
vv

066

Citation: Alam MA, Flura, Rahman MA, Ali A, Amin Chowdhury AI, et al. (2022) Ecological Risk of the River Halda: A Perspective from Heavy Metal Assessment Int J 
Aquac Fish Sci 8(3): 066-079. DOI: https://dx.doi.org/10.17352/2455-8400.000080

https://doi.org/10.17352/ijafsDOI: 2455-8400ISSN: 

LI
FE

 S
C

IE
N

C
ES

  
G

R
O

U
P

Abstract

To evaluate the present status of heavy metals in the sediments of river Halda, seven heavy metals, viz. Cd, Cr, Cu, Fe, Mn, Pb, and Zn were assessed by Bangladesh 
Fisheries Research Institute by collecting data from 4 sampling locations (Khondokia Khal, Katakhali, Madari Khal, and Madarsha) and ecological risk impending from 
these metals were depicted from the study.  The concentration of heavy metals in the sediments of the river Halda ranged from 0.89-1.04 for Cd, 24.72–67.30 for Cr, 
1.16-7.58 for Cu, 27899.31-60076.37 for Fe, 476.12–1137.20 for Mn, 0.77-8.33 for Pb and 40.33–121.77 mg kg−1 for Zn, respectively. The sediment geo-accumulation 
index (Igeo) values showed contamination only from two heavy metals Cd (1.10 ± 0.16) and Mn (1.48 ± 0.37). The average pollution load index (PLI) (0.37 ± 0.10) showed 
no marks of pollution in the studied sites, however; the mean degree of contamination factor (CF) showed moderate pollution. In the present study, the highest degree of 
contamination was observed at Katakhali (3.79 ± 2.07) followed by three other sites. The overall degree of contamination of four sampling sites was 2.68 ± 1.84 which 
indicated a low degree of contamination. The concentration of Cr ranged between 24.72–67.30 mg/kg with the highest (56.7 ± 9.4, mg/kg) at Madarshah and the lowest 
(30.2 ± 5.1, mg/kg) at Khondokia Khal. The highest concentration of Fe, Mn, and Zn (53926.3 ± 5338.2, 980.9 ± 145.1, and 108.0 ± 13.5 mg/kg) exhibited similar results to 
Cu and Pb; the maximum levels were found at Madarshah and the minimum levels (33571.1 ± 5456.0, 566.7 ± 92.8 and 56.0 ± 17.9 mg/kg) at Khondokia Khal, respectively. 
The enrichment factor (EF) (0.08 ± 0.02 to 4.16 ± 0) demonstrated none to moderate enrichment of the river. Nevertheless, the ecological risk factor (Ei

r) (17.83 ± 14.29 to 
759.14 ± 192.26) and risk index (RI) (711.26 ± 122.55 to 1272.04 ± 175.19) exposed low to serious ecological risk for the river Halda. 
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Introduction

Widespread urbanization coupled with industrial 
development [1] is imposing a severe threat on the harmony of 
the aquatic environment through different types of pollutants. 
Of them, heavy metals are considered the most common 
environmental pollutants [2] and in recent years it has 
appeared as a great concern for the aquatic environment [3-
9], especially in the developing countries where environmental 
quality maintenance and hygiene structure do not pace up with 
population growth and rapid urbanization [10]. Albeit, heavy 
metals (Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn) are essential components 
of the environment [11,12], biological food chain, and important 

for human health [13-18]; they can cause detrimental effects 
even at low concentrations. Furthermore, heavy metals are 
non-degradable and can bio-accumulate and bio-magnify in 
mussels, oysters, shrimps, and fi sh and can be transferred to 
humans via the food chain [19-32]. Recently, bioaccumulation 
and toxicity of heavy metals [33,34] have appeared as a global 
concern [35] due to having a negative impact on human health, 
fi sh, and invertebrates [23-39].

Fluvial natural water bodies are largely liable for the 
translocation of [40-42] heavy metals that enter the systems 
through terrestrial runoff, atmospheric deposition, sewage 
discharge, and others [43,44]. Heavy metals are poorly soluble 
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in water and are mostly scavenged by fi ne particles leading 
to their accumulation in sediments [45,46]. Thus, sediments 
become the main repository of heavy metals and other chemicals 
[46,47] and act as the indicator for water pollution in lakes 
[48] and rivers [49,50]. The sediment matrix provides the best 
natural hallmarks of recent environmental perturbations. With 
the change of environmental conditions viz.  pH, oxidation-
reduction potential (Eh), salinity and organic matter, and heavy 
metals retained in sediments can be remobilized and dissolved 
into the water again, causing secondary contamination [51-53]. 
Therefore, the identifi cation and quantifi cation of heavy metals 
in water and sediments are important environmental issues 
[54]. Several studies about contamination of heavy mental in 
soils have been carried out all over the world [55- 62].

Heavy metal and metalloid exposure has been increasing in 
recent years in Bangladesh [38,63,64] from different industries, 
domestic wastes, and agrochemicals that deteriorate water 
quality [37,65,66]. To address this issue, several authors have 
studied the heavy metals in different rivers of Bangladesh 
[2,10,67-72]. However, very few studies have been conducted 
to date to assess the heavy metal contamination of the Halda 
River. In Bangladesh, Halda is one of the most important rivers 
where Indian major carps shed their eggs naturally during the 
breeding season making this river a unique heritage of this 
country [73-76]. But the river is being polluted day by day by 
different natural and anthropogenic pollutants. Aquatic plants 
(microalgae and seaweeds) have the highest photosynthetic 
effi ciency, are the highest biomass producers, are resistant 
to several pollutants, and have the ability to grow on land 
that is often inappropriate for other uses [77]. The cells of 

aquatic plants, such as seaweeds, have bioactive compounds 
and contain functional groups, including carboxyl, hydroxyl, 
amino, and sulphate, that can act as metal-binding sites 
between the adsorbent and adsorbate [78]. The present study 
was conducted to evaluate the status of heavy metals, their 
probable ecological risk, and mitigation measures to confi rm  
the unimpeded biodiversity of river Halda.

