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Abstract

The rapid growth of pharmaceutical industries worldwide demands continuous development of 
effi  cient analytical techniques that help not only to detect the presence of the molecules at extremely 
low concentration levels, but also to detect the structure. Optical spectroscopic techniques are widely 
used in pharmaceutical development and manufacturing because of their speed and versatility. However, 
IR and Raman are relatively insensitive. Surface enhanced Raman scattering (SERS) enhances the weak 
Raman signal, thus, extending the range of available applications. This allows fast, sensitive detection 
of trace levels of key pharma molecules. However, the use of SERS for analysis requires substrates 
like silver nanoparticles. In this review, the applications of nano-substrates for SERS will be discussed. 
The synthesis and fabrication of nanocomposites; such as gold and silver, and nanocomposites will be 
highlighted. The characterization of the fabricated nanomaterials provide information on structures and 
properties that could help to improve and control their activity in SERS.
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Introduction 

One of the main challenges in analytical science and 
technology is to develop methods that provide unambiguously 
the chemical nature of the material of interest with the lowest 
detection limits, no interferences and the shortest acquisition 
time. Among the promising methods for such purpose is the 
optical spectroscopy. The most appropriate one is Raman 
spectroscopy to determine the amount of substances. The 
Raman Effect occurs when a beam of monochromatic exciting 
radiation interacts with a sample and scattering occurs. 
Large portion of this scattered radiation has either the same 
energy as the incident photons (elastic scattering and known 
as Rayleigh scattering). A small portion of this scattered 
radiation (Figure 1) has either higher or lower energy than the 
incident photons (inelastic scattering) and is known as Raman 
scattering. Due to light-matter interactions, energy is either 
gained or lost by the molecule during Raman scattering. This 
method of characterization can yield narrow, well-resolved 
vibrational bands which, in essence, provide a “fi ngerprint” 
of a given analyte and involve surface processes and interfacial 
reactions [1,2]. Several methods have been reported for various 
pharmaceutical compounds analysis [3-9], such as ofl axacin 
(antibiotic), amlodipine (antihypertensive), chlorpheniramine 
(antihistamine) and promethazine (antihistamine). However, 
optical spectroscopic methods attracted more attention over 
others. 

Optical spectroscopy is considered selective technique, 
both because of the molecularly specifi c nature of the pattern 
of peaks obtained and because of the wide variation in the 
Raman cross section of different analytes. Water gives very 
weak Raman scattering and organic molecules usually have 
much larger scattering cross sections thereby enabling Raman 
scattering to be recorded from organic molecules in aqueous 
solution and allowing analytes to be identifi ed without the 
required pretreatment as in some other techniques. 

Surface-enhanced Raman scattering (SERS)

SERS is a technique that enhances Raman scattering by 

Figure 1: Illustration of scattering processes
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molecules adsorbed on rough nanometal surfaces. Surfaces of 

plasmonic nanostructures are often used of the classic SERS 

substrates of gold, silver, or copper. The fi rst observation of 

surface-enhanced Raman scattering (SERS) was reported on 

the pyridine molecule adsorbed from an aqueous solution onto 

the silver electrode by oxidation-reduction cycles [10]. The 

electrode surface was altered to allow for the examination of 

charge transfer between analyte molecules and substrate metal 

surface as well as orientation of the molecules. 

 The amplifi ed signal was explained by increased surface 

area that enables more pyridine molecules adsorbed on the 

electrode surface, from the roughened silver electrode [11]. 

Later, it was reported that the enormously strong surface 

Raman signal could be caused by another enhancement of 

Raman scattering effi ciency itself in addition to the surface 

area [12].

