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Abstract

In the present study, multi wall carbon nanotubes (CNTs) were chemically functionalized by 
concentrated nitric acid refl uxing for 8 hours to form acid functionalized CNTs (FCNTs). Fourier 
transformed infrared spectra reveal the formation of carboxylic acid (-COOH) functional groups on the 
surface of chemically treated CNTs. The increase in intensity of Raman spectra D band relative to G band 
and enhancement of oxygen to carbon ratio confi rm the functionalization and formation of –COOH groups, 
which in turn increase the dispersibility of CNTs in water, thus rendering them solution processable. The 
X-ray diffraction pattern and scanning electron microscopy images confi rm the structure retention of 
CNTs even after harsh acid treatment. These functionalized CNTs show good affi  nity towards cotton 
fi bers and the surface resistivity of FCNTs coated fi ber has been found to be ~ 1010 Ω/square making them 
suitable for use as an anti-static material.
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Introduction

The use of electronic gadgets has become widespread 
and indispensable in the present technological era. This has 
given birth to an undesirable effect known as electrostatic 
dissipation (ESD) effect [1] . The accumulation of static charge 
in electronic goods packaging (which are primarily insulating 
polymeric materials) causes unnecessary damage to their 
electronics. Therefore, the importance of development of the 
ESD free materials has been realized for ultimate utility in 
electronic packaging. As the electrical conductivity is identifi ed 
as prerequisite for static charge buildup control, several efforts 
have been made in the past to develop conducting materials 
based static safe compositions [2–8]. In particular, CNTs with 
excellent electrical conductivity, low density, high corrosion 
resistance, outstanding mechanical properties along with 
high thermal, chemical and environmental stability [6,9–12] 
is considered as most promising candidate for ESD control 
applications. However, their hydrophobicity and the inherent 
inertness of graphitic skeleton pose major challenges for their 
direct utilization via formation of CNTs fi lled composites 
or surface coatings. To solve these issues CNTs are often 
modifi ed by covalent and non-covalent schemes (known 
as functionalization) which enhance their hydrophilicity, 
processability and compatibility [13–16] . The grafting of 
oxygen containing functional groups at the open ends and 

sidewalls of CNTs is a useful approach towards the covalent 
functionalization of CNTs. Particularly, the carboxylic acid 
group (i.e. –COOH functionality) happens to be the most 
common functional groups which open up the possibility 
of further modifi cation of CNTs via suitable solution based 
chemical routes. It is worth mentioning that functionalized 
CNTs contain polar groups which enable their dispersion inside 
solvents, enhances compatibility with polymeric matrices and 
improves their ability to surface coat the polymeric substrate 
based packaging materials [16–20].

Here, we have reported the synthesis of covalently 
functionalized MWCNTs which can be easily coated over cotton 
fi bers and demonstrated the application of these functionalized 
CNTs coated fi bers for anti- static application. 

Experimental

Materials

The MWCNTs used in the experiment was purchased from 
Nanoshel with diameter 10-20 nm, length 3-8 μm and (>99 
%) purity. The 70% nitric acid of analytical grade was procured 
from Merck Specialties Pvt. Ltd. Cellulose nitrate membrane 
fi lters with 0.45 μm pore size produced by Millipore were used 
in this experiment.
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Functionalization

About 250 mg of pristine MWCNTs was mixed with 200 
mL concentrated nitric acid and the mixture was refl uxed for 
8 hours followed by its ultracentrifugation at 10000 rpm. The 
FCNT pulp was dispersed in 500 mL distilled water followed 
by fi ltration through a cellulose nitrate membrane fi lter (0.45 
μm pore size) using a vacuum fi ltration assembly. The sample 
was repeatedly washed with distilled water till neutral pH of 
fi ltrate. The fi ltered FCNTs bedding was dried in a vacuum oven 
at 80ºC for 24h and obtained FCNTs powder was characterized 
using different techniques. Figure 1a,b, show the schematics 
of pristine CNTs and functionalized CNTs (FCNTs) respectively 
whereas Figure 1c shows the actual refl uxing setup used to 
carry out the reaction.

Characterization

The surface morphology was observed using scanning 
electron microscope (SEM), Model; VT-EVO, MA-10, Carl–
Zeiss, UK. Raman data was recorded on Horiba Jobin- Yvon Laser 
Spectrometer 6400 using 514.5 nm wavelength as excitation 
source. Fourier transform infrared (FTIR) transmittance data 
was obtained using Agilent Technologies Cary 630 system 
using pressed pellets of sample mixed with KBr. The surface 
resistivity of uncoated and FCNTs coated fi ber was measured 
by surface resistivity meter. 

