to [93,96], but a quasi-
constant level of ca. 1 gX/L can be maintained by employing a 
purge/renewal system for the solid particles. At an industrial 
scale, when treating polluted waters, the outlet gas (air) from 
the bioreactor, containing the volatile metallic mercury, is 
passed through an adsorption device, or a de-sublimation 
system allowing the recovery of metallic mercury [97].

To simulate the (semi-)continuous TPFB bioreactor 

Figure 12: The main characteristics of the E. coli (K-12 strain) used in the present case study. Data from EcoCyc [103].
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Table 1:: Unstructured (apparent, reduced, global) kinetic model of Michaelis-Menten type for mercury ions reduction by E. coli (after Philippidis, et al. [88-90]). Notations: 

substrate S = L
2Hg  =

2Hgenv


; PT = lumped permease for membranar transport of 2Hgenv
 ; PA = reductase of cytosolic mercury ions; RSH = low molecular-mass thiol redox 

cytosolic buffers; NADPH = nicotinamide adenine dinucleotide phosphate; ‘env’ = environmental; ‘cyt’ = cytosol. Adapted after [59-62].

Table 2::Nominal operating conditions and characteristics of the semi-continuous (SCR), three-phase fl uidized bed (TPFB) reactor used for mercuric ions reduction (uptake) 
by the immobilized E. coli cells on pumice porous support (Footnote a). Notations are as provided in the Abbreviations and Notations chapter.

Footnotes:
(a) fl uid physical properties correspond to those of water and air at the operating conditions.
(b) see the calculation rule of Table 3.
(c) particle tortuosity was evaluated by using the Shen and Chen [111] formula )11/( 3 pp

2
p   .
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Table 3::The macro-level state variables of the HSMDM dynamic model of the three-phase fl uidized bed (TPFB) SCR bioreactor [23,59-62,98,99,101]. Index „s” = concentration 
at the particle surface (considered identical to those in the bulk phase).
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performance, a simple unstructured dynamic ideal model 
was considered (Table 7), as a fi rst approach [98,99], by 
assuming homogeneous (perfectly mixed) liquid and gas 
phases, and a uniform distribution of the solid particles (of 
uniform characteristics) in the G-S-L fl uidized bed. This 
reduced TPFB bioreactor dynamic model accounts for only 
the apparent (Michaelis-Menten) mercury uptake kinetics 
(denoted by MM1, MM2, PHM) of Deckwer et al. [93] (Table 8). 
For such global kinetics, the apparent mercury reduction rate 
(rapp) necessary in the bioreactor model (Table 7) is evaluated 

following the (Table 8) rule. The apparent rate 
0Hgcyt  was 

evaluated by solving on every integration time-increment the 
quasi-steady-state equality of mass fl uxes at the solid-liquid 
(S-L) external interface (on the liquid side), by also including 
the external diffusion coeffi cient KSaS [100]. This rule also 
includes the diffusional resistance of the substrate (mercury 
ions) / product (dissolved metallic mercury) transport through 
the support pores.

If the apparent (Michaelis-Menten) mercury uptake kinetics 
of Philippidis et al. [88-90] (Table 1) are introduced in the TPFB 

bioreactor model, then a better unstructured global model is 
obtained (Table 3). By also including the [Gmer]-dependent 
rate constants, it results in the apparent mercury reduction 
rate (rapp) by the immobilized bacteria of concentration cX in 
(Table 1) in the spherical solid carrier [of fraction s in Table 2 
(pumice)] for different levels of [Gmer] plasmids. The mercury 
mass balance in the liquid and gas phases is presented in 
(Table 7). This reduced (unstructured) TPFB reactor dynamic 
model (Table 7, and Table 8) includes terms referring to the 
mass balance in the bulk (liquid, L) phase, the gas phase (G), 
the interphase L-G transport (rtrans) of the volatile mercury, and 
the overall/apparent bioprocess of mercury reduction inside 
the solid particles (rapp). In such a way, the apparent mercury 
reduction rate also includes the diffusional resistance of the 
substrate (mercury ions) / product (dissolved metallic mercury) 
transport through the pumice support pores.

A hybrid reduced/unstructured dynamic model of the TPFB 
can by constructed by linking the macro0scale state-variables 
of the TPFB (Table 7), with the Michaelis-Menten kinetics of 
Philippidis et al. [88-90] (Table 1). This apparent model (Figure 
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[1,2,59-62]

[88-90]

Table 4::The cell-level state-variables of the structured HSMDM model of the TPFB including the variable cell-volume whole-cell (WCVV) model proposed for the reduction 

of cytosolic 2Hg   to 0Hg  in E. coli cells. [59-62]. TF = transcription factor.
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Footnotes:
(a) variable volume formulation of reaction rates ( / ) /jdn dt V .

(b) identifi ed for Table 2 conditions, and [Gmer] = 140 nM.

(c) adopted value of ca. (106-107) sD    [1,39,113].

(d) the following linear dependence was fi tted from data: )aa(aa minmaxmin  min
, ,( )Hg in Hg inc c  / max min

, ,( )Hg in Hg inc c , with mina = 

2.6, maxa = 4.1, and a = 3.0 for [Gmer] > 124 nM. Outside the correlation range of [
min

,Hg inc ,
max

,Hg inc ] = [10,100] mg/L, the value a= 1.5 should be adopted.

(e) the reaction rate is ca. 104 nM/min, being similar to the TF (repressor monomer) Dimerization (with a rate constant of ca. 102 nM-1 min-1  [38]). 
(f) the reaction rate is ca. 104 nM/min, similar to the TF binding to the gene operator (with a rate constant of ca. 102 nM/min [38]).
(g) the reaction rate is ca. 101 - 102  nM/min, being similar to the mRNA (genes) synthesis reactions (with a rate constant of ca. 10-4 1/nM/min [114]).
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Table 5: E. coli cell characteristics and the considered cell key-species average concentrations. After [59-62].