Conditions 

SERS involves adsorption of molecules onto the substrate 

surface, Figure 2. Substrates are of a variety of metals, like silver, 

gold, or copper with differing morphologies [13]. Generally, gold 

and silver is most often used as SERS substrates because they 

are air stable materials. All three metals have the excitation of 

localized surface plasmon resonances (LSPRs) that cover most 

of the visible and near infrared wavelength range, where most 

Raman measurements occur, also making them convenient to 

use, Figure 3 [19]. Delivering molecules to metal structures can 

be achieved in different ways, as shown in Figure 4. Droplet 

formation depends on nature of solution, surface materials, 

and surface nanopatterns. Molecule attachment may be strong 

or weak depending on molecule affi nity to metal and surface 

chemistry. In general, SERS substrate is any metallic structure 

(nanostructure) that produces the SERS enhancement. The 

SERS substrates can be classifi ed as depicted in Figure 5. 

The coinage metals of Au, Ag and Cu are usually used 

since the resonance condition for these metals lies at common 

laser frequencies for Raman spectroscopy. In addition, at the 

resonance frequency, the dielectric function for these metals 

is minor. The simplistic explanation on the basis of the SERS 

is that the intensity of the Raman scattering is proportional 

to the induced dipole of the given molecule. The induced 

dipole is proportional to the polarizability of the molecule 

and the magnitude of the incident electric fi eld. The main 

steps proposed in electromagnetic theory containing some 

fundamentally important aspects of SERS, are as follows: 

(1) An analyte is adsorbed on a surface patterned or 

roughened so that the chosen excitation frequency will 

excite a plasmon and create scattering. 

(2) Energy from the plasmon is transferred to the 

adsorbed molecules and the Raman process occurs on 

the molecule. 

(3) Energy is transferred back to the plasmon less the 

Figure 2: SERS spectra of ketoconazole on silver nanoparticles

Figure 3: Wavelength ranges where silver, gold, and copper have been characterized 
and established as supports in SERS.

Figure 4: Possible molecules delivering ways to metal structures

amount transferred to the nuclei and scattered from the 

surface as wavelength shifted light. These simple steps 

are the main steps 

SERS condition involve: 

i. specifi c metals, and especially metal nanoparticles such 

as silver, gold, copper and platinuim.

ii. surfaces with roughness on the nano- or nano-meter 

scale

iii. proper wavelength of excitation
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Optimization

Several parameters and conditions should be optimized in 
order to obtain enhanced Raman signal and to ensure maximum 
signal generation and enhancement. These parameters include 
the selection of excitation source, the features of the substrate, 
and the ratio of the sample to the substrate, as shown in Figure 
6. It should be noted that the electromagnetic enhancement is 
strongest where the particles have the highest curvature; thus, 
the adsorption of the analyte on the long or narrow axis of an 
ellipsoid or spheroid effects the magnitude enhancement. 

Mechanisms

In SERS, there are two main mechanisms of enhancement, 
an electromagnetic and a chemical enhancement. Chemical 
mechanism where laser excites (i) new electronic states arising 
from chemisorption or (ii) shifted or broadened adsorbate 
electronic states yielding a resonance condition. In this 
mechanism no roughness requirement. It contributes enhance 
factor of 102-104. 

In electromagnetic enhancement, localized surface 
plasmon resonances (LSPRs) induces electromagnetic fi elds 

at roughened metal surface where molecules are adsorbed. 
It is affected by all factors determining LSPR. It contributes 
enhance factor of more than 104.

Enhancement factor 

SERS enhancement factor can be calculated as:

Analytical enhancement factor (AEF):

/
/

 SERS SERS

RS RS

I  CAEF  
I   C

where ISERS , IRS are intensities of SERS and Raman signals, 
respectively. CSERS, CRS are molecule concentrations for SERS 
and Raman, respectively.

SERS substrate enhancement factor (SSEF):

/
/

 SERS surf

RS vol

I  N
SSEF  

I   N
where Nvol = CRS V – number of molecules in the scattering 

volume V

Applications of SERS

The SERS methods are widely used for obtaining qualitative 
and quantitative information of different structures including 
pharmaceuticals. SERS line-widths are relatively narrow which 
allows for higher discrimination between samples with similar 
spectral profi les. 

