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Abstract

Background: Human exposure to xenobiotics, especially priority heavy metals (lead, cadmium, arsenic, mercury and chromium), is unavoidable because of their 
involvement in industrial applications, accumulation in the environment over time and non-biodegradability. Unfortunately, they induce unprecedented biochemical and 
pathological changes on those exposed to them, causing oxidative damages and organ toxicities.

Aim: This study investigated the frequencies of priority heavy metals and their impact on some micronutrient elements (copper, iron, zinc) in the blood of inhabitants 
of a lead-zinc mining community in southeastern Nigeria.
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Introduction

Heavy metals are naturally-occurring metallic elements 
with high atomic weight and density at least fi ve times greater 
than that of water [1]. Some of these elements such as cobalt 
(Co), copper (Cu), iron (Fe), Nickel (Ni), selenium (Se), and 
zinc (Zn) are actually necessary for humans in minute amounts 
while others such as arsenic (As), cadmium (Cd), chromium 
(Cr), lead (Pb) and mercury (Hg) can damage living things 
even at low concentrations and tend to accumulate in the food 
chain [2]. The elements in the fi rst group are the essential 
micronutrients – they are absolutely needed by the body even 
though in minute amounts. These micronutrients are known to 
play great roles in cellular metabolism including fetal growth 
and survival, anti-oxidation and cellular maintenance [3,4]. 
Particularly, zinc, copper and selenium are antioxidants known 
to be involved in reproduction. Zinc and copper increase sperm 
count and motility, and help to extend the functional life span 
of ejaculated spermatozoa [5] while selenium is an essential 
structural protein in spermatozoa [6]. Iron and copper are 
involved in hemoglobin synthesis while zinc and selenium 
are involved in immune development and maintenance, hence 
sometimes referred to as anti-infective antioxidants [7]. 
Those in the second group are the toxic elements that have 
been implicated in toxicity of many organs, especially the liver 
and the kidney [8-10]. Because of their high degree of toxicity 
and persistence in the environment, As, Cd, Cr, Pb and Hg 
are commonly considered as priority heavy metals that are 
of public health importance [1,11]. They are highly hazardous 
and can negatively affect our health and environments when 
improperly managed, hence regarded as serious environmental 
pollutants. Four of these priority heavy metals (As, Cd, Pb, Hg) 
are among the ten major chemicals of concern [12]. Sources 
of these heavy metals in the environment include geogenic, 
industrial, agricultural, pharmaceutical, domestic effl uents 
and the atmosphere [13].

Environmental pollution is very prominent in point source 
areas such as mining, foundries, smelters, and other metal-
based industrial operations. In Enyigba community in Ebonyi 
State of Nigeria, environmental contamination and human 
exposure to heavy metals result from artisanal lead-zinc 
mining activities which have become a signifi cant occupation 
among most of the inhabitants, both old and young. With such 
artisanal mining activities and the inappropriate storage of 
the mined products in their homes and heaps of the mining 
tails everywhere in the community [14], the inhabitants (both 
miners and non miners) are bound to be exposed to metal 

pollution. Earlier assessment of herbal preparations from the 
study area [15], suggests that there is possibility of heavy metal 
intoxication of the inhabitants in addition to attenuation of the 
phyto-potency of the preparations by the heavy metals. This 
is supported by earlier fi ndings on the concentrations of these 
heavy metals in the soil, water and foods from this area and its 
environs [16-18].

Some studies [19-21], have evaluated the interactions 
between toxic elements and nutritional essential elements 
generally, while some [22-24], were particularly on lead-
exposed workers. Apart from these earlier studies, there is 
dearth of data on the frequencies and interactions between 
priority heavy metals and nutritional elements in point source 
area like a mining community, comparing miners and non-
miners living in the same community. In the present study, 
we investigated for the fi rst time, all fi ve priority heavy metals 
in the blood of occupationally-exposed and environmentally-
exposed subjects in a lead-zinc mining community, and their 
interactions with some essential micronutrient elements. 
Elucidating such interactions is essential for health risk 
assessment and management of chemical mixtures. Also, 
understanding the interactions in both occupationally and 
environmentally-exposed individuals will help government 
of the day to enact legislations enforcing proper disposal 
mechanisms for the products of both artisanal and formal 
mining activities and possibly plan effective phyto-remediation 
of the mining areas. These will go a long way in safeguarding 
the lives of the inhabitants of these mining communities.