Materials and methods

Sampling sites

The present study was conducted in the Halda river which 
lies between 22° 25′ 13″–22° 48′ 51.37″ N and 91° 45′ 00″–
91° 52′ 33″ E [79]. Four sampling points viz. Khondokia Khal, 
Katakhali, Madari Khal, and Madarsha of the river were selected 
for sediment sample collection. These “Khals” (local name for 
canals) are the main discharge routes carrying the pollution 
loadings towards the Halda river. Sampling and data collection 
were done on monthly basis for one year (from July 2020 to 
June, 201). The global positioning system (GPS) coordinates of 
the sampling sites are furnished in Figure 1 and Table 1.

Sample collection, preparations and analysis

A total of 48 surface soil samples were collected for one year 
from the selected sampling locations of the Halda river in clean 
polythene covers circumventing all possible contamination. 
Samples were collected from the river bed with the help of an 
Ekman dredge (10–50 cm layer of the soil) and the location of 
each sample was recorded using a handheld GPS (Table 1). At 
each sampling site, three replicate samples were collected and 

 

 

Figure 1: Map of the study area and the location of different sampling sites.
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mixed to form a representative sample. Samples from the same 
locations were further mixed to form only four representative 
samples for four locations. Seven common heavy metals, viz. 
Cd, Cr, Cu, Fe, Mn, Pb, and Zn were selected for assessment. 
In the pretreatment phase, the soil samples were air-dried at 
room temperature. Plant roots, large stones, debris, organic 
residues, and visible intrusions present in the samples were 
removed carefully. Finally, the samples were crushed, ground, 
and passed through a 0.85 mm plastic sieve and stored at 4°C 
until the spectrophotometric reading was completed Table 2.

After completion of all pretreatment works, sediment 
samples were transferred to the soil and water analysis 
laboratory of the Institute of Water and Flood Management of 
Bangladesh University of Engineering and Technology (BUET) 
immediately for analysis. Here, 2 g is equivalent to 1L of the 
ICP run sample. Concentrations thus can be said as μg/2 g of 
sample or mg/2kg sample. Concentration is thus multiplied by 
0.5 to get the mg/kg value.

Samples were handled carefully. Recommended clean 
powder-free latex gloves and lab coats were used during the 
analysis for eluding contamination. Glassware was properly 
cleaned with chromic acid solution and distilled water. 
Analytical grade chemicals and reagents were used to get 
better results. Blank determinations were used to get the 
correct instrumental readings. The intensity of heavy metal 
pollution in surface sediments of the river Halda was assessed 
using several different indices derived utilizing the metal 
concentration data.

Sediment quality assessment

Index of geo-accumulation: The geo-accumulation index (Igeo) 
reduces the interference of human factors in the assessment of 
soil contamination and is hosted to replace the traditional single 
factor Nemerrow index [81]. Igeo was fi rst introduced by Müller 
[82] and it has been widely applied to sediment geochemistry to 
assess the degree of heavy metal contaminations in sediments. 
The Igeo is defi ned by the following equation:

Igeo = log2 (Cn/1:5×Bn)                  (1)

where Cn is the content of elements in the sediment samples 
and Bn is the geochemical background concentration for the 
same elements (n). The background values of the studied 
elements used for the calculation of this index are the same 
as those used in the calculation of the contamination factors 
(CFs). Factor 1.5 is the background matrix correction factor due 
to lithological variations. The Igeo index contains seven classes 
[83,84] (Table 3).

As Igeo could reduce the effects of parent rocks and protruding 
artifi cial effects on soil heavy metal contamination, it is 
suitable for the evaluation of soil heavy metal contaminations 
in industrial and mining gathering areas. However, evaluation 
of Igeo for a single heavy metal contaminant, the index cannot 
provide a comprehensive description of the contamination 
status of the study area. Accordingly, an evaluation based on 
the comprehensive index method is necessary. Therefore, the 

traditional Nemerow index (IN) was improved by replacing the 
single factor index with Igeo (Table 4). The following Equation 
(3) was utilized:

IN = √ (Igeomax
2 + Igeoave

2)/2                           (2)

IN = 1.86 (In the present study).

Contamination factor, degree of contamination and mo-
difi ed degree of contamination

The Contamination Factor (CF) and Degree of Contamination 
(Cd) are used to assess the pollution load of the sediments with 
respect to heavy metals [54]. The CF is the ratio obtained by 
dividing the concentration of each metal in the sediment by 
the baseline or background value [84]. CF for each metal was 
determined by the following formula [86]:

Concentration of measured metal
CF=

Background Concentration of the same metal             (3)

To facilitate pollution control, Hakanson [86] proposed a 
diagnostic tool named ‘degree of contamination’ (Cd) and it is 
determined as the sum of the CF for each sample: 

cd 1
n CFi                    (4)

Table 1: GPS location of selected sampling points of the river Halda.

Places GPS Point (Longitude and Latitude)

Madarsha N 22027´59´´     E 091051´47´´

Madari Khal N 22026´97´´     E 090051´56´´

Khondokia Khal N 22026´13´´     E 091052´44´´

Katakhali Khal N 22026´13´´     E 091052´18´´

Table 2: Wave length used in emission measurements and the instrumental 
detection limit for measurement by using ICP.

Elements Wavelength (nm) The instrumental detection limit (μg/l)

Cd 228.8 0.1

Cr 205.5 0.4

Cu 324.7 0.4

Fe 238.2 0.3

Mn 259.3 0.1

Pb 220.3 1.7

Zn 213.8 0.2

Source: Praveen Sarojam [80]. PerkinElmer, Inc. Shelton, CT 06484 USA.

Table 3: Index classifi cation of sediment quality [85].

Igeo Values Class Sediment quality

≤ 0 0 Unpolluted

0-1 1 Unpolluted to moderately polluted

1-2 2 Moderately polluted

2-3 3 Moderately to strongly polluted

3-4 4 Strongly polluted

4-5 5 Strongly to extremely polluted

≥6 6 Extremely polluted
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The Cd is aimed at providing a measure of the degree of 
overall contamination in surface layers in a particular core or 
sampling site. Hakanson [86] has provided four grade ratings 
of sediments based on CF and Cd values (Table 5).