Another substrate commonly used in SERS analysis is 
vacuum deposited metal island fi lms which include metals 
on planar surfaces such as glass, quartz, and silicon wafers 
or nanoparticles embedded surfaces such as silica beads and 
polystyrene. Metal island fi lms are of high purity and can also 
be tuned somewhat to appropriate localized surface plasmon 
resonances by altering parameters such as fi lm thickness 
and deposition rate, with most thicknesses of metal being 
between 5-20 nm [19]. SERS substrate of colloidal silver or gold 
nanoparticles can consistently yield large signal enhancement 
[20]. Colloids are generally produced by reducing metal salts, 
often silver nitrate with sodium citrate, which can be done in 
manner to create cubes, rods, triangles, and other structures 
[21]. The aggregated clusters of metal colloid can possess 
hot spot within the aggregate itself that achieve extremely 
high enhancement [20-25]. There is debate as to the exact 
reason for the areas of high enhancement and whether it is 
the aggregates specifi cally or if a “hot” particle becomes 
entrapped in the aggregate. Generally, bottom-up and top-
down groups of fabrication methods have been used for SERS 
detection on numerous occasions [26]. The fi rst one focuses 
on synthetic methods for creating substrates by assembling 
nanoscale building blocks into specifi c patterns. The second 
one involves conventional lithographic techniques where 
nanoscale structures are created by removing parts of a bulk 
material, often by some etchant process. It has been used 
commonly in electronic and photonic industries and is also 
becoming increasingly more common in the creation of SERS 
substrates [27-29], but certain limits related to reproducibility 
have prevented rapid development in these areas.

Figure 5: SERS substrates types and their methods of production

Figure 6: Some of the parameters that should be considered during the SERS 
method optimization.
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Over other techniques, SERS has many advantages for use 
in a variety of areas. In its simplest form, SERS is comparable 
to Raman spectroscopy with better sensitivity. As such, SERS 
still provides specifi c detail about the “fi ngerprint” of a given 
molecule or process. However, since conventional Raman 
has weak signal intensity, the useful technique has not been 
applied as universally as other methods. SERS has the ability to 
not only improve the sensitivity for those applications already 
used by Raman while also expanding the potential uses of the 
method to those that would not be possible without the added 
sensitivity and limits of detection. SERS has the potential 
to impact the areas of analytical chemistry, biochemistry, 
forensics, environmental analysis, trace analysis, and many 
others.

SERS has been reported as a promising technique for 
quantitative and qualitative identifi cations of organic and 
inorganic targets [30-35]. Due to its ultra-sensitivity, SERS 
was used to detect trace organic and inorganic analytes 
in different media. For example, some organophosphorus 
compounds, such as methylparathiol and dimethoate, that 
exist in pesticides were identifi ed at the nanogram level [36]. 
Due to the fact that water molecules scatter weakly in Raman 
experiments made SERS technique an attractive choice to 
conduct useful characterizations of samples [37]. For example, 
SERS detection of organic and inorganic compounds in ground 
water was evaluated and proven to be effective [38]. Moreover, 
highly active polyhedral Ag nanocrystals SERS substrates 
have performed very well in low-level arsenate and arsenite 
sensing in aqueous solutions. Detection at 1 ppb of order of 
magnitude was achieved [39]. In addition, selected polycyclic 
aromatic hydrocarbon (PAH) compounds in artifi cial seawater 
were detected using SERS [42], and a limit of detection of 10 
ppb for naphthalene and pyrene were recorded. For the PAH 
characterization, gold colloidal monolayer substrates were 
used [43] and have been shown to enhance Raman signals of 
PAH very dramatically. Other studies reported the detection of 
thiacyanine [44] and folic acid [45] in water and human serum 
using SERS technique. Moreover, trace analysis using SERS has 
been implemented to detect biomolecular systems prepared in 
aqueous solutions at low concentrations. For instance, SERS 
was successfully utilized to detect as low as 10-5 M dipeptides 
on a surface of colloidal silver [46].

