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Abstract

Former ketone studies, including ketoacidosis (KAD), fasting ketosis (FK), nutritional 
ketosis (NK), and exercis-eaffected ketosis have brought great advances to the field of 
ketones. In the present work, blood, urine and breath ketone detections were evaluated 
systematically. We found that breath ketone (acetone) is the ketone of choice for detecting 
early stages of ketosis. In addition, acetone was correlated with respiratory quotient, and 
found to be a highly sensitive non-invasive biomarker of lipid oxidation. Furthermore, 
acetone was used for fast screening of ketosis or ketoacidosis in populations, and 
demonstrated value upon screening a population of 48 individuals, among which a type I 
diabetes case with early symptoms of KAD and FK case were identified.

alveoli of the lung and the airway due to its high vapor pressure, and 
it is usually found in breath. Currently, there are different ketone 
detecting methods, which are aimed to detect each of the three types of 
ketones. Each of the method has advantages and disadvantages [11], 
but a comparison of the methods under rigorous clinical conditions 
is necessary to define which method has the highest sensitivity to 
detect increasing ketone levels or define ketosis/ketoacidosis states. 
Blood and urinary ketone detections have been widely used for 
diagnosis of KAD. However, blood ketone detection is considered 
invasive and painful while urinary ketone detection can be impaired 
by subject’s level of hydration, adaptation to ketosis states or kidney 
dysfunction [11]. Most recently, breath acetone has been considered 
as a new ketone biomarker because it is non-invasive, convenient, 
and accurate reflection of the body’s ketone level [12]. Several acetone 
detection products are commercially available such as KetoSense and 
Ketonix [13,14] or emerging to the market such as NTT Docomo 
acetone monitor [15], Medamonitor [16] and Invoy Technologies 
[17]. These emerging technologies are still under evaluation for 
analytical and clinical accuracy. Currently the proven technology for 

 Introduction
Ketosis or ketoacidosis is a physiological state in which fat 

metabolism rate is increased due to the lack of glucose as energy 
source, and ketone bodies’ levels are above normal levels [1]. As fat 
is oxidized, ketones are produced, and monitoring ketones has a 
profound impact on the diagnosis of health status of an individual 
either under ketoacidosis or ketosis.

Ketoacidocis (KAD) is a state of diagnosis of metabolic unbalance 
in type I diabetic population, and indicative of diabetic coma risk [2]. 
On the contrary, ketosis is a metabolic state where ketone is produced 
in healthy individuals by fasting or nutritional intervention [3,4]. 
Fasting ketosis (FK) is produced by oxidation of stored fat induced by 
negative energy balance (caloric restriction). Nutritional ketosis (NK) 
is found in individuals undergoing fat-rich diets with null energy 
balance (caloric intake equals energy expenditure).

Recently, NK has become popular [5] for weight loss therapy [6], 
and for treating certain type of epilepsy where ketones can be used as 
energy source by the brain to reduce epileptic seizures [7,8]. Ketosis 
can also be induced in a healthy individual via exercise as the body 
uses ketones as energy source in the muscles [9,10]. In general, the 
ketone level in a body is affected by several factors, such as diabetes, 
energy balance, diet composition, and physical activities, which 
underscores the significance of identifying best practices of detection 
of ketones in real time.

Under ketosis or ketoacidosis, fat is broken down by the liver to 
produce two water-soluble types of ketones: acetoacetic acid and beta-
hydroxybutyric acid (Figure 1). In addition, a third type of ketone, 
acetone, is also formed with additional enzymatic decarboxylation 
of acetoacetic acid. Acetone crosses the membrane barrier, into the 
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Figure 1: Liver breaks down fat from food and/or fat cells to produce three 
ketone bodies.
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accurate detection of ketone levels in breath are mass spectrometer-
based methods [18,19].

In this study, we used Selected Ion Flow Tube-Mass Spectrometry 
(SIFT-MS) as a primary method for detection of breath ketone, 
acetone, and we compare the results with those obtained with the 
widely used blood and urine ketone detection methods. Blood ketone 
was quantified using ketone strips and Precision Xtra meter, which 
have proven to be highly accurate [20,21], and urinary ketone was 
measured using Ketostix strips, which has been recommended by the 
American Diabetes Association for monitoring ketones in urine [22].