Monoculture cell:

Cell cycle time [116] tc = 30 min (wild); up to 4 - 6 h (mutants)

Born cell volume [117] vcyt,o  = 0.6 × 10-15 L

Cell content dilution rate (average) Ds = In(2) / tc  = 1.3863 1/h

Cell concentration in biomass
ccell = 21012 cells/gX , adjustable; adopted 51012 cells/gX by Philippidis et al. 
[88-90]

Biomass concentration in the bioreactor cX = 1 g/L (ca. 0.6-3 g/L; [93,96] )

Cell density in the culture medium pcell = 106 mg/(L cell) [118]

Species concentrations in nM (ref. to cell volume; see the model of 
Table 4)(Footnote a)

Reference value
Simulated homeostasis (nM concentrations) for inlet 
[Hg2+]= 20 mg/L

Observations

Mercury in the cytoplasm, [
cyt
2Hg  ]

avg. 1866
0-3430

212.7 [88-90]

Lumped nutrients used for genome synthesis, [NutG] (ref. to the 
environmental volume)

3 107 3107 [114]

Lumped nutrients used for proteome synthesis, [NutP](ref. to the 
environmental volume)

3108 3108 [114]

Lumped metabolites used for proteome synthesis, [MetP] 3108 3108 [114]

Lumped metabolites used for genome synthesis, [MetG] 2.01107 2.01107 Footnote (b)

Lumped genome, [G] (active) = [GP](inactive) 4500/2 4500/2 Footnotes (c,d)

Lumped proteome, [P] 107 107 Footnote (e)

mer operon plasmid vectors, [Gmer]
1-2 (wild)
3-140 (cloned)

3 (cloned) [88-90]

Genes expressing the mer proteins, [GR], [GT], [GA], [GD] [Gmer]/3 [4.8,16.4,25.6,31.0] [59-61]

Catalytic inactive forms of mer genes, [GRPRPR], [GTPTPT], 
[GAPAPA], [GDPDPD]

[Gmer]/3 [0.2, 2.1, 8.2, 22.0]
[59-61];
Footnotes (d,f)

Proteins initiating and controlling the mer operon expression, [PR], 
[PD]

100 [19.9,84.2]
Fitted from data
[59-61]

Lumped permease (PT= PmerT + PmerP + PmerC) for membranar 

transport of env
2Hg 

500-7000
(avg. 2800)

1021.8 Footnote (g)

Reductase for cytosol mercury ions, [PA]
500-4000
(avg. 1800)

1022.0
Fitted from data;
[59-61]
Footnote (h)

Protein dimers of mer proteins with TF role in the mer gene 
expression, [PXPX] with X= R, T, A, D.

4
(1-100)

4 Footnote (i)

Footnotes:
(a) Inner cell concentrations are evaluated with the formula [1,4]: jc cj = (copy numbers of species j per cell) / (NA   Vcyt) , where   NA= 6.022  1023 is the Avogadro number, Vcyt 

= average volume of the cell.

(b) calculated from the state-law constraint for an isotonic and isothermal cell system (subscript ‘env’ refers to the bulk liquid phase environment): 

  
all

j
env,j

all

j

all

j

all

j
cyt,Pjcyt,Gj

all

j
cyt,MetPjcyt,MetGj ccccc .

(c) The considered K-12 strain of the E. coli genome includes ca. 4500 genes [103]. 
(d) The maximum regulatory effectiveness of expression takes place for equal active and inactive G-forms at steady-state [56,57], i.e. [Gj]s=[GjTFj]s, where TF denotes the 
transcription factor adjusting the gene activity.
(e) E. coli genome includes ca. 1000 ribosomal proteins of 1000-10000 copies, ca. 3500 non-ribosomal proteins of avg. 100 copies, and ca. 4500 polypeptides of avg. 100 
copies [103].
(f) As reported by Philippidis et al. [88-90], the level of mer genes represents only a fraction of the introduced plasmid vectors (of Gmer level); as an average, this fraction is 
ca. 1/3 (as estimated by Maria [59-61]).
(g) lumped permease PT concentration is evaluated based on the experimental observations of Barkay et al. [91], with the approximate formula (in nM): [PT] ≈ 1.5 {[PA] + 15} 
+ [PR]; (see the details of Maria [59-61])
(h) PA reductase level (of average 1800 nM) is comparable with those of the permease PT at homeostasis (the Michaelis-Menten constant being 3700 nM for Hg(2+) binding 
reaction [91].
(i) Evaluated by optimizing the mer-operon genetic regulatory circuit holistic properties [59-61].
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6) can only give a rough idea of the bioreactor dynamics, but it 
is unable to describe the biomass adaptation to environmental 
changes, that is variations in both inlet feed fl ow-rate and 
inlet mercury load in the infl uent. To offer a prediction to 
such engineering requirements, a structured kinetic model of 
the mercury uptake in the E. coli bacteria at a cellular level is 
necessary. The next chapter describes the complex HSMDM 
structured model proposed by Maria [59-61], by considering 
the macro-level TPFB model linked to the cell biological 
process included by using the WCVV modelling approach (Part 
2 of this work) to simulate the dynamics of the cell mer-operon 
expression self-regulation in the wild, or modifi ed E. coli under 
various environmental (bioreactor operating) conditions. 

The resulting unstructured TPFB global dynamic model of 
(Table 7), while keeping the apparent M-M kinetics of (Table 
8) only for the mercury cytosolic reduction step, allows a rough 
simulation of the transient operating conditions of the TPFB 
bioreactor. This apparent model of (Figure 6, plus Table 8), 
even if suitable for quick/rough engineering evaluations, is 
unable to describe the biomass adaptation to environmental 
changes, that is variations in the both inlet feed fl ow rate and 
inlet mercury load in the infl uent, or the effect of cloning E. coli 
cells on the bioreactor effi ciency.

Extended HSMDM model of the TPFB bioreactor

To avoid the above-mentioned limitations of the 
unstructured / reduced dynamic model of the TPFB bioreactor, 
an extended and complex HSMDM structured model was 
elaborated by also including the effect of cloning E. coli with 
various concentrations of mer-plasmids [Gmer], by also 
including the Michaelis-Menten [Gmer]-dependent kinetics of 
Philippidis et al. [88-90] in the cytosolic mercury reduction 
step (Table 4).

To offer a prediction to such engineering requirements, 
an extended HSMDM structured kinetic model of the mercury 
uptake in the E. coli bacteria at a cellular level is necessary (of 
WCVV type, see Part-2 of this work). And, of course, this cell-
state-variables (nano-scale) part of the HSMDM should be 
linked to the TPFB bioreactor state-variables (macro-scale), 
because they are interrelated.

This section describes the WCVV-type structured cell model 
proposed by Maria [59-61] to simulate the dynamics of the mer-
operon expression induction by the presence of environmental 
mercury, and the expression self-regulation in the “wild”, 
or in-silico design GMO E. coli under various environmental 
(bioreactor operating) conditions. 

This HSMDM structured and modular cell kinetic model 
has been developed by Maria [59-61]. Roughly, the part of the 
extended HSMDM structured model referring to the mer-operon 
expression WCVV model includes a GRC of 7 GERMs (Figure 1) 
linked by following the rules described in this section, and by 
accounting for the few experimental information of Philippidis 
et al. [88-90], and of Barkay et al. [91]. The derived GRC model 
can simulate the dynamics of the mer-operon expression, and 
the process self-control at a molecular level under isothermal 
and isotonic conditions.