One major advantage of SERS is the relative easiness 
of preparing its samples which are obtained from variety of 
sources with direct analysis without the need for pretreatment 
as in some other techniques. Currently, this technique has 
been implemented successfully for detecting trace amounts 
of pharmaceuticals [47,48]. It has been used in biochemical 
fi elds to help analyze electron transfer reactions in proteins 
[49] and provide quantitative DNA information [50,51]. It has 
been implemented in a variety of scientifi c areas and rivals 
fl uorescence spectroscopy in many ways [52]. SERS technique 
has used to compare relative intensity shifts and to investigate 
the adsorption geometry of protoberberine alkaloids on 
Ag nanoparticles [53]. It has been employed to study the 
interaction between protoberberine alkaloids and human 
serum albumin [54]. SERS with gold surface has been used for 
ultra-trace analysis of latent drug materials [55]. 

Pros and cons of SERS 

SERS has advantages of 

• producing spectra which have sharp peaks whereas for 
example fl uorescence spectra are broad and overlapping 
and less specifi c for a particular molecule. This enables 
much higher numbers of analytes to be discriminated. 

• It is used for the analysis of materials in different 
phases 

• There is no need to prepare the sample

• SERS is a non-destructive and non-invasive method

• It can be used for in-situ and in-vitro analysis

• It can be used under a wide range of conditions

• It can be coupled with fi bre optic cables for remote 
sensing applications 

Importance of pharmaceutical analysis

Pharmaceutical samples are of a complex nature, routinely 
being composed of several ingredients including active, 
inactive, and others like coating components. For example, 
Raman spectroscopy system- a Lab Ram HR Evolution Raman 
spectrometer- equipped with an internal He-Ne 17mW laser 
at a 633 nm excitation wavelength was used for detection of 
methimazole on analysis of substrates of graphene dendrimer 
loaded with silver nanoparticles. SERS samples were prepared 
in a small cuvette by using a 4:1 volume ratio of aqueous MTZ 
solution to G-D-Ag. A 50x objective was used for focusing the 
laser beam to the solution. The data acquisition time was 20 sec 
with one accumulation for collection with each SERS spectra. 
The SERS spectra were obtained in the range from 400-2000 
cm-1 as shown in Figure 7. The calibration curve was reported 
as a plot of the SERS response versus the logarithmical scale of 
10-6 M to 10-11 M of MTZ at 1359 cm-1, showing a good coeffi cient 
of determination, R2 = 0.9976 with physical detection limit of 
10-11 M [32].

In the context of quality assurance:

It is benefi cial to analyze pharmaceutical samples to 
determine both the overall composition of the sample and the 
actual distribution of the components within the tablet. 

The ideal analytical tool for analyzing pharmaceutical 
samples should be fast, non-destructive, and record chemically 
specifi c data to differentiate between the multiple components 
within a pharmaceutical tablet. 

The analytical method should provide specifi c data or 
signals that should be a fi ngerprint of the molecule of interest. 

SERS has gained attention in the investigation of various 
pharmaceutical compounds [12-18], such as ofl axacin 
(antibiotic), amlodipine (antihypertensive), chlorpheniramine 
(antihistamine) and promethazine (antihistamine) 
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Some methods have been developed electrochemical-
based methods [56-59] for detection of such pharmaceuticals. 
However, the achieved detection limits were not satisfactory. As 
a continuation of our research, we will target these compounds 
in the project since studying wider range of pharmaceuticals 
requires several years. 

However, the development of SERS is being holdback 
because of some obstacles. For example, it is still a big challenge 
to prepare the appropriate SERS-active substrates to meet the 
requirements such as large enhancement factor, good stability 
and reproducibility.
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