Materials and methods

Ethical considerations

Ethical clearance for this study was sought and obtained 
from the Health Research Ethics Committee of the College 
of Medicine, University of Nigeria Teaching Hospital, Ituku-
Ozalla, Enugu, Nigeria. Further ethical clearance was obtained 
from the State Ministry of Health, Abakaliki, Ebonyi State, 
Nigeria. The subjects gave their informed consent after 
thorough explanation of the importance and procedures for the 
study.

Study area

Enyigba mining community is the largest and most active 
among mining sites in Abakaliki mining area. The Abakaliki 
mining area lies between latitude 6081 N and 60241 and 
longitudes 80051S, with a prevailing climate condition of high 

Methods: Subjects, who were aged between 10 and 60 years, included 89 artisanal miners (occupationally-exposed), 61 non-miners living in the same community 
(environmentally-exposed) and 65 non-miners from a distant community (controls). Both priority heavy metals and the micronutrient elements were estimated using the 
atomic absorption spectrophotometric method.

Results: Results showed that all the studied priority heavy metals have frequencies higher than the WHO-recommended levels and their concentrations in occupationally-
exposed subjects were signifi cantly higher than their concentrations in both environmentally-exposed and control subjects. Likewise, their concentrations in environmentally-
exposed subjects were signifi cantly higher than those in the control subjects. It was also observed that the concentrations of the micronutrient elements in occupationally-
exposed subjects were signifi cantly lower than their concentrations in both environmentally-exposed and control subjects, showing strong negative correlations between 
these priority heavy metals and the micronutrient elements.

Conclusion: This study indicates that other priority heavy metals other than lead are prevalent in the studied area and these metals affect the absorption and metabolism 
of micronutrient elements and may also affect the antioxidant activities and other biological functions of the micronutrients.
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temperatures and humidity for more than half the year and 
mangrove and freshwater swamp vegetation. The inhabitants 
are mainly subsistent farmers with yam and plantain as their 
staple foods, with oil palm bush and indigenous trees of 
nutritional, economic, medicinal and cultural importance. The 
Abakaliki lead-zinc is believed to be of hydrothermal origins 
emplaced at a temperature of about 1400C [17]. The region 
includes Abakaliki town (the state capital of Ebonyi State in 
the south eastern part of Nigeria) and the highly mineralized 
rural community (Enyigba) which is about 14 km south of the 
metropolis. Ezzamgbo, which is about 25km from the study 
area, with no history of mining activities was used as a control 
community.

Subjects

A total of 215 subjects (aged between 10 and 60 years) were 
recruited for the study, comprising 89 artisanal mine workers 
(occupationally-exposed), 61 non-mine workers but living in 
the community (environmentally-exposed) and 65 subjects 
who lived 25km away from the mining community who were 
not involved in any mining activity (controls).

Sample collection and analysis

Four milliliters (4.0ml) of venous blood was collected 
from each subject into sequestrene containers for heavy metal 
analysis. The separated plasma samples were stored frozen at 
-800C till day of analysis. The heavy metals comprising priority 
heavy metals [Arsenic, Cadmium, Chromium, Lead, Mercury) 
and essential elements (Copper, Iron, Zinc) were estimated by 
fl ame atomic absorption spectrometry using FS240AA Atomic 
Absorption Spectrophotometer (Agilent Technologies, USA) 
according to the method of American Public Health Association 
[25].

Data analyses

Data were analyzed using the statistical package for social 
sciences (SPSS). Statistical signifi cance was taken to be p<0.05 
in all the analyses.

Results

Table 1 represents the frequencies of the priority heavy 
metals in the study participants in comparison with the WHO 
recommended limits. Pb was the most frequent with 148 out 
of 150 participants (98.66%) with limits of 10μg/dl and above. 
This was followed by Cd (56.66%) and As (54.00%) based on 
their respective recommended limits.