The extended HSMDM structured bioreactor bi-level model 
includes two inter-connected parts: (a) The macro-level state-
variables of the TPFB bioreactor (Table 3), that is the mass 

balance of 
2+

HgL , 
0

HgL in the liquid-phase, and of 
0

HgG  in 

the gas-phase; (b) The cell nano-level state-variables, that 
is the mass balance of the cell key-species included in the 
WCVV-GRC model of (Table 4), completed with the [Gmer]-
dependent apparent Michaelis-Menten kinetics of (Table 1) for 
the mercury reduction reaction in the cell cytosol. All the cell 
parameters included in the HSMDM model correspond to the E. 
coli characteristics (Table 5), and (Figure 12). 

The macro-scale state variables

More specifi cally, the mercury differential mass balance, in 
the TPFB model of (Table 3) includes the following terms:

(i) The apparent mercury reduction rate, evaluated at the 
solid interface; 

(ii) The substrate (that is S = 
2Hg L


 = 
2Hgenv


) diffusional 

transport in the particle, expressed by the effectiveness 
factor () evaluated using the Thiele modulus for a 
Michaelis-Menten type reaction [101], the effective 
diffusivity (DS,ef) accounting for the molecular diffusion 
(DS,L), the particle porosity (p) and the tortuosity ( ) 
(other resistances being neglected [102]);

(iii) The apparent rate rj, app was evaluated by solving on 
every integration time-increment the quasi-steady-
state equality of mass fl uxes at the solid-liquid (S-L) 
external interface (on the liquid side), by also including 
the external diffusion coeffi cient kSaS [100]. This rule 
also includes the diffusional resistance of the substrate 
(mercury ions) / product (dissolved metallic mercury) 
transport through the support pores.

(iv) The liquid-to-gas transport rate rtrans of the metallic 

mercury (
0 0

Hg to Hg
L G

), evaluated from the quasi-

steady-state equality of mass fl uxes at bubbles 
G-L interface, by accounting for the mass transfer 
coeffi cients kLaL (on the liquid fi lm side; experimental 
value adopted), and kGaG (on the gas fi lm side; evaluated 
from the Sharma’s relationship given by Trambouze et 
al. [99] ). 

The cell-scale state variables 

This paragraph describes the WCVV structured cell model 
proposed by Maria [59-61] to simulate the dynamics of the 
mer-operon-induced expression, and its self-regulation under 
various environmental conditions. This model was constructed 
and validated by using the experimental data of Philippidis et 
al. [88-90], and the experimental information of Barkay et al. 
[90] on the mer-operon characteristics. The WCVV cell model 
was built up by accounting for the GERMs library, their P.I.-s, 
and the linking rules presented in Part 2 of this work.
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The proposed E. coli cell model by Maria [59-61] includes 
the GRC responsible for the control of the mer-operon 
expression and the whole process of mercury ions removal. 
The proposed GRC includes 4 lumped genes (denoted by GR, 
GT, GA, GD in (Figure 1, Figure 2, Figure 3, and Figure 4) of 
individual expression levels induced and adjusted according 
to the level of mercury and other metabolites into the cytosol. 
As it follows from these fi gures, the mer-operon expression 
process is induced by the presence of a small concentration of 
mercury ions in the environment, leading to the appearance 
in the cytosol as Hg(SR)2 compounds. The whole process is 
tightly cross- and self-regulated to hinder the import of large 
amounts of mercury into the cell, which eventually might 
lead to the blockage of cell resources (RSH, NADPH, other 
metabolites, and proteins), thus compromising the whole cell 
metabolism. The GRC model includes four GERMs of simple 
but effective [G(PP)1] type (see the discussion of Part-2 of this 
work) as follows (see Figure 11, and Table 4):

(i) A GERM to regulate the Hg2+ transport across the 
cellular membrane, mediated by three proteins (PmerP, 
PmerT, and PmerC) from the periplasmatic space, 
considered as a lumped permease PT in the model. 
Phillippidis et al. [88-90] found this transport step to 
be energy-dependent and the rate-determining step for 
the whole mercury uptake process. Once the mercuric 
ion complex arrives in the cytosol, thiol redox buffers 
(such as glutathione of millimolar concentrations) form 
a dithiol derivative Hg(SR)2. Instantly, the GT lumped 
gene expression is induced by the regulatory protein PR, 
and easily ‘smoothed’ by the large ‘ballast’ effect of the 
proteome lump P. (see rule 6 of chapter. 2.3.6 of Part-2 
of this work). 

(ii) A GERM to control the expression of the PR protein that 
induces and controls the whole mer-operon expression 

in the presence of cytosolic 
2Hgcyt


 (even if they are 

present in traces, that is low nM concentrations, (Table 
5) and Figure 12). This GERM acts as an amplifi er of 
the mer-expression leading to a quick (over ca. 30 s) 
cell response by starting the mer-enzymes production. 
First, the expression of the GR gene leads to obtaining 
the encoded PR protein. The process magnitude is also 
controlled by the protein PD, present in small amounts 
in the cell. 

(iii) A GERM to control the expression of PA enzyme 

responsible for the Hg(SR)2 (that is 
2Hgcyt


) reduction to 

metallic mercury ( 0Hgcyt ) into the cytosol. The metallic 

mercury is relatively non-toxic for the cell, being 
easily removable through membranar diffusion into 

the bioreactor bulk liquid phase (
o

Hg
L

). From here, 

metallic mercury (
o

Hg
L

) passes into the gas phase 

(air bubbles) 
o

Hg
G

, being entrained and continuously 

removed by the sparged air as mercury vapours (
o

Hg
G

), 

to be later recovered. The GA gene expression is induced 
and controlled by the PT protein, whose expression is 

controlled by the PR level, which in turn is controlled by 
the cytosolic mercury and PD levels.

(iv) A GERM controlling the protein PD synthesis. This 
protein has a complex role, by maintaining a certain 
level of GR expression even when the mercury is absent 
in the cytosol [91]. It also hinders the over-expression 
of GR and GT when too large concentrations of mercury 

2Hgcyt


 are present in the environment.

