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Abstract

Metastasis is one of the most challenging problems in cancer diagnosis and treatment, as causal factors have yet to be fully disentangled. Prediction of the metastatic 
status of breast cancer is important for informing treatment protocols and reducing mortality. However, the systems biology behind metastasis is complex and driven by a 
variety of interacting factors. Furthermore, the prediction of cancer metastasis is a challenging task due to the variation in parameters and conditions specifi c to individual 
patients and mutation subtypes.

In this paper, we apply tree-based machine learning algorithms for gene expression data analysis in the estimation of metastatic potentials within a group of 490 
breast cancer patients. Tree-based machine learning algorithms including decision trees, gradient boosting, and extremely randomized trees are used to assess the 
variable importance of different genes in breast cancer metastasis.

Highly accurate values were obtained from all three algorithms, with the gradient boosting method having the highest accuracy at 0.8901. The most signifi cant ten 
genetic variables and fi fteen gene functions in metastatic progression were identifi ed. Respective importance scores and biological functions were also cataloged. Key 
genes in metastatic breast cancer progression include but are not limited to CD8, PB1, and THP-1.
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Introduction

Metastasis begins with the displacement of tumor cells 
from the primary tumor. Circulating tumor cells (CTCs) move 
through the vascular system to a distant organ. There, they 
colonize the new environment, forming a new tumor.

Metastasis is one of the most complex and challenging 

problems in the cancer fi eld as its main causes are multifaceted 
and not well-understood yet. Additionally, it is strongly 
correlated with mortality, making it the most critical area in 
need of research within the fi eld of cancer diagnostics [1]. 

Metastasis begins with the loss of cell-to-cell and cell-to-
matrix adhesion. This facilitates local infi ltration of tumor cells 
into adjacent tissues as well as trans endothelial migration 
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into vessels via the process of intravasation. Cancer cells must 
transform themselves from endothelial cells into mesenchymal 
cells, known as epithelial to mesenchymal transition (EMT). 
This process is characterized by the loss of cellular adhesive 
properties and polarity with a simultaneous gain of other 
properties that enable CTCs to migrate to distant organs, 
extravasate, proliferate and colonize a discrete competent 
organ. The other major factors for metastasis are cell adhesion 
defects, angiogenesis, and disrupted cell signaling and 
metabolism.

Disrupted cell signaling interrupts foreign recognition 
responses, allowing cancer cells to pass through the circulation 
without being recognized by the immune system. However, 
CTCs can evade immune recognition by mimicking peripheral 
immune tolerance, as recently detailed by Gonzalez et al. [2]. 

CTCs have abnormal gene expression characteristics that 
are different from the primary tumor and help improve their 
survival in circulation [3]. Survivin is a major member of the 
inhibitor of apoptosis family (IAP) and it facilitates the escape 
of tumor cells from immune recognition by blocking the 
cytotoxicity of NK cells and PD-L1. It can mediate the regulatory 
T-cells (Tregs) to play a role in immunosuppression.

Metastasis has most frequently been investigated in 
late-stage metastatic tumors, the products of colonization 
of discrete regions. It is still ambiguous how metastatic 
mechanisms begin in the primary tumor in the early stages and 
how an expression changes over time [4]. This is important not 
only from the basic science perspective but from the diagnostic 
and predictive perspective as well. Cancer mortality can be 
reduced when appropriate anti-metastatic treatments are 
started earlier. Until then, the inability to reliably characterize 
metastasis continues to drive cancer’s reputation as the most 
unpredictable and challenging illness to treat, resulting in 
lower-than-predicted survival times [5].

Machine learning is a combination of statistics and 
computer science which has become popular in recent years 
due to increases in computational power, data availability, and 
data quantity. Machine learning approaches have been used 
in different fi elds of bioscience such as in biological network 
representation [6], classifi cation and diagnosis [7], medical 
status prediction [8] and more [9]. This approach has recently 
become popular specifi cally in bioinformatics and cancer 
research [10]. 