We hypothesize that detecting ketone from breath (acetone) is the 
most sensitive method for early detection of ketosis or ketoacidosis; 
and levels of produced breath acetone reflect rates of lipid oxidation 
accurately. To validate our hypothesis, we evaluated different ketone 
assessment methods, and determined the most sensitive and selective 
way method to quantify ketosis. We also compared the ketone levels 
to the measured respiratory quotient (RQ), a reference biomarker 
of lipid oxidation. To determine whether breath ketone detection is 
valuable for diagnosis of ketosis or ketoacidosis, we collected real-
time breath acetone from 48 subjects and analyzed the outcomes.

Material and Methods
Ketone assessment methods

Three common methods were utilized:

A-Blood ketone measurements: Blood ketones were measured 
using Precision Xtra, an lectrochemical capillary blood monitor 
from Abbott. This monitor determines the blood ketone: beta-
hydroxybutyrate (β-OHB). Standard operation procedures as 
prescribed by the monitor were used for the analysis. The test meter 
was turned on while a ketone strip was inserted to prepare for the 
test. The subjects’ fingertip was cleaned with an alcohol swab and 
dried before being pricked with the provided lancing device. A drop 
of blood was applied to the assigned spot of the ketone strip. Ketone 
levels were read from the display 10 seconds after blood was delivered 
to the meter.

B-Urine ketone measurements: Urine ketone measurements 
were performed using over-the-counter reagent strips for urinalysis 
(Ketostix from Bayers). The strip monitors acetoacetic acid (AcAcA), 
which reacts with nitroprusside salt. The reagent end of strip was 
passed through urine stream, which resulted in color development on 
the strip. The color was compared to the color chart provided with the 
product 15-30 seconds after the reaction.

C-Breath ketone measurements: Concentration of breath 
ketone, acetone, was assessed from exhaled breath using Selected 
Ion Flow Tube - Mass Spectrometer (SIFT-MS) (Instrument Science, 
Profile Series, Crewe, UK [23]) in multiple ion monitoring (MIM) 
modes. H3O

+ (m/z 19) was chosen as the precursor ion for reaction 
with breath samples in ultra-high purity 99.999% He as the carrier 
gas. Precursor ion peaks at m/z 19, 37, 55, and 73 corresponding 
to hydrated H3O

+.nH2O (n = 0, 1, 2, 3) and product ion peaks after 
reaction with acetone at m/z 59 and 77, corresponding to C3H7O

+ 
and its hydrate C3H7O

+.H2O, were monitored. Quantification of 
the concentration was performed in the MIM mode by taking into 

account the known reaction rate coefficients for H3O
+ and acetone 

reaction, and the measured ion flow velocity [18]. Subjects’ breath 
was collected in a 4L-air bag and followed by immediate analysis 
by SIFT-MS. A small pump was used to ensure constant flow. Each 
measurement took about 30 seconds.

Respiratory Quotient measurements

In order to determine the correlation of breath ketone (acetone) 
with lipid oxidation, non-protein respiratory quotient (RQ), which 
indicates the percentage of lipid oxidation vs. carbohydrate oxidation 
[24] was assessed. The measurement was performed on subjects 
of the study (see conditions below), using both, Oxycon Mobile 
metabolic portable instrument (Carefusion, Yorba Linda, CA [25]), 
and a mobile Breezing metabolism tracker (prototype of professional 
version) (Breezing Co., Tempe, AZ [26]). The RQ values were 
obtained consecutively to acetone measurements (using SIFT-MS).

Glucose measurements

In addition to ketone analysis, blood glucose was measured for 
comparison using Precision Xtra, electrochemical capillary blood 
monitor from Abbott, and glucose strips, according to the standard 
procedure as prescribed by the vendor. All ketones and blood glucose 
measurements were carried out simultaneously for direct comparison.

Subjects

Two types of experiments were performed with subjects involved 
in the donation of samples.

Subjects in diet-fasting group

Eleven healthy volunteers (7 males and 4 females) with an average 
age of 27 ± 7 years and average BMI of 23.1 ± 5 participated in the 
diet-fasting study (see conditions below). Physical parameters of 
weight, height, and BMI (a ratio of weight-to-height squared (Kg/
(meters)2)) were assessed for each subject. Table 1 summarizes the 
features of the study group.

None of the subjects was on regular medication, nor had 
any history of respiratory diseases nor diabetes. The diet-fasting 
experiment consisted of two days. On day 1, isocaloric meals with 

Subject Age Gender Weight (kg) Height (m) BMI

1 28 M 79.1 1.68 28.1

2 41 F 49.4 1.69 17.3

3 35 M 77.1 1.88 21.8

4 21 M 65.6 1.82 19.8

5 24 M 90.3 1.68 32.1

6 23 M 70.0 1.80 21.5

7 37 F 63.5 1.61 24.4

8 23 M 85.5 1.78 27.0

9 23 M 92.5 1.93 24.8

10 25 F 52.8 1.70 18.3

11 20 F 52.5 1.69 18.4

Table 1: Summary of subjects enrolled in the study.