(v) A GERM controlling the replication of the lumped cell 
proteome (P) and genome (G) (of concentrations 107 nM, 
and 4500 nM, respectively, to mimic the effect of “cell 
ballast”, see Part-2 of this work) in the immobilized 
E. coli cells. These data are based on the Ecocyc [103] 
databank (Table 5, and (Figure 12), thus mimicking the 
cell ’ballast’ effect on the cell genes expression, and on 
all considered reactions. The need to include the cell 
content lump (the so-called ’cell ballast’) in the WCVV 
model is legitimate by the possibility offered by such a 
structured cell model to reproduce the smoothing effect 
of perturbations leading to more realistic transient 
times (compared to a cell with a ‘sparing’ content), 
the synchronized response to certain inducers, and the 
‘secondary perturbation’ effect transmitted via the cell 
volume to which all cell components contribute (see the 
discussion in the Part-2 of this work).

(vi) Thus, the whole mer-operon expression consists of 
a controlled expression in cascade (Figure 11) of all 4 
mer-genes {GR, GT, GA, GD in (Figure 1, Figure 2)}.

In total, the cell GRC dynamic model describing the mer-
operon expression includes only 26 individual or lumped 
cellular species involved in 33 reactions (Figure 1, Figure 11, 
and Table 4). The structured cell WCVV model is presented in 
the (Table 4). The cell model is coupled with the SCR –TPFB 
dynamic model (Table 3) through the rj,app link to the individual 

reactions ,( , )rj Cj S  occurring inside the cell. The WCVV cell 

model includes not only the reactions and the dynamics of the 
mer-GRC, but also the enzymatic reactions directly responsible 

for the environmental mercury 
2

Hgenv


 (also denoted by 
2

HgL


) 

import into the cell as 
2

Hgcyt


 , and for its reduction to cytosolic 

metallic mercury 
0

Hgcyt  in the E. coli cells cloned with a defi ned 

[Gmer] concentration of mer-plasmids. 

All reactions in the cell model of (Table 4) are considered 
elementary, except some of them for which extended 
experimental information exists, that is [59-61]: 

a) A Michaelis-Menten rate expression for the mercuric 
ion permeation through the membrane into the cell;

b) A Michaelis-Menten rate expression for the mercuric 
ion reduction in the cytosol;

c) A Hill-type quick induction of the GR expression that 
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can rapidly initiate the production of permease PT 
(through the control protein PR) when mercuric ions 
are present in large amounts. 

d) Dimmerization reactions of TF-s are considered to be 
much more rapid than the enzyme synthesis, while 
equal concentrations of active gene (G) and inactive 
(GPP) forms of the generic gene G are considered at 
homeostasis to maximize the GERM effi ciency (see 
Part-2 of this work) (Figure 1, and Figure 11). 

e) The lumped proteome P, present in a large amount, 

is included in all gene expression rates, thus leading 

to a more realistic evaluation of the GERM regulatory 

effi ciency indices P.I.-s (see Part-2 of this work) 

[1,2,3,4,57,58]. 

f) The WCVV model equations for the mercury uptake in E. 

coli, together with the general hypotheses of the WCVV 

model are presented in (Table 4). The cell is considered 

an open system, of uniform content and negligible inner 

gradients. To not increase the number of parameters, the 

structured model includes GERM of the simplest form 

[G(PP)1] (see Part-2 of this work) for all mer-genes, by 

using dimeric TF-s (of Protein: Protein type) to increase 

the GERM regulatory effi ciency, as experimentally 

proved by [1,2,3,38,55,58]. The resulting HSMDM model 

includes 26 individual or lumped cellular species and 

33 reactions. All reactions are considered elementary, 

except some of them for which extended experimental 

information exists, that is the Michaelis-Menten rate 

expression for mercury permeation into the cell, and 

its reduction in cytosol. A Hill-type induction of the GR 

expression is adopted to rapidly amplify the mer-operon 

expression when mercuric ions are present in signifi cant 

amounts inside the cell. Dimerization reactions of TF-s 

are considered to be much more rapid than the enzyme 

synthesis, while equal concentrations of active (G(i)) 

and inactive (G(i): TFTF) forms of the generic gene G(i) 

are considered at homeostasis to maximize the GERM 

effi ciency [1,2,3,4,55]. The homeostatic characteristics 

of E. coli cells (belonging to a uniform culture) from 

the reactor, and the adopted species concentrations are 

presented in (Table 5). 

g) The model rate constants are estimated from solving 

the cell stationary mass balances for nominal 

concentrations of observable species (see Part-2 of this 

work), but also from optimizing the GERM regulatory 

indices (see Part-2 of this work), for instance: (1) by 

adjusting the optimum TF level of gene expression 

to obtain the minimum recovering times after a 10% 

dynamic perturbation in one of the key species, and 

(2) realize the smallest sensitivities of the homeostatic 

species concentrations vs. external perturbations (see 

Part-2 of this work for an extended discussion). The 

E. coli cell characteristics and the considered cell key-

species homeostatic concentrations used in the rate 

constants estimation are given in (Table 5). Exceptions 

are the Michaelis-Menten (M-M) rate constants for the 

mercury transport and its reduction in cytosol adopted 

from the Phillipidis et al. [88-90] kinetic data. By 

adopting this M-M reduced model, the rate constants 

of these two metabolic steps depend on the amount of 

[Gmer] plasmids in the cloned E. coli cells (Figure 11, and 

Figure 6). Simple correlations are used to include this 

essential aspect in the model.

HSMDM structured model advantages

As extensively discussed in Part 2 of this work, and proved 
in this section, such a cell WCVV structured model presents a 
large number of advantages, being able to:

1) Simulate the cell metabolism adaptation when the 
environmental mercury level changes. Such a 
reconfi guration of the levels of mer-genes and mer-
proteins is presented in (Figure 13) as a step response 

after a ‚step’-like perturbation in the mercury level 

from [
2Hgenv


]s = 0.1 μM to 10 μM (ca. 2 mg/L), in a 

cloned E. coli cell with mer-plasmids of [Gmer]= 140nM, 
compared to a cell cloned with only [Gmer]= 3 nM. The 
transient state toward the cell’s new homeostasis of the 
“adapted” mer-gene/protein levels stretches over 15-20 
cell cycles (of ca. 0.5 h each) as long as the environment 
stationary step perturbation is maintained. An E. coli 
cell with a higher content of mer-plasmids reacts much 
strongly to the environmental perturbations, by quickly 
starting to produce the enzymes responsible for the 
mercury removal.