As machine learning capabilities grow, predictive models 
have become more and more accurate at determining cancer 
metastasis. For example, Huang, et al. [11] used support vector 
machine (SVM) and SVM Ensembles to predict breast cancer, 
Behravan, et al. [12] predicted breast cancer risk using machine 
learning algorithms for genetic and demographic datasets, 
Xiaoa, et al. [13], used deep learning in cancer prediction Kadir 
and Gleeson [14] implemented machine learning methods 
in the classifi cation of lung cancer in images and Azzawi 
[15] conducted lung cancer prediction from microarray data. 
Decision trees are some of the most popular non-parametric 
supervised classifi cation machine learning algorithms. They 

are used to classify the data in the form of an inverted tree that 
consists of a leaf node, root node, and internal node [16]. The 
extremely randomized trees model is a tree-based ensemble 
model which was fi rst introduced by Geurts, et al. [17] 2006. 
This algorithm is similar to the random forest model which 
selects the subset of K features when deciding to split at each 
node. However, the difference between the random forest and 
extremely randomized trees (ERT) model is that ERT creates 
the trees from the learning samples. The Gradient Boosting tree 
model is an ensemble model technique thought to originate 
from the work of Breiman [18], which was later progressed by 
Friedman [19]. 

Due to the success of this approach in predicting and 
classifying different forms of biological data, we have opted 
to apply this method herein to analyze the metastatic gene 
expression data from breast cancer patients using large, 
publicly available datasets. The dataset contains information on 
the expression of 23397 genes across 490 individuals. The full 
datasets also contain signifi cant amounts of other information, 
including cancer type, tumor grade, and age. t-statistics and 
the Bayesian method were fi rst applied to select important 
predictors. The differential expression of genes between 2 
groups: metastatic and non-metastatic were subsequently 
analyzed and profi led. A Differential Gene Expression (DGE) 
Analysis was performed between these 2 groups using R 
software. Using this analysis, 133 signifi cant transcripts were 
detected with a >1.5-fold change. Signifi cant dimensionality 
reduction was applied to simplify and better interpret the 
data. In the subsequent framework, the metastatic and 
non-metastatic expression profi les are further investigated 
using the previously mentioned machine learning models 
to determine signifi cant metastatic predictors. Tree-based 
machine learning algorithms were fi rst applied to the reduced 
candidate data following DGE. Variable importance was used to 
examine variable responses and thereby identify the variables 
that most infl uence breast cancer metastasis.

Materials and methods

There are two main aims of this study. The fi rst one is to 
show which of the tree-based algorithms is the most effi cient 
in array analysis, and the second is to demonstrate which 
transcript outputs of these algorithms are the most signifi cant 
both biologically and for future modeling approaches.

To address the fi rst aim, data were processed by various 
machine learning methods to assess which method possesses 
the highest accuracy for this type of analysis. Decision trees, 
gradient boosting and extremely randomized trees were tested 
and compared. Each model was able to report separate variables 
with the highest value of metastatic predictive capability.

2 different cohort studies were merged to create the single 
dataset that was used in this study. Publicly available datasets 
GSE102484 and GSE20685 were downloaded from NCBI GEO 
Databank (https://www.ncbi.nlm.nih.gov/geo/). Both datasets 
were obtained from the same microarray chip platform GPL570 
[HG-U133 Plus2] Affymetrix Human Genome U133 Plus 2.0 
Array chip platform. ll cancer patients were diagnosed with 
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In order to express the weighting of data in the 
aforementioned decision-making process, the outputs of 
each variable importance for each tested model are visually 
displayed in Figures 1-3. The fi gures demonstrate the most 
signifi cant 10 array IDs as determined via the use of each 
respective algorithm. Additionally, the respective contributions 
of these arrays to the model can be visualized in Table 2, where 
the array IDs are presented in terms of their corresponding 
gene name. 