To calculate the degree of contamination, at least fi ve 
sediment samples are required to provide a mean concentration 
and to compare with the background value. To avoid this 
constraint, a generalized index was developed [87]; named the 
modifi ed degree of contamination (mCd) to assess the overall 
heavy metal contamination of soil (Table 6). The modifi ed 
degree of contamination (mCd) was estimated using the 
following equation:

n CFi=1mCd = 
n



                              (5)

Enrichment factor 

Enrichment factor (EF) is a convenient method to evaluate 
the magnitude of anthropogenic heavy metal contaminants 
[88] in the environment [89]. The EF was calculated using the 
following equation:

cM
( )sample

cFeEF=
cM

( )Earth'scrust
cFe                            (6)

Where, the (CM/CFe) sample is the proportion of 
concentration of heavy metal (CM) and iron (CFe) in the 
sediment sample, and (CM/CFe) Earth’s crust is the proportion 
of heavy metal and iron in the Earth’s crust [90]. Iron (Fe) 
is used for the geochemical normalization to calculate the 
enrichment factor. Different values of EF, indicates different 
degrees of enrichment; where EF<1= indicates no enrichment; 
EF<3 = minor enrichment; EF 3–5 = moderate enrichment; 
EF 5–10 = moderately severe enrichment; EF 10–25 = severe 
enrichment; EF 25–50 = very severe enrichment; and EF>50 = 
extremely severe enrichment [88,91].

Pollution load index 

Pollution Load Index (PLI) determines the communal effects 
of various pollutants in sampling sites deposited in soils and 
sediments [92]. The PLI for each site has been estimated by the 
multiplications of the nth root of the studied heavy metals [93].

nPLI = (CF1×CF2×CF3×......×CFn)               (7)

where CF is the contamination factor and n is the number of 
metals. The PLI of >1 indicates pollution, whereas <1 indicates 
no pollution [94]. This index provides a quick assessment for 
unskilled people to compare the pollution status of different 
places.

Ecological risk factor and risk index

The Er
i is widely used to assess the ecological risk of heavy 

metals in sediments [95]. The index was calculated by the 
following equations [86]:

i i iER =Tr ×C                 (8)

i iRI = Er                   (9)

Where Er
i is the potential ecological risk factor for a given 

contaminant and Tr
i is the toxic response factor of each ele-

ment, including Cd = 30, Cr = 2, Cu = 5, Fe = 2.82, Mn = 1, Pb 
= 1 and Zn = 1 [95-101]. The risk index (RI) is the sum of Er

i 
and represents the potential toxicity response of various heavy 
metals in sediments. The Er

i and RI values [98,101,102] are fur-
nished in Table 7.

Probable effects level

Probable effects levels (PEL) are guidelines widely accepted 
to evaluate bio-toxic risks of sediments. Since heavy metals 
always occur in sediments as complex mixtures, the mean PEL 
quotient (m-PEL-Q) method has been proposed and used to 
determine the possible biological effect of combined toxicant 

Table 4: Improved Nemerow Index [81].

IN Values Class Sediment quality

0 < IN ≤ 0.5 0 Uncontaminated

0.5 < IN ≤ 1.0 1 Uncontaminated to moderately contaminated

1.0 < IN ≤ 2.0 2 Moderately contaminated

2.0 < IN ≤ 3.0 3 Moderately to heavily contaminated

3.0 < IN ≤ 4.0 4 Heavily contaminated

4.0 < IN ≤ 5.0 5 Heavy to extremely contaminated

 IN > 5.0 3 Extremely contaminated

Table 5: Sediment classes according to CF and Cd values [86].

CF/Cd Values Class Sediment quality

CF>1 0 Low CF

1≤CF<3 1 Moderate CF

3≤CF<6 2 Considerable CF

CF≥6 3 Very high CF

Cd<6 Low degree of contamination

6<Cd<12 Moderate degree of contamination

12<Cd<24 Considerable degree of contamination

Cd> 24 High degree of contamination

Table 6: Sediment classifi cations according to mCd [87].

 mCd Values Contamination situation

 mCd<1.5 Nil to very low degree of contamination

1.5<mCd<2 Low degree of contamination

2≤mCd<4 Moderate degree of contamination

4≤mCd<8 High degree of contamination

8≤mCd<16 Very high degree of contamination

16≤mCd<32 Extremely high degree of contamination

mCd≥32 Ultra-high degree of contamination
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groups by calculating the mean quotients for a range of heavy 
metals using the following formula:

Cin ( )i=1 PELiPEL-Q=
n



               (10)

Where Ci is the content of measured element i, PELi is the 
PEL value of element i, and n is the number of elements. Sev-
eral classes of toxicity probability [103] for biota are presented 
in (Table 8).

Equipment used 

Ekman dredge (10–50 cm layer of the soil), handheld GPS, 
0.85 mm plastic sieve, spectrophotometer, and clean polythene 
covers.

Statistical analysis

The data were compiled and processed initially using 
Microsoft Excel and further investigations were carried out 
using different statistical software packages. For example, the 
one-way analysis of variance (ANOVA) was performed by JMP 
(version 14) software to delineate whether any signifi cant (P 

< 0.05) spatial variation exists in the concentration of heavy 
metals. Pearson’s product-moment correlation matrix (Table 
9) was obtained by using GraphPad Prism (version 6). Cluster 
analysis (CA) was performed to fi nd out the similarity and 
variation with the infl uencing factors of studied heavy metals 
[104]. The dendrogram was prepared to show the similarity 
among heavy metals and to identify their sources of origin 
using Past software (version 4). The analytical output of 
the present study performed through different software is 
presented as charts and Tables.

Results and discussion

The concentrations of heavy metals in the sediments of river 
Halda collected from four sampling locations are presented in 
Table 9. A one-way ANOVA followed by the Tukey-Kramer 
test was used to identify the signifi cant differences among the 
mean concentration of different heavy metals and the results 
demonstrated signifi cant (P < 0.05) spatial differences. The 
concentration of heavy metals in the sediments of the river 
Halda found in the present study ranged from 0.89-1.04 for Cd, 
24.72–67.30 for Cr, 1.16-7.58 for Cu, 27899.31-60076.37 for Fe, 
476.12–1137.20 for Mn, 0.77-8.33 for Pb and 40.33–121.77 mg 
kg−1 for Zn. The chronological order of the heavy metals found 
in the present study was: Fe>Mn>Zn>Cr>Pb>Cu>Cd. 