Results and Discussion

FTIR Spectroscopy

Figure 2a shows the FTIR spectra of pristine CNTs and 
FCNTs where the noticeable peak at ~ 1636 cm-1 in both samples 
corresponds to the stretching vibrations of the carbon-carbon 
double bonds (i.e. -C=C- bond stretch) which constitute the 
CNTs backbone. The presence of this peak in both the samples 
shows that the basic skeleton of CNTs is preserved even after 
the acid treatment. However, the appearance of additional peak 
in FCNTs at ~1742 cm-1 (-C=O stretch) and reduction in relative 
intensity of –C=C- stretch peak confi rms the successful 
oxidation and introduction of carboxylic acid (i.e. -COOH) 
groups over CNTs backbone. These results are complimented 
by the Raman spectra (Figure 2b which shows that the intensity 
of D-band relative to G-band (i.e. ID/IG ratio) is signifi cantly 
higher for FCNTs as compared to pristine CNTs. This indicates 
that a suffi ciently large number of defects have been created 
upon functionalization which can serve as functional handle 
and active surface sites for the dispersion of CNTs (Figure 
2c) inside polar solvents (e.g. water in present case) & their 
interaction with other species. Further, the absence of any 
new band and only minor shift in the position of Raman bands 
(Figure 2b) and XRD peaks (Figure 2d) revealed that the basic 
structure of CNTs remained unaffected by functionalization. 

Field emission scanning electron microscopy (FESEM) 
& EDX

In harmony with earlier observations, the FESEM images 
of pristine CNTs (Figure 3a) and FCNTs (Figure 3b) provides 
the visual evidence of the preservation of structural features of 

CNTs in FCNTs even after encountering harsh acid treatment 
conditions.

Figure 3c,d show the EDX spectra of pristine CNTs and 
FCNTs respectively whereas corresponding inset shows their 
elemental composition. It is observed that the proportion 
of carbon and oxygen atoms (i.e. C/O ratio) decreases upon 
functionalization, which supports the formation of oxygen 
containing functional groups over CNTs’ surface. Interestingly, 
the attachment of -COOH groups makes the surface of CNTs 
hydrophilic which not only facilitates their dispersion in water 
(Figure 2d) but also allows adsorption over suitable substrates. 
As the CNTs are electrically conducting, their coating over 
insulating substrates is expected to reduce surface resistivity, 
which is considered an index to assess the suitability of a 
material for anti-static application [8,21,22].

Figure 4a,b show the optical images of bare and FCNTs 
coated fi ber respectively. It can be seen that the bare fi ber is 
white in color whereas upon FCNTs coating, the fi ber becomes 
blackish in color due to decoration of adsorbed FCNTs. The 
coated FCNTs networks are expected to improve the surface 
conductivity and hence charge dissipation characteristics. 
Indeed, the surface resistivity measurements have shown 
that bare cotton fi ber is insulating in nature with resistivity 

Figure 1: Schematic representation of (a) Pristine CNTs (b) functionalized CNTs 
(FCNTs); and (c) actual refl uxing setup.

Figure 2: (a) FTIR spectra (b) Raman spectra (c) Dispersion images and (d) XRD 
Spectra of CNTs and FCNTs.
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value of >1012 Ω/square (Figure 4c). In contrast, FCNTs coated 
fi ber displays several orders lower resistivity i.e. 1010 Ω/square 
(Figure 4d) and clearly passes the anti-static criteria [6,23,24]. 
These fi bers are considered potential candidate for making 
woven fabrics with antistatic & static charge dissipation 
characteristics, with ultimate utility in ESD safe electronic 
packaging applications. 

Conclusion

The successful functionalization of MWCNTs was achieved 
in just 8 hours of refl uxing in HNO3. The COOH group was 
successfully attached on CNTs which is confi rmed by the 
appearance of corresponding peak in its FTIR spectrum. Raman 
spectroscopy further validates this by exhibiting an increase in 
D band intensity. The acid treatment is able to functionalize the 
CNTs without deteriorating their structure which is backed by 
FESEM images and XRD and patterns. The improved dispersion 
results as a consequence of functionalization. FCNTs also prove 
their worth as a possible anti-static material as their surface 
coating on insulating polymeric fi ber brings its resistivity 
down to ~1010 Ω/square.
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