M: Male, F: Female, BMI: Body Mass Index
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different fat contents were given to each subject, who had the last 
meal between 9:00 pm and 10:00 pm at the previous night. On day 
2, the subjects fasted until 7:00 pm with breath samples collected and 
measured from 10:00 am with a time interval of 90 to 120 minutes for 
9 hours. Meanwhile, blood and urine ketones from each subject were 
measured. In most of the subjects, blood and urine measurements 
were performed 3 times a day (start, mid, and end of the day) in 
conjunction with a breath ketone measurement. Urine and blood 
measurements were performed 3 times only since these ketone 
detection methods showed lower sensitivity to rising ketone levels 
when compared to breath ketone detection method. Several subjects 
from the group had blood, urine, and breath ketones measured in 
parallel, 6-8 times a day, during the fasting day (Day 2). In addition, a 
group of the study subjects was also measured on Day 1, while having 
a fat-rich diet (see more details below).

It is important to mention that all subjects remained sedentary 
during the fasting day (Day 2). This condition was essential to 
minimized perturbations of ketone fasting patterns due to exercise. 
All subjects complied the study’s IRB protocol approved at Arizona 
State University. 

Breath acetone measurements for ketone screening

Breath acetone samples of 48 random subjects visiting an 
exhibition event at Biodesign Institute on March 1st, 2014 [27] were 
collected. The age of the subjects ranged from 4 to 55. Subject’s breath 
was collected in a 4L-air bag and followed by immediate analysis with 
SIFT-MS. A small pump was used to ensure a constant flow during 
sample collection. Each measurement took approximately 30 seconds.

Results
Evaluation of ketone assessment methods

Different ketone detection methods were compared to determine 
the best strategy to capture accurate and high-resolution ketone 

buildup data. First, the relationship between breath ketone (acetone) 
and blood ketone (β-OHB) was studied in the group of fasting 
subjects (Day 2 of diet-fasting group). Figure 2A shows the correlation 
that emerged from the data. The correlation can be fitted with an 
exponential growth function with a squared-regression coefficient 
(R2)=0.69, which is in agreement with the literature for adults and 
children’ ketogenic dieters [19,28]. Second, the relationship between 
breath ketone (acetone), and urinary ketone (AcAcA) was studied in 
the same fasting subject group. Figure 2B shows the correlation with 
an exponential fitting with R2=0.81. In addition, Figure 3 shows the 
ketone profiles assessed in breath, urine, and blood in an individual 
over the period corresponding to the fasting day (Day 2, more details 
in discussion section).

Evaluation of breath ketone as biomarker of lipid oxidation

The correlation between breath ketone levels and lipid oxidation 
was studied to ensure that the acetone level buildup is associated 
with increased oxidation of lipids. For this purpose, RQ [29,30] was 
measured in parallel to acetone. RQ and acetone measurements were 
performed for 9 subjects of the diet-fasting group on the fasting day 
(Day 2). RQ was calculated by measuring the ratio of VCO2 to VO2, 
where VCO2 is the carbon dioxide production rate, and VO2 is the 
oxygen consumption rate, assessed by indirect calorimetry measures 
as described in Experimental Session. Figure 4A shows an example of 
dynamic changes of acetone levels and RQ for an individual during 
the fasting day. Similar results were obtained for the remaining 
subjects. The results are summarized in Figure 4B, which shows a plot 
of RQ vs. acetone levels with exponential correlation and R2=0.41. The 
results indicated the value of acetone as a biomarker of fat oxidation. 
However, in order to further assure this fact, RQ vs. acetone level was 
also investigated in a separate set of experiments where the subjects 
changed their diet composition throughout the day (Day 1 of diet-
fasting group).
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Figure 2: Correlations between breath acetone (measured using SIFT-MS) vs. blood ketone levels (measured using a capillary blood monitor) (A), and vs. urinary 
ketone levels (measured using dipsticks) (B). The data was exponentially correlated with R2 of 0.69 (A) and 0.81 (B), respectively.
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Figure 3: Comparison of urine, blood, and breath ketone measurements. Simultaneous measurements were performed using standard commercial equipment, 
SIFT-MS for breath acetone, capillary blood monitor for blood glucose, and dipsticks for urinary ketones (see experimental section). The ketone levels (keto level) 
were normalized by the highest ketone level measured within the corresponding method.
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Figure 4: (A) RQ and acetone vs. time during a ketosis induction period for a representative study subject. (B) RQ vs. acetone plot from RQ and acetone profiles 
assessed from 9 out of the 11 subjects of the study during the fasting day (Day 2).