The fi ndings in the present study revealed that the 
concentrations of all studied heavy metals in the sediment were 
above the permissible limit as set by WHO [105,106] USEPA 
[107], and DoE [108] (Table 10). In addition to comparing the 
data of the present study with some other global standards, the 
results were also compared with some previous works on the 
same river and another important river system in Bangladesh 
(Table 11). The results demonstrated that most all heavy metal 
concentrations were lower than Buriganga, Dhaleshwari, and 
Shitalakhya as these rivers are severely polluted by municipal 
and industrial effl uents, sewerage, and other non-treated 
chemicals. However, the present status of the river Halda is not 
peasant as the condition of the river is gradually exacerbating 
compared to some recent investigations.

The highest mean concentration of Cd (1.0 ± 0.1) was 
found at Katakhali Khal, whereas; in the other three sampling 
locations, it was found beyond the detection limit. The amount 
of Cd found in the present study was above the acceptable 
global and country limit presented in Tables 10 and 11. The 
result was compared with some previous investigations carried 
out with the sediment samples of different important rivers of 
Bangladesh and varying results were found. The concentration 
of Cd in the river Halda was lower than that of the Buriganga 

Table 7: Ecological risk factor (Er
i) and risk index (RI) for studied metals in the river 

Halda.

Er
i Values Ecological Class

<40 Low ecological risk

40< Er
i≤80 Moderate ecological risk

80< Er
i≤160 Appreciable ecological risk

160< Er
i≤320 High ecological risk

Er
i>320 Serious ecological risk

RI Values Ecological Class

<150 Low ecological risk

150≤RI <300 Moderate ecological risk

300≤RI <600 Considerable ecological risk

RI>600 High ecological risk

Table 8: Probable effects level quotient and ecological classifi cation of the river 
Halda.

PEL-Q Values Ecological Class

PEL-Q < 0.1 8% probability of toxicity

PEL-Q = 0.11-1.5 21% probability of toxicity

PEL-Q = 1.51-2.3 49% probability of toxicity

PEL-Q > 2.3 73% probability of toxicity

Table 9: Heavy metal concentration in the sediments of the river Halda.

Sites
Metal Concentrations (mg/kg) (Mean±SD)

Cd Cr Cu Fe Mn Pb Zn
Khondokia Khal *BDL 30.2±5.1c 2.7±0.6b 33571.1±5456.0b 566.7±92.8c 4.3±0.6b 56.0±17.9b

Katakhali Khal 1.0±0.1 38.7±7.0bc 2.0±1.1b 37804.2±2470.9b 635.1±43.6bc 1.4±0.9c 67.5±15.8b

Madari Khal *BDL 47.3±1.3ab 4.0±0.7ab 48814.1±1760.4a 853.8±76.7ab 2.9±0.8bc 84.9±8.9ab

Madarshah *BDL 56.7±9.4a 6.4±1.3a 53926.3±5338.2a 980.9±145.1a 7.6±0.9a 108.0±13.5a
*CRV 0.28 ±0.03 107.0 ± 4.0 29.1 ± 1.1 - - 29.0 ±1.6 114.0 ± 6.0

*BDL= Below Detection Limit; CRV = Certifi ed Reference Values; Levels not connected by the same letters are signifi cantly different.
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[2,10,40], Dhaleshwari [110], Turag [112] and Shitalakhya 
river [114], but higher than Karnafuly [63,111], Meghna [113] 
and Brahmaputra river [70]. It was also higher than the result 
of previous studies [115] on heavy metal concentrations of 
the river Halda (Table 11). This might be associated with the 
collecting of samples from different sites than the present 
study. The results indicate that the heavy metal commination 
of the river Halda is gradually exasperating.

The concentration of Cr ranged between 24.72–67.30 mg/
kg with the highest (56.7 ± 9.4, mg/kg) at Madarshah and 
the lowest (30.2 ± 5.1, mg/kg) at Khondokia Khal. The mean 
concentration exceeded the limit set by WHO [105,106], USEPA 
[107], and DoE [108] (Table 10). Mohiuddin, et al. [2] and Islam, 
et al. [114] found a higher concentration of Cr than the present 
study in the Buriganga and Shitalakhya rivers, respectively. 
On the contrary, Ahmed, et al. [110] in Dhaleshwari; Islam, et 
al. [101] and Ali, et al. [63] in Karnafuly; Banu, et al. [112] in 
T urag; Hassan, et al. [113] in Meghna; Bhuyan, et al. [70] in 
Brahmaputra and Bhuyan, et al. [79] in Halda found the lower 
concentration of Cr than the present study.

The concentrations of Cu and Pb ranged between (1.16-7.58 
and 0.77-8.33 mg/kg) and the highest (6.4 ± 1.3 and 7.6 ± 0.9 
mg/kg) concentrations of both of these metals were found at 
Madarshah and the lowest (2.0 ± 1.1 and 1.4 ± 0.9 mg/kg) at 
Katakhali Khal, respectively. The concentration of these two 
heavy metals was above the acceptable limit set by WHO [105]. 
Furthermore, these were also higher than the results obtained 

by Ali, et al. [63], Banu, et al. [112], and Bhuyan, et al. [70] 
in the Karnafuly, Turag, and Brahmaputra rivers, respectively. 
But these were lower than Mohiuddin, et al. [2], Ahmed, et al. 
[110], Islam, et al. [114], and Bhuyan, et al. [115]; who studied the 
heavy metals of sediment samples of Buriganga, Dhaleshwari, 
Shitalakhya and Halda rivers, respectively. Nevertheless, the 
concentration of Pb in the present study was also lower than 
the amount found by Islam, et al. [111] and Hassan, et al. [113] 
in the Karnafuly and Meghna rivers, respectively Table 12.