2) Because the Hg2+ reduction rate constants are dependent 
on the mer-plasmid level in the cell, the WCVV GRC 
model can predict the maximum level of mer-plasmids 
that can be added to the cell genome for improving 
its mercury uptaking capacity without exhausting the 
internal cell resources, thus putting in danger the cell 
survival. Consequently, it follows that this cell MSDKM 
model allows the in-silico design of modifi ed E. coli cloned 
with a suitable amount of mer-plasmids to improve its 
effi ciency in cleaning wastewater by improving the 
mercury uptaking capacity. As an example, (Figure 14 
presented the cell key-species stationary levels, and 
the mercury concentration in the TPFB bioreactor bulk-
phase for two GMOs: An E. coli cloned with [Gmer] = 
67 nM, and another culture of E. coli cells cloned with 
[Gmer] = 140 nM. Simulations of Maria [59-62] revealed 
that as the mer-plasmids level increases, the mercury 
uptake capacity also increases. However, an upper limit 
exists (around 140 nM) over which the cell resources 
will be exhausted, putting its metabolism in danger.

3) The simulated state-variables plotted in (Figure 14), 
for using the unstructured global model (Table 7 and 
Table 8) comparatively with using the structured 
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Figure 13: Typical evolution of relevant species concentrations predicted by the E. coli cell model, after a “step” perturbation in the TPFB bioreactor inlet from [ 2Hgenv
 ]s =  

0.1 to 10 μM (ca. 2 mg/L), for the case of cell cloned with [Gmer]= 3 nM (___), or with [Gmer]= 140 nM (• • • • • ). The arrow indicates the quick and vigorous response of the 
two key mer-enzymes: PT = the mercury ions permease, and PA = the mercury ions reductase.

extended HSMDM model, reveal a higher quality 
(vs.- experimental data), and more detailed/refi ned 
predictions for a larger number of state-variables. 

4) By coupling the structured MSDKM cell model of (Table 
4) with the three-phase (TPFB) continuous bioreactor 
model of Table 3 (with immobilized E. coli cells on 
pumice beads; see also the bioreactor model in Figure 
6), Maria et al. [59-62] have been able to determine 
the optimal operating policies of the bioreactor in 
relationship to the culture of cloned E. coli cells. Similar 
studies are reported by [7,59-62,88].

Quick comparison between the structured HSMDM and 
the unstructured/global dynamic model of the TPFB 
reactor:

The superiority of the structured extended HSMDM model 
(Table 3 and Table 4) against the unstructured reduced model 
(Table 7 and Table 8) was used to simulate the TPFB dynamics 
over a wide range of time. 

Thus, when simulating the TPFB reactor performance 
(of nominal conditions given in Table 2, for the biomass 

immobilized on pumice support) by employing a classical 
unstructured reactor model, the biomass adaptation to variable 
input loads is not accounted for, that is the maximum rates vm,t, 
vm,P, and the Michaelis inhibition constants Kmt, KmP and KiP of 
(Table 1) are kept constant (eventually depending only on the 
Gmer plasmid level). In fact, vm,t and vm,P rate constants depend 
on the cell enzyme levels of PA (reductase) and PT (permease) 
(Figure 1), which vary during the bacteria adaptation in the 
bioreactor under stationary or transient conditions.

To solve this problem by also offering a more detailed and 
robust prediction on the system dynamics/cell metabolism 
evolution, more detailed (structured) dynamic models are 
necessary for the TPFB bioreactor, linked to the structured 
kinetic model of mer-GRC in E. coli cell. Thus, it results in the 
here-described hybrid structured HSMDM model. The two 
linked differential models are solved together simultaneously, 
by applying a mutual exchange of input/output parameters 

{[
2Hgenv


)], [
0

Hgenv ], PT, PA} on every small time increment 

throughout the solution (integration) of the HSMDM model, as 
graphically represented in (Figure 1). 

As described in the below paragraph dedicated to solving 
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Figure 14: [Left]. Dynamics of metallic mercury concentrations in the liquid and gas phases, and in the bioreactor outlet after a “step” perturbation in the reactor inlet from [
2HgL
 ] = 0.1 μM to 100 μM (ca. 20 mg/L), for immobilized cells on pumice granules under nominal conditions of Table 2. Comparison is made for the cases of cells cloned 

with [Gmer]= 67 nM (
___

), or with [Gmer]= 140 nM (• • • • •). The curves indexed by “1” denote predictions of the unstructured (apparent) reactor model (Table 7, Table 8), while 
curves indexed by “2” denote the predictions of the structured HSMDM bioreactor model (including the cell model of Table 4).
[Right]. Dynamics of relevant mer-species concentrations (that is genes GA, GT, GD, GR, and their encoded proteins PA, PT, PD, PR) inside the cell, and the mercury 

reduction rate following the same “step” perturbation in the reactor inlet from [ 2HgL
 ] = 0.1 μM to 100 μM (ca. 20 mg/L), for immobilized E. coli cells on pumice granules 

under nominal conditions of Table 2. Notation “E” denotes the experimental curves of Philippidis et al. [88-90]. Adapted from [59-61].

the HSMDM model of (Table 3 and Table 4)., due to its 
structure, only the HSMDM model can simulate the E. coli 
cell response to dynamic or stationary perturbations from 
the environment (i.e. the TPFB bulk-phase). And also the 
infl uence of [Gmer] plasmids on the bioreactor performances. 
For instance, (Figure 13) displays the E. coli cell adaptation 

after a ‘step’-like perturbation in the environmental [
2Hgenv


]s (that is in the bioreactor bulk-phase) from the background 
level of 0.1 μM to 10 μM (ca. 2 mg/L), for the case of cell cloned 
with [Gmer]= 3 nM (full line), or with [Gmer]= 140 nM (dash 
line) mer-plasmids. The transient state toward the cell’s new 
homeostasis usually lies over 15-20 cell cycles as long as the 
environmental stationary perturbation is maintained. The 
simulated species dynamic trajectories plotted in (Figure 13) 
reveal a vigorous response of the cell mer-species (especially of 

PT, and PA) to the perturbation in the environmental [ 2Hgenv
 ]

s (i.e. liquid bulk-phase). Such cell responses to environmental 
perturbations are impossible to reproduce by the simple 
unstructured reduced model (Table 7 and Table 8). A more 
detailed comparison between the structured HSMDM model, 
and the unstructured/global one, for this case study is made 
by Maria [3,4].

The link between the macro-, and cell-scale state vari-
ables when solving the HSMDM model

The link between the two parts of the macro-sate-variables 
and the cell-state-variables of the HSMDM is made by the [

2+
HgL,env ] controlling the [

2+
HgL,cyt ], which, in turn, will 

control the whole mer-operon dynamics and the mercury 
reduction process through the cascade expression of the 

key-proteins {PR, PT, PA, PD} (see Table 4). In turn, the cell 

bioprocess induced and intensifi ed by the [
2+

HgL,env ] level, 

controls the TPFB bioreactor output [
0

HgG ] through [
0

HgL ], 
via [

0
Hgcyt ].

The link between the bioreactor macro-state variables and 
the cell nano-scale-state variables can be better pointed out 
when describing the HSMDM DAE model solution, that is its 
integration over a large time domain. 