As an example, Figure 5 shows one of the study subjects, who 
changed the diet macronutrient content from 4.5:1 of fat:(carbohydrate 
+ protein) with [82% fat, 9% protein, and 9% carbohydrate] to 3.0:1 
of fat:(carbohydrate + protein) with [75% fat, 16% protein, and 9% 
carbohydrate]. The decreasing ingestion of fat (by changing diet), 
which is expected to lead to lesser oxidation of fat, was correlated 
to an increase in RQ values (in agreement with lesser fat oxidation) 
[29,30], and a decrease in the rate of acetone level increase (see more 
details in discussion section).

Since ketones have been studied as a marker for blood glucose 
[31,32], breath acetone and blood glucose on the fasting day (Day 
2) have been simultaneously measured for the diet-fasting group. 
Figure 6 shows the results, which can be fitted with an exponentially 
decaying curve with R2=0.52 (more details in discussion section).

Breath acetone measurements for ketone screening

Breath samples from 48 subjects were collected from an 
exhibition event as described in the experimental section. Two thirds 
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Figure 5: Changes of RQ (A) and acetone levels (B) with the changes of diet during a day.

of the subjects were younger than 15 years old with a nearly equal 
distribution of male and female (Figure 7B). The acetone levels of the 
samples were found to be between 300 to 1000 ppbV (Figure 7A). 
However, several subjects had higher acetone levels (more details in 
discussion section).

Discussion
Evaluation of ketone assessment methods

Figure 2B, illustrated urinary ketone as a “step-function” 
behavior due to the qualitative nature of the test. However, as shown 
in Figure 2, a strong correlation was evident between acetone (breath) 
and β-OHB (blood) as well as between acetone (breath) and AcAcA 
(urine) for the subjects under fasting conditions. The behavior has 
been observed before for acetone and β-OHB in subjects under 
ketogenic diets [19,28]. There are many hypotheses to explain the 
relationship. First, acetone is a metabolite produced after enzymatic 
decarboxylation of AcAcA, which is in equilibrium with β-OHB via 
an enzymatic controlled process by β-OHB dehydrogenase [34]. 
The enzymatic controlled metabolic pathways may produce a non-

linear relationship between acetone and β-OHB (blood), and AcAcA 
(urine) (Figure 1). Another hypothesis for the observed non-linear 
relationship between acetone and β-OHB or AcAcA is that acetone 
is a highly volatile organic compound, and therefore its blood/breath 
partition behavior is favored towards the breath phase. In fact, it is well 
known that acetone presents positive deviations from well-known 
gas/liquid partition laws, such as Henry’s law or Raoul’s law [34]. 
Although exponential relationship between acetone and β-OHB, and 
acetone and AcAcA was observed, acetone reflected overall ketone 
metabolite concentrations in the subjects under fasting conditions.

Figure 3 shows an example of experiments where blood 
(β-OHB), urine (AcAcA) and breath (acetone) ketone levels were 
assessed simultaneously during the fasting day (Day 2) in a subject 
from the diet-fasting group. The ketone values are compared after 
normalization of the values by the maximum response assessed for 
each method. It can be observed that urine analysis showed a delayed 
response and stayed constant after the initial significant increase. On 
the other hand, blood analysis showed a steady increase of β-OHB 
during the day. However, given the minimum resolution of 0.1 mM 
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of the β-OHB sensor for blood, null values for β-OHB were assessed 
at testing events #1 and #2, where the overall ketones in the body 
were low, but building up due to the fasting state. On the contrary, 
acetone (breath) reflected the fasting state of the subjects with higher 
sensitivity, and followed the changing clinical condition of the tested 
individuals more dynamically. Therefore, acetone provided higher 
resolution to ketone buildup capability during fasting; and was 
chosen as ketone biomarker of choice for the screening of ketosis.