The highest concentration of Fe, Mn, and Zn (53926.3 
± 5338.2, 980.9 ± 145.1, and 108.0 ± 13.5 mg/kg) exhibited 
similar results to Cu and Pb; the maximum levels were found 
at Madarshah and the minimum levels (33571.1 ± 5456.0, 566.7 
± 92.8 and 56.0 ± 17.9 mg/kg) at Khondokia Khal, respectively. 
The concentration of Mn found in the present study (759.0 
mg/kg) was substantially lower than the Buriganga (4036 
mg/kg) river but it was higher than the level found in some 
other important rivers in Bangladesh by Islam, et al. [108], 
Hassan, et al. [113], Bhuyan, et al. [45,115]. On the contrary, 
the concentration of Zn found in the present study (max 
108.0 ± 13.5 mg/kg) was lower than Buriganga [2,10,40] and 
Shitalakhya [114] but higher than Karnafuly [111], Meghna [113] 
and Brahmaputra [45] rivers, respectively.

A higher concentration of these metals might be the 
outcome of discharges from textile and paint industries and 
domestic sewage waste [10,40,109,113,116,117,118]. Bhuyan and 
Baker [115] also reported the seasonal fl uctuations in the level 
of the heavy metals in the river Halda.

The Igeo values have been presented in Table 12. In all 
sampling sites, the Igeo values of all studied heavy metals except 
Mn confi gured negative values after calculation, indicating that 
these sites were not polluted by the heavy metals but Mn (Table 
12). The overall Igeo values of all studied heavy metals ranged 
from -6.01 to 1.86. Muller [85] classifi cation of sediment 
quality disclosed that all sites were moderately polluted due to 
contamination with Mn and the orderly arrangements of the 
sites on the basis of the concentration of metals stand Madar
shah>Madarikhal>Katakhali>Khondokia. Mohiuddin, et al. [2] 
studied the Igeo values for Mn for 11 locations in the Buriganga 
river and found the values >1.0, indicating moderately polluted 
sediment quality. Islam, et al. [72] found higher Igeo values for 
Cd and extremely contaminated sediment quality in Turag, 
Buriganga, and Shitalakhya. Hasan, et al. [113] studied the 
sediment quality of the Meghna river and found positive values 
for Cd, Pb, Ni and Zn indicating unpolluted to moderately 
polluted sediment. In the Karnafuly river in Bangladesh, Igeo 
values for As, and Cr exposed unpolluted to extremely polluted 
status [63]. In the Bortala river in China, the Igeo values of Ni, 

Table 10: Global standards of different heavy metals compared to the present study.

Global Standards
Heavy Metals

Cd Cr Cu Mn Pb Zn
WHO (1993) 0.003 0.05 2.00 0.50 0.01 3.00
WHO (2004) - 0.05 2.00 0.40 - -

USEPA (2008) 0.005 0.10 - 0.05 - 5.00
DoE (1997) standard 0.005 0.05 - 0.10 0.05 5.00

Present Study 1.0 43.22 3.77 759.0 4.05 79.10

Table 11: The concentration of heavy metals in some others rivers in Bangladesh 
(mg/kg).

Rivers
Heavy Metals

References
Cd Cr Cu Mn Pb Zn

Buriganga 3.33 177.50 344.20 4036 79.80 502.30 [2,40,109] 
Dhaleshwari 2.08 27.39 37.45 - 15.79 - [110] 

Karnofuly 0.24 0.76 1.22 15.30 4.96 16.30 [111] 
Turag 1.40 0.44 1.57 1.64 1.08 [112] 

Meghna 0.23 31.74 442.60 9.47 79.02 [113]
Shitalakhya 5.01 74.82 143.70 28.36 200.60 [114] 

Halda 0.04 8.84 5.90 139.50 8.80 79.58 [115] 
Brahmaputra 0.001 0.01 0.12 1.44 0.11 0.01 [70]
Present Study 1.00 43.22 3.77 759.0 4.05 79.10

Table 12: Geo-accumulation indices (Igeo) of heavy metals for sediments of all studied sites in the river Halda.

Stations
Geo-accumulation indices (Igeo) Improved Nemerow Index (IN)

Cd Cr Cu Fe Mn Pb Zn
Khondokia *BDL -2.33±0.25 -4.80±0.30 -1.09±0.24 1.10±0.24 -2.86±1.62 -2.00±0.45 1.60
Katakhali 0.73±0.64 -1.97±0.27 -5.35±0.76 -0.91±0.10 1.26±0.10 -3.10±2.74 -1.70±0.32 1.50

Madarikhal *BDL -1.67±0.04 -4.23±0.25 -0.54±0.10 1.69±0.13 -3.41±0.37 -1.35±0.16 1.60
Madarshah *BDL -1.42±0.23 -3.58±0.31 -0.40±0.14 1.89±0.21 -1.99±0.18 -1.01±0.18 1.53
Mean±SD 1.10±0.16 -1.84±0.40 -4.49±0.40 -0.73±0.32 1.48±0.37 -2.58±1.54 -1.52±0.47 1.56±0.05
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Zn, Cr, As, and Cu indicated no pollution [119]. On the contrary, 
Malvandi [120] found higher Igeo values for As and Se and 
sediment class ranged from unpolluted to extremely polluted 
in the Zarrin-Gol River, Iran. Rahman, et al. [121] and Hassan, 
et al. [113] have opined that a higher concentration of Al and Mn 
originates lithogenically and is associated with spinning mills 
and paint industries wastes. The higher Igeo values as a result 
of the increased concentration of Mn found in the river Halda 
might be the result of similar lithogenic and anthropogenic 
effects.

To quantify the soil heavy metal contamination in the 
study area, the improved Nemerow index (IN), which depicts 
the combined effects of all heavy metals were assessed. The 
IN ranged from 1.50 to 1.60 in all four sampling sites which 
indicates the study area is moderately contaminated and these 
results also comply with the results of Igeo. Akbor, et al. [122] 
found severe contamination in some sampling sites of the river 
Buriganga in Bangladesh in terms of IN. Guan, et al. [79] also 
found extreme commination in all sampling sites in the mining 
gathering area in Tianjin, China. The reasons for getting higher 
values in their studies are quite obvious, they conducted their 
studies in heavily industrialized areas and the anthropogenic 
load was much higher in those areas compared to the present 
study.