Table 2 represents the blood levels of priority heavy 
metal levels in the study population. The mean Arsenic (As), 
Cadmium (Cd), Chromium (Cr), Lead (Pb), Mercury (Hg) levels 
in the occupationally-exposed and environmentally-exposed 
individuals were signifi cantly higher (p< 0.001 for each 
except Cr with p<0.01 for the environmentally-exposed) when 
compared with the mean levels in the corresponding controls. 
Meanwhile, the Copper (Cu), Iron (Fe), and Zinc (Zn) mean 
levels in the occupationally-exposed and environmentally-
exposed individuals were signifi cantly lower (p<0.001 for 

each) when compared with the controls. Furthermore, the 
mean levels of As, Cr and Pb in the occupationally-exposed 
individuals were signifi cantly higher (p<0.001 for each) when 
compared with their mean levels in the environmentally-
exposed individuals. Also, the mean levels of Cu, Fe and Zn 
in the occupationally-exposed individuals were signifi cantly 
lower (p<0.001 for each) when compared with their mean 
levels in the environmentally-exposed individuals.

The mean levels of blood priority heavy metals in the study 
population according to gender are presented in Table 3. The 
mean levels of As, Cd, Cr, Hg, and Pb in the occupationally-
exposed males were signifi cantly higher (p<0.001 for each, 
except Cr with P<0.05), whereas the mean levels of Cu, Fe, and 
Zn were signifi cantly lower (p<0.001 for each) when compared 
with their mean levels in the corresponding male controls. The 
mean levels of priority heavy metals in the occupationally-
exposed females were equally signifi cantly higher, and the 
mean levels of the essential elements were signifi cantly lower 
(p<0.001 for each) when compared with their mean levels in 
the female control individuals. Likewise, mean levels of priority 
heavy metals in environmentally-exposed males and females 
were signifi cantly higher while their essential elements were 
signifi cantly lower when compared with their corresponding 
controls.

The Spearman correlations between blood priority heavy 
metals of the study population are presented in Table 4. There 
were signifi cant positive correlations between blood Pb and 
each of Hg (r = 0.327, p=0.000), As (r = 0.537, p=0.000), Cd 
(r = 0.352, p=0.000) and Cr (r = 0.183, p=0.009). There were 
also signifi cant correlations between Cd and Hg (r=0.402, 

Table 1: Frequencies of blood priority heavy metals in inhabitants of Enyigba study 
community.

Heavy metals Recommended limit
Frequencies

(above WHO limits)
Percentage (%)

Pb (μg/dl) <10 μg/dl 148 98.66

Cd (μg/l) 0 – 5 μg/l 85 56.66

As (ng/ml) 0 – 12 ng/ml 81 54.00

Hg (μg/l) <10 μg/l 70 46.66

Cr (μg/ml) <1.4 μg/ml 20 13.33

Table 2: Mean (SD) levels of blood heavy metals in the study population.

Heavy metals
Occup. Exposed        

n=89
Mean (SD)

Environ. Exposed     
n=61

Mean  (SD)

Control n=50
Mean   (SD)

Pb (μg/dl) a42.30 (10.90)** 28.66 (9.12)** 4.76 (2.16)

Zn (μg/dl) a45.44 (4.67)** 61.64 (5.98)** 83.51 (15.54)

Fe (μg/dl) a29.54 (4.23)** 41.97 (7.44)** 55.00 (23.19)

Hg (μg/L) 10.00 (7.26)** 9.31 (8.65)** 3.44 (2.58)

Cd (μg/L) 8.80 (7.56)** 7.31 (6.38)** 2.86 (1.52)

Cu (μg/dl) a7.38 (3.72)** 10.36 (7.03)** 12.56 (2.63)

Cr (μg/ml) a0.15 (0.25)** 0.07 (0.12)* 0.04 (0.04)

As (ng/ml) a15.00 (7.19)** 9.55 (7.19)** 4.44 (3.33)

Occup and Environ vs Controls:  *p<0.01,   **p<0.001;      Occup. vs Environ:   
ap<0.001
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p=0.000), and between As and each of Hg (r=0.213, p=0.002) 
and Cr (r=0.159, p=0.024).

Table 5 presents correlations between the blood priority 
heavy metals levels and some essential trace elements in the 
study population. There were signifi cant negative correlations 
between blood levels of the priority heavy metals and the trace 
elements (Zn, Fe, Cu), except between Hg and Cu (r = -0.046, p 
= 0.5180); and between Cr and Cu (r = -0.137, p = 0.053).