Figure 1-3 represent the variable importance of particular 
arrays in reaching the decisions within the decision tree 

breast cancer of clinical stages I-III. The data originates from 
a cohort study of invasive breast carcinoma patients who 
underwent surgery. Genomic data were obtained by whole RNA 
study from fresh frozen samples stored at a cancer center in 
Taiwan. These samples were obtained from total mastectomy 
and sentinel lymph node biopsy procedures. Any patient 
pretreated by chemotherapy or radiotherapy was excluded 
from this cohort data. (n=683).

A second dataset GSE20685 was merged with the fi rst. In 
this cohort study, genomic profi les were assessed from the 
whole RNA of fresh frozen samples obtained from patients 
diagnosed and treated with breast cancer between 1991–
2004. The samples were stored at the National Cancer Center 
Singapore. Centroid analysis was used to determine molecular 
subtypes of breast cancer (n=312) [20].

These two datasets were combined in R. Mutual parameters 
and data points were selected for data alignment before the 
merge. 44 transcripts with missing (NA) values in more than 
30% of observations were excluded from the data. Novel R 
programming codes for data manipulation and normalization 
were utilized instead of relying on built-in functions.

The Bioconductor RMA package and quantile normalization 
functions were applied for inter-array normalizations. After 
the combination, a consensus of 54643 transcripts was merged 
and preprocessed.

80% of the data was used to train the machine learning 
model while 20% was used to test. fi ve-fold cross-validation 
was applied, and the model was then trained with the decision 
tree, extremely randomized tree, and gradient boosting 
approaches. These machine learning approaches were selected 
as tree structures are powerful in modeling and these particular 
approaches are able to represent the variable importance of 
genes within the model of the tree structures. 

Then the precision, recall, F1-score, and accuracy were 
calculated for each model as accuracy measures. All relevant 
equations, such as the formula of accuracy measures can be 
seen in the supplementary document.

Results and discussion

The gradient boosting approach is the algorithm that has 
the most accurate results when compared to all others tested 
across a variety of metrics including precision, recall, F1 score, 
and accuracy (Table 1). In the fi rst table, it can be seen that 
gradient boosting is able to predict whether a patient has 
metastatic cancer from the input expression data since it has 
the highest accuracy results for precision, recall, F1-score, 
and accuracy. The precision, recall, F1-score, and accuracy 
were calculated as 0.8901, 0.8550, 0.8666, and 0.8780 for this 
model, respectively.

Machine learning tree models can be used to determine 
the variables with the most predictive importance, helping 
algorithms to assign greater weight to data that plays more of 
a role in the proper classifi cation of metastasis.

Table 1: Machine learning application results applied for cancer data for 133 
features.

Precision Recall F1-Score Accuracy

Decision-Tree 0.6969 0.7037 0.6985 0.7073

Extremely Randomized Trees 0.8545 0.7925 0.8067 0.8293

Gradient Boosting Tree 0.8901 0.8550 0.8666 0.8780

Figure 1: Variable importance of Decision Trees for array IDs.

Figure 2: Variable importance of Extremely Randomized Trees for array IDs.

Figure 3: Variable importance of Gradient Boosting Algorithm for array IDs.
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models. Figure 4 illustrates the most prevalent biological 
functions, where differentially expressed genes play a role in 
the metastatic process. 

Table 3 illustrates each algorithm’s predicted top genetic 
candidates in respective order of priority for metastatic 
detection. In this table, each variable is listed from highest 
to lowest importance in metastatic prediction. Common 
important genes across all of the tested algorithms have been 
determined to be CD8, PB1, and THP-1, as shown in the table 
in bold lettering. The prevalence of these expression markers 
is also indicated. More specifi cally; differential expression in 
some of these markers is either present in all cancers, in a 
variety of different cancers, or is specifi c to breast cancer or a 
particular subset of cancers.