Table 13 shows the results of contamination factors (CF) 
and pollution load index (PLI), degree of contamination, and 
modifi ed degree of contamination (mCd) of heavy metals in 
sediment samples collected from the river Halda. The overall 
CF value for Cadmium (Cd) was >3.0 indicating considerable 
contamination of this metal, however; the CF values for all 
other heavy metals exhibited “low contamination”. The 
CF values found in the present study in the river Halda was 
lowered compared to the values found in the river Meghna [113] 
and Buriganga [10,40,69]. The river Buriganga is polluted by 
the thousands of industrial and sewerage lines that dispose of 
huge volumes of toxic wastes into the river [123] every day. The 
Meghna river is also polluting different sites from industries 
that are situated on the banks of this river or very close to the 
river system. The dominant industries in this area are shipyard, 
cement, paper, jute, super board, oil, sugar, food processing, 
salt, and chemical industries. The river receives wastewater 
directly from these industries and also domestic and agro-
chemical wastes contribute to heavy metal pollution in water 
and sediment [110]. In many other investigations around the 
world where the CF has been calculated, higher values of CF 
values were found. For example, CF value from 1.3 to 5.5 was 
found in the Balok river [96]; 0.14 to 6.08 was found in the 
Dikrong river [124]; 0.44 to 2.47 was found in the Yauri river 
[125] and 1.1 to 14.6 was found in the Tamaki estuary [87]. 

The PLI represents the number of times by which the metal 
content in the sediment exceeds the background concentration 
and gives a summative indication of the overall level of heavy 
metal toxicity in a particular sample [43]. The PLI of all 
sampling sites presented in Table 13 was calculated according 
to Tomlinson, et al. [93] and the values ranged from 0.29 to 
0.51 with the overall value for all four sampling sites (0.37 ± 
0.10) considered to be unpolluted. Individual PLI of all sites 
was also <1 that must be classifi ed as unpolluted. The order of 
PLI of four sampling sites from higher to lower was Khondoki
a>Katakhali>Madarikhal>Madarshah. The PLI values found in 
the present study in the river Halda were lower than in some 
previous studies, for instance; Ali, et al. [63] found higher PLI 
values in the Karnafuly river. Mohiuddin, et al. [126] reported 
PLI values of 4.9-24.2 and 5.2-27.4 in summer and winter 
samples of the Buriganga river which was manifold higher 
than the present study. Ahmed, et al. [110] stated that 100% 
of sampling points of the Buriganga river had PLI>1, which 
indicated a polluted condition. In another study, Islam, et al. 
[127] also reported similar results. Furthermore, Abdullah, et 
al. [96] and Varol [84] found higher PLI values than the present 
study in the Balok and Tigris rivers, respectively. The reasons 
for these higher PLI values might be associated with the direct 
disposal of untreated effl uents in the river from different 
industrial and agro-chemical sources.

In the present study, the highest degree of contamination 
was observed at Katakhali (3.79 ± 2.07) followed by three 
other sites. The overall degree of contamination of four 
sampling sites was 2.68 ± 1.84 which indicated a low degree of 
contamination. Similarly, mCd for the seven analyzed elements 
was found <1.5 in the present study, indicating nil to a lower 
degree of contaminations. Both of these parameters (Cd and 
mCd) exhibited a lower range of values in the present study 
compared to some previous investigations at home and abroad.  
Sikder, et al. [69] and Akbor, et al. [122] found a higher degree 
of contamination than the present study in the Buriganga river. 
Sivakumar, et al. [128] in Tamil Nadu, India, and Abrahim and 
Parker [87] in New Zealand found higher mCd values than 
the preset study. However, they conducted their study in the 
coastal areas where all suspended and dissolved solids are 
washed out by the river and depositions are higher. Considering 
the average mCd, it should be noted that compared to geo-
chemical background values, cadmium is highly enriched than 
other elements in the sampling sites. This localized enrichment 
is considered to be linked with the application of phosphate 
fertilizers to arable soils. Acidifi cation of soils and lakes may 
also result in enhanced mobilization of cadmium from soil and 
sediments [129].

Table 13: Metal contamination factors (CF) and pollution load index (PLI), degree of contamination, and modifi ed degree of contamination (mCd) in the sediment of the river 
Halda.

Contamination Factor
PLI Degree of Contamination mCdStations Cd Cr Cu Fe Mn Pb Zn

Khondokia *BDL 0.30±0.05 0.05±0.01 0.71±0.12 0.63±0.10 0.14±0.13 0.39±0.12 0.29 1.52±0.30 0.22±0.04
Katakhali 2.14±1.87 0.39±0.07 0.04±0.02 0.80±0.05 0.71±0.05 0.05±0.05 0.47±0.11 0.34 3.79±2.07 0.54±0.30

Madarikhal *BDL 0.47±0.01 0.08±0.01 1.03±0.04 0.95±0.09 0.14±0.04 0.59±0.06 0.35 2.24±0.15 0.32±0.02
Madarshah *BDL 0.57±0.09 0.13±0.03 1.14±0.11 1.09±0.16 0.38±0.05 0.75±0.09 0.51 2.92±0.31 0.42±0.04

Overall (Mean±SD) 3.33±0 0.43±0.11 0.06±0.05 0.92±0.20 0.74±0.38 0.15±0.17 0.46±0.31  �0.37±0.10 2.68±1.84 0.37±0.18
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The values of enrichment factor (EF) of studied heavy metals 
found in the sediments of the river Halda have been furnished 
in Table 14. The results showed that the mean EF values for 
cadmium (Cd) were>4, suggesting a moderate enrichment of 
the river. However, the EF values for other metals studied at all 
sites showed “minor enrichment” (Table 14). In some previous 
investigations where the EF has been calculated, for instance; 
the mean EF values of Cr, Ni, and Zn in the Luanhe river and 
the mean EF values of As, Ni, and Cu in the Bortala river [130] 
were >1.5. Abdullah, et al. [96] and Varol [84] opined that the 
heavy metals resulting in higher EF entirely originate from the 
natural processes or crustal material. This might affect the EF 
values of the present study as well.