Discussion

Although lead and other WHO priority heavy metals 
(mercury, arsenic, cadmium and chromium) induce 
physiological, biochemical and behavioral disturbances of 
much pathological magnitude in humans, exposure to these 
xenobiotics is unavoidable because of its accumulation in 
the environment and use in industrial application [26]. 
Being present in contaminated water, air, soil, food and 
dust, heavy metals are mostly absorbed by the lungs and 
gastrointestinal tract [27]. The results of this study revealed 
that the frequencies of the priority heavy metals – lead (Pb), 
mercury (Hg), cadmium (Cd), chromium (Cr) and arsenic 
(As) in occupationally-exposed subjects were above their 
recommended limits and also signifi cantly higher when 
compared with environmentally-exposed and control subjects. 
These fi ndings are in agreement with some earlier studies on 
blood heavy metal concentrations in human subjects in similar 
environments [21,24,28]. However, Ji, et al. [29] reported lower 
blood lead levels and other heavy metals amongst children. 
This difference may be attributed to length of exposure of these 
subjects to the metals’ sources. This opinion sounds plausible 
because heavy metals are known to be non-biodegradable 
with long biological half-life, making them to accumulate 
over time [30]. Furthermore, the study also indicates that 
environmentally-exposed subjects are at risk of heavy metal 
toxicity and micronutrient defi ciency given the signifi cant 
differences between the values of these metals in this group 
and those in the control group. In biological systems, heavy 

metals have been reported to affect cellular organelles and 
components such as cell membrane, mitochondria, lysosome, 
endoplasmic reticulum, nuclei and some enzymes involved in 
metabolism, detoxifi cation and damage repair – antioxidant 
activities [31]. These metal ions were found to interact with 
cell components such as DNA and nuclear proteins, causing 
DNA damage and conformational changes that may lead to 
oxidative damage – cell cycle modifi cation, carcinogenesis or 
apoptosis [32]. Several studies [33,34] have demonstrated that 
reactive oxygen species (ROS) production and oxidative stress 
play a key role in the toxicity and carcinogenicity of priority 
heavy metals. In a study with plants [35], it was demonstrated 
that the magnitude of damages caused by these heavy metals 
depended on the heavy metal and the tolerance of plant 
species, and tolerance in this context is a function of oxidative 
status. Because of their high degree of toxicity, these fi ve 

Table 3: Mean (SD) levels of blood priority heavy metals of the study population according to gender.

Metal Occupationally Exposed  Environmentally Exposed    Control     

Males              n= 50 Females    n= 39 Males              n= 23 Females    n= 38 Males        n = 28
Females  

n = 22

Pb 41.89 (10.25)*** 42.24 (11.84)*** 31.07    (9.43)*** 27.78 (9.54)*** 4.97 (2.48) 4.49  (1.71)

Zn
46.16 

(4.54)***
44.92 (4.79)***

60.84 
(6.69)***

62.19 (5.70)*** 84.12 (18.35) 82.46 (11.58)

Fe
29.77 

(3.92)***
29.27 (4.71)***

41.60 
(7.57)***

41.98 
(7.71)

62.98 (25.08) 43.38 (14.72)

Hg
10.70 

(7.78)***
9.10 (6.61)**

11.17 
(8.63)***

8.13 
(8.43)*

2.82 (2.10)
4.23 

(3.03)

Cd
9.62 

(7.50)***
7.84 (7.68)**

7.39
 (6.49)**

7.08 (6.19)** 2.71 (1.42)
3.09 

(1.70)

Cu
7.71 

(3.78)***
7.08 (3.72)***

9.98 
(5.30)**

10.60 
(7.91)

12.92 (2.51) 11.95 (2.71)

Cr
0.16 

(0.26)*
0.14 

(0.23)
0.08 

(0.13) 
0.05 

(0.11)
0.04 (0.04)

0.04
 (0.04)

As
15.32

 (6.97)***
14.16 (7.14)***

10.45 
(7.11)***

9.55
 (8.01)*

4.18 (3.47)
4.71 

(3.27)

Males and Females vs corresponding controls:  *p<0.05,     **p<0.01,    ***p<0.001.

Table 4: Correlation between the blood priority heavy metals.

Heavy Metals
Pb    

 r (P-value)
Cd   

r (P-value)
As    

r (P-value)
Hg   

 r (P-value)
Cr  

 r (P-value) 

Pb (μg/dl) - - - - -

Cd (μg/L)
0.352 

   (0.000)
- - - -

As (ng/ml)
0.537 

   (0.000)
0.126 

   (0.076)
- - -

Hg (μg/L)
0.327 

   (0.000)
0.402 

   (0.000)
0.213 

   (0.002)
- -

Cr (μg/ml)
0.183 

   (0.009)
0.090 

   (0.207)
0.159 

    (0.024)
0.099 

    (0.162)
-

Table 5: Correlation between priority heavy metals and the trace elements in the 
study population.