Due to its high complexity, the solving rule of the HSMDM 
model involves successive integration steps with an adopted 
time-interval equal to the cell cycle (ca. 30 min), enough to 
obtain the steady-state of the TPFB reactor on every time-
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Figure 15: The stationary reduction rate (rHg) of mercuric ions by E. coli cells for various inlet [ 2HgL
 ]. The comparison includes predictions of the structured extended  

HSMDM model (“2 ___”) vs. the Philippidis et al. [88-90] experimental curves (“E -----”) (diffusion-free). The upper / lower (“Eup”, “Elow”) notations denote the confi dence 
bounds of the experimental curves. Curves denoted by (“1 • • • • •”) are the predictions of the unstructured bioreactor model (chap.2.3, Table 1, plus Table 7, plus Table 8), 
including the mass transport terms. Comparison is made for the E. coli cells cloned with mer-plasmids in the amount of [Gmer] = 3 nM (A), [Gmer] = 78 nM (B), and [Gmer] 
= 140 nM (C). Plots (D) display the predicted cytosolic concentration of mer-reductase [PmerA] = [PA] for [Gmer] = 3 nM, and [Gmer] = 140 nM.

interval, as follows: (i) The rule starts with solving the extended 
hybrid HSMDM E. coli cell model by using the known initial 
condition (the cell variables’ initial state, or those from the 
end of the previous integration cycle), and by considering the 

current concentration of [
2Hgenv


] in the bioreactor liquid phase 

(the nutrients are considered in excess and of constant levels). 
Thus, the cell species dynamics over one cell cycle are obtained 
from solving the WCVV cellular model. (ii) Then, the TPFB 
reactor model is solved over the current time-interval by using 
the known initial conditions (i.e. the reactor state variables 
from the end of the previous time-interval), and by considering 
the enzymes PT and PA concentrations resulting from the E. 
coli model solution. The [PT] and [PA] are necessary for setting 

the maximum reaction rates  and , 7 , 8v k c v k cm t PT m P PA   

in the reactor model. The biomass level on the support is taken 
constant in the simulated case study, but an additional mass 
balance can be easily added to the reactor model if a kinetic 
model about biomass (X) growth is available. 

The procedure is repeated a large number of times, over 
hundreds of cell cycles. For instance, (Figure 13) displays the 
E. coli cell adaptation after a ‘step’-like perturbation in the 

environmental [ 2Hgenv
 ]s (that is in the bioreactor bulk-phase) 

from the background level of 0.1 μM to 10 μM (ca. 2 mg/L), for 

the case of cell cloned with [Gmer]= 3 nM (full line), or with 
[Gmer]= 140 nM (dash line) mer-plasmids. The transient state 
toward the cell’s new homeostasis usually lies over 15-20 cell 
cycles as long as the environmental stationary perturbation 
is maintained. The simulated species dynamic trajectories 
plotted in (Figure 13) reveal a vigorous response of the cell 
mer-species (especially of PT, and PA) to the perturbation in 
the environmental [

2Hgenv


]s (i.e. liquid bulk-phase). Such 
cell responses to the environmental (dynamic or stationary) 
perturbations are impossible to reproduce by the simple 
unstructured reduced model (Table 7 and Table 8).

Some simulations with the HSMDM extended dynamic 
model

The resulting hybrid dynamic HSMDM model of (Table 3), 
including the WCVV kinetic model of the GRC responsible for 
the mer-operon expression of (Table 4) allows simulating with 
more accuracy the dynamics of the TPFB bioreactor at both 
macro- and (call) nano-scale level. By also including in (Table 
4) the Michaelis-Menten kinetics of Philippidis et al. [88-90], 
the above-described extended HSMDM model can also be used 
to study the parametric sensitivity of the studied TPFB. Thus, 
the dynamics of the TPFB (with the characteristics of (Table 
2(pumice)) have been simulated under the nominal operating 
conditions of Table 2, but every time-varying one operating 
parameter, that is:
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(a) The inlet [
2Hg L


]in concentration from the background 

pollution level (0.02 mg L-1) to successively 1, 5, or 10 
mg L-1 levels (Figure 7); 

(b) The inlet liquid fl ow rate FL of 0.01, 0.02, and 0.04 L/
min (Figure 8);

(c) The biomass load cX on the solid support taken as 0.1, 
0.25, 1.0 gX/L (referred to as the liquid volume) for a 
constant fraction of the solid in the reactor (Figure 9);

(d) The use of particle average diameter dp of 1 mm, or 4 
mm respectively (Figure 10). 

Simulations of the TPFB with this extended HSMDM model 
over ca. 50 min running time reveal that the liquid residence 
time in the reactor (related to the inlet liquid fl ow rate, FL) and 
the biomass content (cX) are the most infl uential operating 
parameters, being directly responsible for the realised mercury 
uptake conversion. For instance, by doubling the feed fl ow 
rate (from 0.02 to 0.04 L min-1), the uptake conversion can be 
reduced by ca. 5%. The particle size is also important, with an 
increase in the average dp leading to a higher resistance to the 
diffusional transport in pores and to a particle effectiveness 
diminishment (from 0.51 for dp = 1 mm to 0.15 for dp = 4 mm 
under nominal conditions). On the other hand, the biomass 
average load in the reactor can be adjusted by employing a 
continuous purge-renewal system of the solid particles. The 
mercury content in the input fl ow, [

2Hg L


]in in the range of 
1-40 mg/L, has a signifi cant infl uence on the mercury content 
of the output gas (Figure 7). As further proved, this last 

parameter is also of tremendous importance for adaptation of 
bacteria metabolism when using “wild” E. coli cells, or those 
cloned with an increased copy-numbers of mer-plasmids 
(denoted by [Gmer]).”

In-silico design of a cloned (GMO) E.coli.