Several reasons support breath acetone as a ketone biomarker 
of choice: (1) Analytical sensitivity: The analytical method used for 
detection of acetone, SIFT-MS, is the most sensitive and selective 
method among other methods. The method is real-time, provides 
hundred part-per-billion by volume (ppbV) detection levels, reports 
absolute acetone concentrations based on unambiguous ionized 
gas detection principle, and does not require complex preparation 
procedures [35-38]. (2) Clinical sensitivity: Among the three ketone 
molecules, acetone is the one with the highest vapor pressure. 
Consequently, it is easiest to be released from the body, especially 
to the headspace of lung alveolar areas [39]. (3) Friendly sample 
collection: Breath acetone monitoring is non-invasive and easy to 
perform for the users [39].

Evaluation of breath ketone as biomarker of lipid oxidation

In Figure 4A, decreasing RQ values from ~0.85 to ~0.70 were 
associated to increasing acetone levels. The RQ values indicated a 
switch from both 50% fat oxidation/50% carbohydrate oxidation to 
100% fat oxidation, and therefore, were indicative of a greater reliance 
on lipid utilization as carbohydrate became unavailable with hours of 
fasting [40,41]. Additional evidence of the strong correlation between 
acetone and lipid oxidation (RQ) from 9 subjects of the diet-fasting 
group during a fasting day (Day 2) is illustrated in Figure 4B.

Figure 5 shows as example of the effect of a diet change on RQ and 
acetone values measured during Day 1 of the diet-fasting experiment. 
In this case, the diet had high fat ratio, and it was changed from 82% 
fat:18% (carb+protein) to 75% fat:25% (carb+ protein) at 3:45 pm. 
At higher dietary fat ratio, the lipid utilization increase from 52% 
(RQ=0.84) to 100% (RQ~0.70) after 4 hours 45 minutes, while at lower 
dietary fat ratio, the lipid utilization decreased from 100% (RQ~0.70) 
to 87% (RQ~0.74) after 4 hours. In parallel, the rate of acetone level 
increase changed from 0.30 ppm/hour at higher dietary fat ratio to 
0.04 ppm/hour at lower dietary fat ratio. This behavior indicated a 
decrease in the rate of rising acetone levels associated to a decrease of 
lipid utilization, and it was in agreement with observations collected 
on other subjects of the group. Although the acetone level itself is not 
a fast indicator of switching of energy source, the rising of acetone 
level is.

The above results confirmed breath acetone as a biomarker 
of fat oxidation, and overall, a convenient biomarker for non-
invasive monitoring. To better understand the correlation between 
acetone and glucose levels during fasting periods, we examined 
simultaneously breath acetone and blood glucose in the diet/fasting 
group during the fasting day (Day 2). The data is summarized in 
Figure 6, which confirmed the published literature data [31,32], 
indicating an overall trend of acetone increase when glucose levels 

decreased. However, it is important to mention that glucose and 
acetone are biomarkers reflective of different energy source pathways. 
While acetone levels are indicative of fat oxidation, glucose levels are 
indicative of carbohydrate metabolism. Monitoring each metabolic 
route may provide independent information about the individual’s 
metabolic regulations that depend on specific glycogen storage, 
insulin resistance, and other important physiological parameters [5]. 
Therefore, acetone should be considered as a non-invasive method 
that offers complementary value to invasive glucose measurement for 
the evaluation of metabolic regulation.

Breath acetone measurements for ketone screening

Figure 7 shows the results collected from 48 random subjects at 
an event, and indicates that most of general public had acetone levels 
between 300 to 1000 ppbV. Few subjects had acetone levels higher 
than 1000 ppbV but lower than 1500 ppbV. Only two subjects had 
acetone levels higher than 1500 ppbV. One of the subjects was a child 
who was later diagnosed with type 1-diabetes by following standard-
of-care procedure. The second subject was an adult with acetone 
level higher than 2500 ppbV and reported to be fasting. This study 
reassures that breath acetone can be used for ketosis/ketoacidosis 
screening.

Conclusions
Breath acetone measured by SIFT-MS is more sensitive than 

blood ketone measured by capillary blood monitors and urine 
ketone measured by dipsticks, and it is the biomarker of choice when 
detected with a resolution of few part-per-billion by volume. Breath 
acetone is a convenient way to detect ketones due to the non-invasive 
nature of the method. In addition to the convenience of sampling, 
breath acetone also provides analytical advantage because it is easier 
to release from the body compared to other blood ketones that are 
soluble in blood and urine. Furthermore, the data presented in this 
study confirmed breath acetone as a biomarker for monitoring 
lipid oxidation, and demonstrated the advantages for ketosis and 
ketoacidosis screenings.
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