This analysis enabled a variety of metastatic biomarkers to 
be pinpointed, including some unknown genes that have yet 
to be identifi ed by previous research (indicated by the “N/A” 
notation). The identifi able genes with the most signifi cant 
differential expression were discussed below. The most 
signifi cant genes identifi ed by this analysis are listed and 
explained in the biological context below.

1. One specifi c target, CD8, also known as CD8A and cluster 
of differentiation 8, is a transmembrane glycoprotein 
that was found to have key signifi cance in this analysis. 
It is a TCR, or T-cell receptor, which facilitates cytotoxic 
T-cell activity. Upregulation of CD8 has been associated 

with poor cancer prognosis in recent work by Saleh, et 
al. [21]. 

2. PB1 (PBRM1 or polybromo 1) is a tumor suppressor gene. 
Mutations in this gene are ubiquitous across multiple 
cancer subtypes. This gene encodes an ATP-dependent 
chromatin-remodeling complex.

3. THP-1 or GLI2 is a zinc fi nger protein referred to as 
“Glioma-Associated Oncogene Family Zinc Finger 2”. 
This gene encodes a protein for the zinc fi nger, which 
binds DNA and mediates sonic hedgehog signaling 
(SHH). Disruptions in the SHH pathway have long been 
associated with cancer and cellular proliferation. The 
pathway has also been implicated in evolving treatment 
resistance [22].

4. Lastly, the ETNK1 ethanolamine kinase 1 gene encodes 
the EKI1 kinase protein. This protein is involved in 
the phosphatidylethanolamine synthesis pathway. 
Mutations thus affect glycerophospholipid biosynthesis 
and metabolism. 

5. Other signifi cant genes were found as well. Two array 
IDs of interest (1562321_at and 225207_at) were found 
to correspond to PDK4, or pyruvate dehydrogenase 
kinase 4. PDK4 is a PDK-BCKDK protein kinase that 
encodes a mitochondrial histidine kinase protein. 
When mutated, pyruvate dehydrogenase is no longer 
regulated, leading to the corresponding dysregulation 
of glycolysis. PDK4 mutations are ubiquitous in fast-
growing cancer cells.

6. ELP2, or elongator acetyltransferase complex subunit 
2, is another gene of interest. ELP2 encodes a core 
subunit of the histone acetyltransferase of RNA pol II 
and is necessary for chromatin remodeling, which is 
dysregulated in cancer.

7. IGF1R encodes the insulin-like growth factor 1 receptor, 
responsible for binding IGF and exhibiting tyrosine 
kinase activity. IGF1R is overexpressed in cancers, which 
confers mutated cells with anti-apoptotic properties. 

Table 2: Variable importance of corresponding genes as assessed by different 
algorithms.

Decision Tree Extremely Randomized Tree Gradient Boosting

CD8 ELP2 [42-44] NAMPT[34]

PDK4 [31,32] N/A N/A

TCF7L2 [25] PDK4 SCGB1D2 [27,29]

TET2 [24] CD8 E3 Ubiquitin [45]

AL577781 PB1 POU2AF1 [30]

PB1 [33] NAMPT [33] IGF1R [34,35,36]

THP-1 [23] ETNK1 [37,38] THP-1 [23]

N/A PDK4 SYNPO2 [26]

ENPP5 [40,41] THP-1 PB1

SLITRK6 [26] AL577781 THP-1[23]

Figure 4: Number of gene hits by functional category for 30 most signifi cant genes.

Table 3: Variable cancer specifi city of genes according to the Human Protein Atlas.