To assess the ecological risk of the studied elements to the 
river Halda, the potential ecological risk indices (Er

i and RI), 
were measured and are summarized in Table 15. The order of 
potential ecological risk factor (Er

i) of heavy metals in sediments 
of the river Halda was Mn> Cr>>Zn>Cu>Pb>Cd. Except for 
Fe, the mean Mn concentration of four sites poses serious 
ecological risk whereas Cr and Zn pose appreciable to moderate 
ecological risk, respectively. The mean potential ecological risk 
coeffi cient of Cd, Cu, and Pb was lower than 40, which belongs 
to low ecological risk. Also, the values of RI at all sites were 
>600 which indicated high ecological risk. In brief, the Er

i and 
RI indices for the studied elements in the surface sediment of 
the river Halda pose a potential ecological risk. Rahman, et al. 
[131] found lower Er

i and RI indices in an adjacent area of Dhaka 
Export Processing Zones than in the present study. The reasons 
might be that they conducted their study in a fl oodplain area 

and in a river located at Savar Upazila which receives lower 
content of municipal effl uent surges than the capital Dhaka. 
But in another study, Islam, et al. [132] found signifi cantly 
higher Er

i and RI indices in the Burignaga river than in the river 
Halda. Malvandi, et al. [120] found lower indices values in the 
Zarrin-Gol River in Iran. Solaiman, et al. [98] found higher Er

i 
for Cd in Egypt whereas other studied heavy metals exhibited 
lower values than the present study. Sivakumar, et al. [128] 
found lower RI than the present study. The reasons behind this 
discrepancy of Er

i and RI indices with local and international 
studies might be associated with the receiving of different 
types of contaminants from different anthropogenic sources 
where variation among metallic elements normally exists.

The mean Probable effects level (PEL) was calculated for the 
four sampling sites based on the metals Cd, Cr, Cu, Fe, Mn, Pb, 
and Zn to evaluate the potential risk to aquatic lives [103]. The 
PEL ranged from 0.04 to 1.09, and the mean probable effects 
level quotient (PEL-Q) ranged from 0.26 to 0.45 with an overall 
value of 0.35 ± 0.08 (Table 16). The results indicated that the 
combination of heavy metals may have a 21 % probability of 
being toxic (Table 8). Probable effects level (PEL) and effects 
level quotient (PEL-Q) of heavy metals of any native river were 
not reported in the literature, therefore; it was not possible 
to compare the results of the present study with the previous 
ones. However, Li, et al. [133] found a similar probability of 
toxicity on the Weihai coast, China. Soliman, et al. [98] also 
found 30% probability of being toxic on the Mediterranean 
coast, Egypt. 

Heavy metals in sediments normally originate from 

Table 14: The values of enrichment factor (EF) of studied heavy metals for sediments in the river Halda.

Stations
Enrichment Factors (EF)

Cd Cr Cu Fe Mn Pb Zn
Khondokia *BDL 0.42±0.01 0.08±0.00 1.00±0.00 0.89±0.02 0.21±0.20 0.54±0.09
Katakhali 4.17±0.28 0.48±0.06 0.05±0.03 1.00±0.00 0.88±0.01 0.06±0.06 0.58±0.10

Madarikhal *BDL 0.46±0.01 0.08±0.02 1.00±0.00 0.92±0.05 0.14±0.04 0.57±0.04
Madarshah *BDL 0.49±0.03 0.11±0.02 1.00±0.00 0.95±0.06 0.34±0.07 0.66±0.05
Mean±SD 4.16±0 0.47±0.03 0.08±0.02 1.0±0.0 0.91±0.03 0.22±0.12 0.59±0.05

Table 15: Potential ecological risk factors (Er
i) and risk index (RI) for studied heavy metals in the river Halda.

Stations
Er

i

RI Risk grade
Cd Cr Cu Fe Mn Pb Zn

Khondokia *BDL 60.47±10.23 13.68±2.87 94670.37±15385.84 566.68±92.83 14.47±12.71 55.97±17.90 711.26±122.55 Low
Katakhali 19.30±16.87 77.46±14.08 10.12±5.57 106607.96±6968.00 635.13±43.61 4.57±4.96 67.46±15.84 814.03±85.90 Low

Madarikhal *BDL 94.53±2.54 20.23±3.40 137655.67±4964.23 853.85±76.66 14.45±3.89 84.93±8.91 1068.00±84.18 Low
Madarshah *BDL 113.48±18.73 31.83±6.54 152072.06±15053.86 980.91±145.10 37.85±4.70 107.96±13.52 1272.04±175.19 Low
Mean±SD 5.79±12.25 80.43±18.68 16.48±7.83 116121.54±22269.59 712.20±161.01 14.21±12.63 71.98±18.72 901.10±206.10 Low
Er

i
 grade

Table 16: Probable effects level and effects level quotient of heavy metals in the river Halda.

PEL PEL-Q

Stations Cd Cr Cu Fe Mn Pb Zn

Khondokia 0.00±0.00 0.19±0.03 0.03±0.01 0.84±0.14 0.52±0.08 0.03±0.02 0.21±0.07 0.26±0.05

Katakhali 0.15±0.13 0.24±0.04 0.02±0.01 0.95±0.06 0.58±0.04 0.01±0.01 0.25±0.06 0.31±0.05

Madarikhal 0.00±0.00 0.30±0.01 0.04±0.01 1.22±0.04 0.89±0.13 0.03±0.01 0.31±0.03 0.40±0.02

Madarshah 0.00±0.00 0.35±0.06 0.06±0.01 1.35±0.13 0.89±0.13 0.07±0.01 0.40±0.05 0.45±0.05

Mean±SD 0.23±0.03 0.27±0.07 0.04±0.02 1.09±0.23 0.72±0.20 0.04±0.02 0.29±0.09  0.35±0.08
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different natural and anthropogenic sources [134]. It is well 
established that organic matter and grain size are two main 
factors infl uencing the heavy metal regimes in the sediments 
[135]. The connotation among metals in sediment affords 
crucial information on sources and pathways of heavy metals 
in the aquatic milieu. The result of correlations between heavy 
metals conceded with the results of PCA and CA endorsed some 
new relations between parameters, viz. strong, moderately 
strong, and very strong, indicating that their sources of origin 
are similar, especially from industrial effl uents, municipal 
wastes, and agricultural inputs. With this view, a correlation 
matrix was applied to discover relationships among studied 
elements and to determine a possible common metal source in 
the river Halda. According to the Pearson correlation matrix, 
(95% confi dence level, P=0.05), a signifi cant correlation was 
found among some metals studied (Table 17). Cr displayed 
close relationships with Cu, Fe, Mn, and Zn. Similarly, Cu 
showed a close relation with Fe and Mn. Iron showed a close 
relationship between Mn, Pb, and Zn. Mn showed a close 
relationship with Zn and Pb showed a close relationship with 
Zn proposing a common source of these metals. These highly 
signifi cant positive correlations between heavy metals suggest 
the possibility of common sources of origin which may be 
anthropogenic [136]. On the other hand, the rest of the elemental 
pairs showed no signifi cant correlation with each other which 
could be an indication of separate source input or sources of 