Heavy metals Zn  r (p values) Fe  r (p values) Cu  r (p values)

Pb -0,789 (0.000) -0.637 (0.000) -0.360 (0.000)

Hg -0.291 (0.000) -0.235 (0.000) -0.046 (0.518)

As -0.500 (0.000) -0.417 (0.000) -0.206 (0.003)

Cd -0,321 (0.000) -0.246 (0.004) -0.145 (0.041)

Cr -0.171 (0.015) -0.144 (0.042) -0.137 (0.053)
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elements rank among the WHO priority heavy metals that are 
of great public health signifi cance. They are all environmental 
pollutants, and also systemic toxicants when absorbed, that are 
capable of inducing multiple organ damage even at low levels 
of exposure. In the present study, interaction between the 
priority heavy metals revealed a signifi cant positive correlation 
between Pb and Hg, Cd, As, Cr respectively, which agrees 
with earlier studies [36,37]. The biological explanations to the 
reported correlations in humans are not yet clear and may need 
some further studies for clarifi cation. However, it is possible 
that absorptions of these priority metals are interdependent or 
synergistic.

This study showed that blood levels of studied 
micronutrients – zinc, iron and copper, were signifi cantly 
lower in occupationally-exposed subjects when compared 
with the levels obtained from environmentally-exposed and 
control subjects. This result is similar to some earlier studies 
[21,38], that reported elevated blood levels of priority heavy 
metals amongst subjects with low essential trace elements. 
However, some studies [24,39], reported no association 
between priority heavy metals exposure and trace elements, 
while some [22], reported signifi cant positive correlation 
between blood lead levels and zinc levels. The disagreement 
between these study groups may, in part, be attributed to the 
levels of these heavy metals in the soil and length of exposure 
of the subjects. Moreover, it is possible that decreased intake 
of divalent antioxidants, like iron and zinc, is a major factor 
that contributes to increased absorption and toxicities of these 
priority heavy metals. This is because an iron transporter – 
divalent metal transporter 1 (DMT-1), found in the duodenum 
and other body cells, are known to have high affi nity for the 
priority heavy metals as the divalent micronutrient elements 
[40]. Thus, if there is high concentration of the priority heavy 
metals in the environment, absorption of the micronutrients is 
highly reduced and where there is defi ciency of micronutrients 
in the environment, absorption of the priority metals will 
increase. This increased absorption of priority heavy metals 
for any of the reasons above or others yet to be known may 
have accounted for the strong negative correlation between 
the priority heavy metals and the antioxidant micronutrients 
observed in this study. The resultant or fundamental low 
blood levels of the micronutrients in this study area will not 
only encourage increased absorption and toxicity of these 
priority heavy metals but also interfere with the biological and 
physiological functions of the body by encouraging oxidative 
damage. Iron, zinc and copper are essential trace elements that 
exert numerous biochemical and physiological functions for the 
maintenance of life and health and also act as antioxidants that 
prevent tissue damage. Iron is very essential in the production 
of red blood cells, copper is an integral component of many 
metalloenzymes, most of which help to inactivate free radicals 
– antioxidant property [41] and with iron, it is very essential for 
the formation of haemoglobin. Furthermore, zinc is an integral 
component of more than 300 different metalloenzymes where 
it is needed for the functioning of these enzymes, playing vital 
role in enormous number of biological processes, including 
metabolism of macro and micronutrients and improvement of 
immune system [42,43]. With derangement in these functions, 