Decision Tree
Extremely Randomized 

Tree
Gradient Boosting

CD8: All cancers ELP2: All cancers NAMPT: All cancers

PDK4 [31,32]: Many 
cancers

N/A N/A

TCF7L2 [25]: All cancers PDK4: Many cancers SCGB1D2: Some cancers

TET2 [24]: Many cancers CD8: All cancers E3 Ubiquitin: All cancers

AL577781: Highly specifi c PB1: All cancers
POU2AF1 [30]: Many 

cancers

PB1 [33]: All cancers NAMPT [34]: All cancers
IGF1R [35,36,37]: All 

cancers

THP-1 [23]: Many cancers ETNK1[38,39]: All cancers THP-1: Many cancers

N/A PDK4: Many cancers SYNPO2 [26]: All cancers

ENPP5 [40,41]: All cancers THP-1: Many cancers PB1: All cancers

SLITRK6 [27]: Many 
cancers

AL577781: Highly specifi c THP-1: Many cancers
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8. TET2, or Tet methylcytosine dioxygenase 2, encodes a 
gene that catalyzes the conversion of methylcytosine 
to 5-hydroxymethylcytosine. Gene defects can cause 
myeloproliferative. 

9. POU2AF1 encodes a Class 2 Homeobox Associating 
Factor that associates with OCT1 and OCT2. Defects have 
been associated with lymphoma. 

10. SCGB1D2 encodes Secretoglobin Family 1D Member 2, or 
Prostatein-like Lipophillin B. As a prostatatein analog, 
the protein encoded by this gene can bind steroid 
hormones and similar chemotherapeutic agents such as 
estramustine. 

11. SYNPO2 produces the protein Synaptopodin 2, which 
functions in actin bundling and bundling into F-actin. 
This is necessary for the formation of Z disks and stable 
autophagocytotic function. ENPP5 is a member of the 
Ectonucleotide Pyrophosphatase and Phosphodiesterase 
Family. ENPP5 encodes a type-1 transmembrane 
glycoprotein that is a prognostic marker in a variety of 
cancer types.

Lastly, we created a network analysis, as represented 
in Figure S2, of the output of the gradient boosting results, 
as this was found to be the most successful model tested 
within the machine learning analysis. The online GeneMANIA 
bioinformatics tool was used for this purpose [11]. The 
GeneMANIA tool searches for information on particular genes 
and performs network analysis to determine key interactions 
in the results. When using the GeneMANIA tool, a link showing 
the interaction between each pair of genes within the target 
pool is created by analyzing the relationships within the 
data. The co-expression of transcripts was analyzed, and the 
interaction links were defi ned based on previously categorized 
relationships from data presented in the GeneMANIA Online 
Tool (https://genemania.org/). 

These fi ndings were used to refi ne a target network 
for downstream network analysis. Thus, in addition to 
characterizing an effective tree-based machine learning 
workfl ow for metastatic classifi cation of array IDs and 
determining potential genes at play in early-stage breast 
cancer metastasis, we have also created a network by looking at 
the interactions of the differentially expressed genes that were 
found to play a role in metastasis as represented in Figure S2.

Conclusion

In this study, machine learning decision trees were used 
to process a clinical genetic expression dataset. In particular, 
basic decision trees, extremely randomized trees, and gradient 
boosting trees were compared and assessed in their ability to 
distinguish between gene expression patterns characteristic of 
metastatic and nonmetastatic breast cancer. 

After model training, it was observed that the gradient 
boosting tree method was the most powerful algorithm for 
predicting metastatic potential within the breast cancer dataset. 
Feature importance analysis enabled array IDs to be narrowed 

down to a select pool of important arrays that play a signifi cant 
role in classifying metastasis. Correlated genes and their 
functions were assessed to understand the broader biological 
context. It is seen that 243850_at, 233053_at, 231644_at, and 
231576_at, are common effective arrays for predicting breast 
cancer metastasis, indicating that CD8, PB2, THP-1, and ETNK1 
are amongst the most signifi cant genes of interest.

In the future, we are planning to extend the study by 
adding more available next-generation sequencing (NGS) data 
and using causal inference methods. More research must be 
conducted to understand what genes correspond to unknown 
array ID hits that were strongly differentially expressed 
between metastatic and non-metastatic patients. All code is 
available on GitHub at http://github.com/melihagraz/ML_
Metastatic_Prediction. 
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