Simulations with the extended HSMDM model of the TPFB 
dynamics using several E.coli cultures, that is E.coli cells cloned 
with various levels of mercury-plasmids, reveal interesting 
conclusions. As plotted in Figure 15, the cellular uptake process 
(i.e. the stationary reduction rate, rHg ) may be improved by 
increasing the mer-permease (PT) content into the cell (GT/
PT dynamics in Figure 14-right), up to a limit of ca. [Gmer] 
= 80-140 nM mer-plasmids, higher than the permeation rate 
remains unchanged, thus preventing exhaustion of the cell 
metabolic resources. Such a conclusion was experimentally 
confi rmed by Philippidis et al. [88-90]. As revealed by the 
present simulations, for the same reason, the cell regulatory 
system maintains an upper limit for the membranar transport 

rate (rt) of environmental 
2Hgenv


 into the cell, irrespectively 

to the 2Hgenv
  concentration in the environment, the cytosolic 

2Hgcyt


 concentration never exceeding a 3500-5000 nM level 
(Figure 13).

Fitting the HSMDM model parameters from experimen-
tal data

To overcome the high computational effort necessary to fi t 
the large number of rate constants of this extended HSMDM 

[88-90]

Table 6::The characteristics of the analyzed TPFB bioreactor for the mercury uptake by a Ps. putida cell culture immobilized on porous alginate beds [59-62]. The nominal 
operating conditions correspond to those of the TPFB bioreactor used for mercuric ions reduction on immobilized cells by Deckwer et al. [93].
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Table 7::The reduced mathematical model of the TPFB bioreactor of Deckwer et al. [93], with the reduced kinetic model of (Table 8).

model, and to increase their confi dence and physical meaning, 
a three-step procedure was employed based on the available 
experimental data and additional information from literature, 
as followings.

a) Mass transport parameters of the TPFB reactor, that is 
interfacial partial transfer coeffi cients (kSaS, kLaL, kGpG), 
effective diffusivity (Def) and particle effectiveness factor 
( ) have been estimated by using the experimental 
data of Deckwer et al. [93], and based on common 
correlations from the chemical engineering literature 
(Table 3) evaluated for the specifi ed reactor operating 
conditions of (Table 2- pumice support). 

b) Cell model parameters are estimated by using the 
Philippidis et al. [88-90] kinetic data obtained from 
separate batch experiments with “wild” (not-cloned) E. 
coli cells. By using the defi ned cell nominal characteristics 
of (Table 5) (some key notations are: tC = cell cycle time; 
Vcyt,O = born cell volume; CX = biomass concentration 
in the bioreactor; P = cell lumped proteome; G = cell 
lumped genome; NutG, NutP = lumped nutrients for G 
and P synthesis, respectively; [Gmer] = mer-plasmid 
levels into the cloned cell. The stationary levels of the 
essential cell mer-proteins (PA, PR, PD) are taken from 
the literature data. The involved TFs (PRPR, PTPT, 
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Table 8::Tested apparent kinetic models (rapp ) for mercury ion reduction by using immobilized Ps. putida cells on alginate, after [93,101]. Notation: 2cHg e  = 2cHg L  = 

environmental Hg2+ concentration; 2cHg s  = Hg2+ concentration at the solid surface. These 
rapp  reaction rates are part of the TPFB bioreactor model (Table 7).

PAPA, PDPD) intermediate concentrations resulted by 
maximizing the GERMs regulatory effi ciency P.I.-s 
(see Part-2 of this work) [1,2,3,4,21,22]. The resulting 
rate constants of (Table 4) have been estimated for the 

most severe experimental conditions of [
2

Hgenv


]s = 

120 μM, and [Gmer] = 140 nM. The used fi rst guess of 

Hill-induction rate constants (nPD = 1, nPR = -0.5, nH 
= 2, a = 3) have been adopted at values recommended in 
the literature, by similarity with the Hill-induction of 
gene expression in genetic switches (see the remarks 
included in Table 4), while the Michaelis-Menten rate 

constants of mercury membranar transport (rmax,t,Kmt) 
and its reduction rates’ constants (rmax,P, KmP, KiP) have 
been kept at the fi tted values of Philippidis et al. [88-90] 
(Table 1). The reference concentration CHg2cy,ref was 
adopted at the average cytosolic level of mercuric ions 
detected by Philippidis et al. [88-90]. When applying 
the model estimation rule, the GERM regulatory 
indices have been kept at their optimized levels, which 
corresponds to: (i) Equal concentrations of catalytically 
active/inactive forms [G(j)]s = [G(j)TFn]s adopted at 
steady-state to ensure GERM maximum regulatory 
effi ciency vs. perturbations (i.e. smallest sensitivities 
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of the homeostatic levels vs. external perturbations [1-
4], and (Part-2 of this work); (ii) adjustable optimum 
[TF]s level (ca. 4 nM here; Table 5) involved in the 
gene expressions to get the minimum recovering 
times after a dynamic perturbation in the key species 
[1,2,21,22,51,58], (see Part-2 of this work). Other 
adjustable parameters, such as the cell concentration in 
biomass (Ccell), are tuned to fi t the experimental cellular 
mercury reduction rate of Philippidis et al. [88-90].

c) The model validity is extended over a wider experimental 

range, by covering the input [
2

HgL


] = 0-100 mg/L, 

and plasmid levels of [Gmer] = 3-140 nM. All these 
have been realised by adjusting some key parameters 
of the extended HSMDM model, and by applying two 
concomitant fi tting criteria, that is: (1) the cytosolic 
mercury reduction rate should fi t the experimental 
values of Philippidis et al. [88-90], obtained for 

‚permeabilized’ cells (i.e. Min ,exp 8,mod elr rHg  , 

see the r8 expression of Table 4); (2) the TPFB reactor 
predicted output CHg,Out by the unstructured model 
(Table 1, Table 7, and Table 8) with using the Philippidis 
et al. [88-90] Michaelis-Menten parameters and the 
mass transfer terms, to fi t with those of the structured 
(cell + reactor) extended HSMDM model of (Table 3, 
and Table 4). The Hill parameter b=2a4 was adjusted by 
using the following approximate linear dependence on 
the inlet mercury load:

min max min
( )( ) / ( )min max min , , , ,a a a a c c c cHg in Hg in Hg in Hg in     ,

(see the fi tted values amin and amax in Table 4 – footnote 
d). The above-simplifi ed correlation tries to account for the 
infl uence of the environmental mercury on the induction 
characteristics of the mer-operon expression, that is a slow 
induction in the presence of low levels of Hg2+ inducer and a 
sharp (sigmoidal) mer-operon expression response to high 

levels of [
2

Hgcyt


] inducer. When a certain saturation level is 

reached, the limited cell resources will impose ’fl attening’ the 
metabolic mer-rates and the mer-protein levels, irrespectively 
to the increased amount of mercury in the environment [88-
90].