pollution. In contrast, no positive correlations were observed 
between Cd and other metals, suggesting that Cd pollution 
might be from a different source than other metals. Bhuyan 
and Bakar [79] and Hossain, et al. [137] also found a similar 
type of association between different heavy metals in the river 
Halda. Hassan, et al. [113] and Akbor, et al. [122] studied the 
metal-to-metal correlation of the Buriganga river and found a 
positive correlation among most of the metals except for very 
few metals with no signifi cant correlation Figure 2.

The principal component analysis (PCA) disclosed that all 
heavy metals could be grouped into two components (Eigen 
values>1) which explains 98.84% of the total variance (Table 
18). The fi rst component (PC1) accounted for about 82% of the 
total variance and exhibited high loading values for Cd, Cr, Cu, 
Mn, and Zn, whereas the second component (PC2) accounted for 
17% of the total variance and exhibited high loading value only 
for Pb. Together with Pearson’s Correlation Matrix (signifi cant 
positive correlations between pairs of variables), we speculated 
that elements with loading values in the PC1 (Cd, Cr, Cu, 
Mn, and Zn) were from the lithogenic (natural) origin [138]. 
Probable sources are industrial discharges, municipal waste, 
household garbage, and urban runoff [122]. On the contrary, 
in the PC2, Pb presented a high loading value also implying 
its natural or anthropogenic origin. Pb mainly transfers as a 
reducible element in surface sediments and is strongly allied 
with Fe and Mn oxides acting as the natural accumulators of 
the metal in sediments [139]. Bhuyan and Bakar [115] found 
almost similar results in the river Halda with the existence 
of two principal components. On the other hand, Bhuyan, et 
al. [79] found three principal components in the river Halda, 
and Akbor, et al. [122] found four principal components in the 
river Buriganga while analyzing the heavy metals of sediment 
samples from the respective rivers. Soliman, et al. [98] also 
found two principal components while analyzing the heavy 
metals in sediments from the Mediterranean coast, Egypt, and 
Li, et al. [133] found three components in the Weihai coast, 
China. The difference that was visible in terms of the nos. of 
components and loading values of different elements might 
be due to spatial variations and procedures applied for heavy 
metal detection and analysis. 

Conclusion and recommendations

The results of this investigation disclose vital information 
about metal contamination in sediments of the river Halda. The 

Table 17: Pearson’s Correlation Matrix of heavy metals of Halda river.

Cd Cr Cu Fe Mn Pb Zn

Cd

Cr -0.019

Cu -0.578* 0.757*

Fe -0.218 0.966* 0.814*

Mn -0.239 0.961* 0.847* 0.984*

Pb -0.408 0.544 0.733* 0.575* 0.594*

Zn -0.092 0.939* 0.738* 0.944* 0.918* 0.649*

Figure 2: Bray-Curtis similarity index of heavy metals found in the sediments of the 
river Halda.

Table 18: Factor loadings on elements in sediments from the river Halda (n = 12).

Element PC1 PC2

Cd 0.979 -0.464

Cr 0.966 -0.074

Cu 0.920 0.133

Mn 0.981 -0.046

Pb 0.532 0.881

Zn 0.960 -0.021

Eigen value 4.911 1.018

% variance explained 82 17

Cumulative % variance 81.86 98.84
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distribution order of heavy metal concentration in sediments 
was Fe>Mn>Zn >Cr>Pb>Cu and >Cd (mg/kg), respectively 
and the heavy metals were above the certifi ed reference 
values set by WHO [106] and USEPA [140]. Albeit, the seven 
elements showed different distribution characters, lithogenic 
or anthropogenic contributions were the main sources of these 
metals. The adverse impact of heavy metals on aquatic biota 
was assessed using different indices. The average Igeo values 
displayed pollution only from two heavy metals Cd (1.10 ± 0.16) 
and Mn (1.48 ± 0.37). The average PLI (0.37 ± 0.10) exhibited 
no marks of pollution among the studied sites, however; the 
average CF values showed a moderate degree of pollution. 
The average EF (0.08 ± 0.02 to 4.16 ± 0) demonstrated none 
to moderate enrichment of the river. Nevertheless, average Er

i 
(17.83 ± 14.29 to 759.14 ± 192.26) and RI (711.26 ± 122.55 to 
1272.04 ± 175.19) exposed low to serious ecological risk for the 
river Halda.

Multivariate statistical analysis demonstrated signifi cant 
correlations between the studied heavy metals indicating 
similar sources and/or similar lithogenic/anthropogenic 
processes regulating the occurrence of these metals. In 
light of the fi ndings of the present study, the following 
recommendations can be made:

No industrial effl uents should be allowed to dispose of 
in the river Halda without prior treatment 

 No mining and dumping sites should be allowed on the 
bank of the river Halda

 Canals carrying municipal sewerage discharge to the 
river Halda should be stopped permanently 

 The construction of a dam on the upper stretch of river 
Halda for water management and irrigation should not 
be allowed

 No project should be allowed to collect water from the 
river Halda for municipal use

 No mechanized boats should be allowed to run through 
the river Halda

 The natural navigation route of the river Halda should 
be maintained

 The river should be allowed only for research purposes 
and further research should be conducted on this aspect 
to know the future status and trends of heavy metals

Halda is an important river in Bangladesh. This study will 
support understanding of the present status of metal pollution 
in the river Halda and could be used as a useful tool for the 
academicians, researchers, and authorities of the Govt. of 
Bangladesh to formulate future management strategies to 
conserve and restore the river as it is considered as the only 
natural breeding ground of Indian major carps and declared as 
the Bangabandhu Fisheries Heritage.
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