many life complications are expected in the environment. 
For instance, defi ciency of zinc has been implicated in many 
untoward pregnancy outcomes including stillbirth, preterm 
birth, small-for-age birth, increased infant mortality, stunted 
growth and impaired sexual maturity [44-46], while iron and 
copper defi ciencies are known causes of anemia and increased 
susceptibility to infection due to poor immune functions [47]. 
Fortunately, the affected functions can be ameliorated by 
supplementary intake of the defi cient micronutrients since 
animal studies [48], have shown that adequate dietary intake 
of zinc, iron, copper and calcium reduced the severity of lead 
toxicity by decreasing the blood levels of lead, altering its 
absorption or restoring the lead-induced biological alterations. 
Particularly, a lead-zinc interaction has been observed at the 
absorptive as well as enzymatic sites [21]. Zinc is essential for 
cellular membrane integrity and metabolism as a central part of 
over 300 enzymes and proteins [49] and possesses antioxidant 
properties due to its requirement for superoxide dismutase 
(SOD) activity. Therefore, zinc not only reduces lead-induced 
oxidative stress, but also competes with lead for similar 
binding sites [21]. Competitive binding to metallothionein-
like transport protein in the rat duodenum demonstrates the 
ability of zinc to reduce lead absorption and toxicity. Thus, zinc 
supplementation was found to reverse the inhibition of the 
activity of blood ð-amino levulinic acid dehydratase (ALAD) by 
lead, as it competes for  and effectively reduces the availability 
of binding sites for lead uptake [21,24]. Furthermore, in-
vitro studies had indicated that lead not only impairs iron 
binding to transferrin, but also suppresses its synthesis thus 
decreasing mRNA and protein levels [50]. Also, Klauder and 
Petering [51] had earlier observed that many characteristics of 
anemia due to lead are similar to those of copper defi ciency 
and postulated that lead may induce copper defi ciency and this 
will interfere with iron metabolism and utilization. Copper 
is known to have a role in the absorption of iron because the 
oxidation of ferrous iron to ferric state in haem synthesis is 
done by ceruloplasmin. On the other hand, high levels of blood 
lead was found to reduce the copper ceruloplasmin levels in 
rats while a decreased dietary copper level was associated with 
increased erythrocytes lead concentration [52]. Therefore, 
the depletion of copper in this study may cause impaired iron 
absorption and contribute to the iron defi ciency. In plants, 
heavy metals are known to alter nutrient uptake processes and 
antioxidant systems of forage grasses including alterations in 
the amino acid metabolism, photosynthetic system, syntheses 
of chlorophyll and carotenoids and in the cell structure [53,54]. 
Thus, it is suspected that forage grasses whose contents of Cu 
and Zn are reduced when cultivated in the presence of toxic 
elements like Cd and Pb may have limited growth and therefore 
ineffi cient if used in phyto-remediation of environments with 
high heavy metals concentrations [55].

Interaction between other priority heavy metals (Hg, As, 
Cd and Cr) and major trace elements (Zn, Fe and Cu) was also 
found in humans, and in the milk of nursing mothers [36]. The 
study [36], reported signifi cant negative correlations between 
some priority heavy metals (Hg, As, Cd, Cr) and the trace 
elements (Zn, Fe, Cu) respectively which was in agreement 
with the present study and some previous studies [37,56]. 
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Brzoska and Jakoniuk [57], were of the opinion that zinc status 
of the body is important in the development of cadmium 
toxicity. Increased zinc supply may therefore reduce cadmium 
absorption and accumulation and prevent or reduce its adverse 
effects, whereas zinc defi ciency as recorded in the present 
study can intensify Cd accumulation and toxicity.

Lastly, inter gender analysis of priority heavy metals 
results in this study established that blood lead levels were 
higher in females of occupationally-exposed than males, 
whereas other priority heavy metals both in occupationally 
and environmentally-exposed subjects were higher in males 
than the females. This fi nding was in agreement with Ji, et al. 
[29], who reported higher blood lead levels in females than 
in males amongst children but disagreed with Counter, et al. 
[58], who reported higher blood lead levels and other priority 
heavy metals in males than females. While this area needs 
further study for full elucidation and articulation to adduce any 
biochemical or physiological reasons for these differences, it is 
possible that the differences may have to do with the levels of 
antioxidant elements in the different study groups.

Conclusion 

The results of this study indicate that other priority heavy 
metals, apart from lead, are also prevalent in the studied area 
and in higher frequencies than WHO recommendations. The 
results also showed negative correlations between the priority 
heavy metals and the antioxidant micronutrients, indicating 
that these priority heavy metals can affect the absorption and 
metabolism of the micronutrients and therefore the antioxidant 
activities and other biological functions of the micronutrient 
elements. Unfortunately, the results also indicate that both 
occupationally-exposed and environmentally-exposed 
subjects are prone to the adverse effects of these priority 
heavy metals because the values of both priority heavy metals 
and antioxidant micronutrients from the two groups were 
signifi cantly different from the values obtained from control 
subjects. It is therefore expected that if adequate precautionary 
measures are not put in place to safeguard the lives of the 
inhabitants of this area, their health status will be jeopardized.
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