The extended HSMDM model predictions are in satisfactory 
agreement with the experimental data. Thus, the model 
predictions for rHg in (Figure 15, A-C) (curves ’2’) roughly fall 
within the confi dence band [‚Eup’, ‚Elow’] of the experimental 
curves (‚E’) of Philippidis et al. [88-90] for three different 
cloned cell cases (confi dence curves being plotted by taking 
constant the reported maximum relative error of ca. 19%). 
The unstructured model (chap.2.3, Table 1, Table 7), and 
Table 8) predictions (that is curves ’1’) reported apparent rHg 
of low adequacy, that is too low values. Such a result for the 
unstructured reduced model of the TPFB bioreactor is due to the 
rough bioprocess representation by the M-M model, and due 

to the inclusion of the mass transport resistance between the 
three phases in contact. The extended HSMDM model adequacy 
in terms of standard error ’Std’ / average observed value ’Obs’ 
ratio is evaluated for every cloned cell culture, leading to Std/
Obs of 22.3%, 16.7%, 20.4%, 19.9%, 18.8% for [Gmer] levels of 
3, 67, 78, 124, and 140 nM respectively, that is acceptable values 
when compared to the maximum experimental error (ca. 25-
33% in Figure 15). The predicted structured vs. unstructured 
model outputs, in terms of outlet concentration of mercury (

,cHg out ) are also in fair agreement (curves not displayed 

here), that is Std/Obs values of 3.0%, 4.7%, 3.7%, and 12% 
for [Gmer] levels of 67, 78, 124, and 140 nM respectively. The 
model’s poor adequacy for the [Gmer] = 3 nM data set and low 

[
2

HgL


] in the environment (input) might be explained by the 

use of a less adapted E. coli cell than probably those studied by 
Phillipidis et al. [88-90], refl ected by a smaller [PA] initial level 
of 600 nM (see the PA-curve in Figure 15-D). Once a higher 
level of Gmer-plasmids is introduced into the cell, then, when 

higher 
2

HgL


 stimulus levels are present in the environment, 

the cytosolic PA level is tripling. 

The extended HSMDM structured model cellular rate 
constants (see the above point (b), and Table 4) are in good 
agreement with the reported data from the literature, as 
remarked in the same (Table 4). The fi tted rate constants 
multiplied by the reactant lead to reaction rates of the same 
order of magnitude as those reported in the literature for 
similar genetic processes, such as the TF (repressor monomer) 
dimerization, the TF binding to gene operator, or the mRNA 
(genes) synthesis reactions (Table 4) [59-61]. This observation 
sustains the physical meaning of model parameters, thus 
increasing the HSMDM model robustness.

As a fi nal observation, by extending the detailing degree of 
the bioreactor dynamic model at a cellular level, the resulting 
structured HSMDM model not only preserves but also extends 
the adequacy of the unstructured model, adding the possibility 
to predict the cell species/fl uxes dynamics over dozens of cell 
cycles. By offering details on the cell metabolism adaptation, 
the ’intrinsic’ reduction rate, and the possibility to in-silico 
predict the modifi ed (cloned) cell response to various stimuli, 
such an HSMDM model presented in this paper is superior 
compared to the unstructured (apparent) bioreactor dynamic 
models. Eventually, the extended HSMDM models are worth 
the supplementary experimental and computational effort to 
derive/identify them.

Conclusions

Meritorious structured deterministic CCM kinetic models 
have been reviewed by Maria [2]. Deterministic kinetic models 
using continuous variables have been developed by Maria [3] 
for the glycolysis, and by [77,104-107] for the CCM in bacteria 
of industrial interest. Such models can adequately reproduce 
the cell response to continuous perturbations, the cell model 
structure and size being adapted based on the available –
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omics information. Even if such extended structured models 
are currently used only for research purposes, being diffi cult 
to identify, it is a question of time until they will be adapted 
for industrial / engineering purposes in the form of reduced 
HSMDM models.

In other words, this work presents a holistic “closed loop” 
approach that facilitates the control of the in vitro through the in 
silico development of dynamic models for living cell (biological) 
systems [108], by deriving deterministic modular, structured cell 
kinetic models (MSDKM), with continuous variables, and based 
on cellular metabolic reaction mechanisms.

The ever-increasing availability of experimental (qualitative 
and quantitative) information, at the cell metabolism level, 
but also about the bioreactors’ operation necessitates the 
advancement of a systematic methodology to organize and 
utilize these data. The resulting HSMDM was proved to 
successfully solve diffi cult bioengineering problems. In such 
HSMDM models, the cell-scale model part (including nano-
level state variables) is linked to the biological reactor macro-
scale state variables for improving the both model prediction 
quality and its validity range. The case study presented and 
discussed here proves this engineering aspect. An alternative 
compromise is to use hybrid models that combine unstructured 
with structured process characteristics to generate more precise 
predictions (see the review of Maria [74]). Hybrid models use 
a two-level hierarchy: the bioreactor macroscopic state variables 
linked with the nano-scale variables describing the cell key 
metabolic processes, and those of practical interest.

As proved by the case study presented in this paper, and by 
some additional ones mentioned in the Introduction section of 
this work, the use of MSDKM and HSMDM models (developed 
under the novel WCVV modelling framework) to simulate the 
dynamics of the bioreactor and, implicitly, the dynamics of the 
key cellular metabolic processes (CCM-based, related GRC-s, 
and target metabolites syntheses) occurring in the bioreactor 
biomass, presents multiple advantages, such as: (i) a higher 
degree of accuracy and the prediction detailing for the bioreactor 
dynamic parameters (at both macro- and nano-scale level); (ii) 
the prediction of the biomass metabolism adaptation over tens 
of cell cycles to the variation of the operating conditions in the 
bioreactor; (iii) prediction of the CCM key-species dynamics, 
by also including the metabolites of interest for the industrial 
biosynthesis; (iv) prediction of the CCM stationary reaction 
rates (i.e. metabolic fl uxes) allow to in-silico design GMO of 
desired characteristics.

The superiority of structured HSMDM models is proved 
by several case studies approached by the author and briefl y 
mentioned in the Introduction section of this paper. For details, 
the reader is asked to consult the above-indicated references. 

However, to avoid the intensive experimental and 
computational efforts necessary to develop an extended 
structured HSMDM model, unstructured dynamic models 
of bioprocesses continue to be used for various engineering 
purposes. Even if of low precision, the unstructured/global 

models for the bioreactors and the conducted bioprocesses 
continue to be largely used in the engineering practice, for 
a quick design, optimization, or control of the industrial 
bioprocesses. For instance, for the case study mentioned in 
this paper, a method was presented to optimize the operating 
policy of a SCR bioreactor by using the reduced unstructured 
hybrid model. Maria [4,62,92].
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