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Abstract

In this review paper, we report on some very recent fi ndings dealt with the oil-in-water Pickering 
emulsions, stabilized by a strong adsorption of charged solid nanoparticles on the surface of the oil-
droplets. Here, we are concerned with three important questions: (1) Structure and thermodynamics of 
these emulsions, (2) cage effect and subdiffusion phenomenon within them, and (3) spherical diffusion 
of anchored nanoparticles on the curved oil/water interface. For the study, the emulsions are regarded as 
colloidal solutions, where the clothed oil-droplets play the role of charged soft-colloids, and in addition, the 
adsorbed nanoparticles are assumed to be point-like. For question (1), we recall the essential steps allowing 
the determination of the structure-factor and the spatial-correlation function, and the thermodynamic 
properties, as pressure, internal energy, and thermal compressibility of these emulsions. To this end, the 
adopted pair-potential is that of Sogami-Ise combining repulsive and attractive forces, and use is made 
of the so-called Integral Equation Method. The question (2) deals with a quantitative investigation of the 
clothed oil-droplets dynamics (cage effect and subdiffusion), using a Generalized Langevin Equation, which 
is successfully tested by Molecular Dynamic Simulations. The question (3) is concerned with an exact study 
of the spherical diffusion of anchored nanoparticles on the surface of the dispersed oil-droplets. Finally, 
we precise the major role played by grafted polymers onto the spherical oil/water interface.

Review Article

Review on Pickering emulsions 
stabilized by adsorbed nanoparticles: 
Structure, Thermodynamics, Cage 
Effect and Subdiffusion

M Benhamou1* and S El-Moudny2

1Physics Department, Faculty of Sciences, PO Box 
11201, Moulay Ismail University, Meknes, Morocco
2ENSAM, Moulay Ismail University, PO Box 15290, Al 
Mansour, Meknes, Morocco

Dates: Received: 10 June, 2017; Accepted: 30 
August, 2017; Published: 31 August, 2017

*Corresponding author: M Benhamou, Physics 
Department, Faculty of Sciences, PO Box 11201, 
Moulay Ismail University, Meknes, Morocco, 
E-mail: 

Keywords: Pickering emulsions; Nanoparticles; 
Structure; Thermodynamics; Cage effect; Sub diffu-
sion; Spherical diffusion

https://www.peertechz.com

Introduction

Pickering emulsions (PEs) [1,2], are dispersions presenting, 
very often, as oil-in-water (O/W), water-in-oil (W/O) or 
double emulsion water-oil-water (W/O/W). These dispersions 
are stabilized by an addition of small solid particles that act 
as emulsifi ers, instead of the surfactant molecules [3-6]. These 
particles may be organic or inorganic, according to the nature 
of their desired use. Also, PEs may be water-in-water (W/W) 
emulsions [7], which are dispersions formed by droplets of 
water-solvated molecules moving in another continuous 
aqueous solution. Both droplets and continuous phase contain 
different molecules (chemically incompatible macromolecules, 
for instance), which are entirely water-soluble. The solid 
particles that act as emulsifi ers are of nanometric size, while the 
stabilized droplets are as small as few micrometers diameter. 
The stabilization of larger droplets (few millimeters diameter) 
is possible as well, using micron-sized solid particles.

The stabilization of the dispersed droplets within PEs is 
ensured by a strong adsorption of the solid particles at their 
surfaces. In contrary to surfactants, where the adsorption is 

rather dynamic (reversible), that of the charged solid particles 
is irreversible and suffi ciently strong, with a very high 
adsorption energy, between 106kBT and 108kBT, where kBT is 
the thermal energy. Here, kB is the Boltzmann’s constant and 
T is the bath temperature. Of course, such an energy mainly 
depends on the value of the wetting (or contact) angle and 
the droplet-radius [6]. The anchoring of the solid particles 
emanates from a partial wetting of the surface of the charged 
solid particles by water and oil.

Due to their remarkable properties, such as high stability with 
respect to coalescence and their recent use in nanotechnology 
leading to the creation and the characterization of the nano-
scale structures in new ways, PEs have been the subject of 
much studies, both from experimental and theoretical point of 
views. In addition, they can serve as templates for the advanced 
materials, as Janus colloids [8], composite particles [9-18], and 
colloidosomes [19-21].

PEs are heterogenous liquids which present as a dispersion 
of droplets of some liquid (dispersed phase) in another one 
(continuous phase). A typical example is schematized in fi gure 1. 
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The two liquids are not chemically and physically compatible. 
By a mechanical mixing of the emulsion, each droplet becomes 
surrounded by discrete nanoparticles arranged on its surface. 
If the preparing conditions, such as wettability [22-30], 
charge [31-34], concentration [3], shape and size [35-40], of 
nanoparticles, as well as, the pH and the salt-concentration in 
aqueous phase [41-44], are right, the clothed droplets can be 
regarded as charged soft-colloids [45].

Beside their use in industry as special emulsions, PEs have 
other potential applications. In fact, they were recently used 
[46], for the preparation of the so-called magnetic polymer 
microspheres [47] (magnetic balls), which possess polymer cores 
that are protected by shells of magnetic nanoparticles, where 
oil is styrene, emulsifi ed in an aqueous dispersion of Fe3O4-
nanoparticles using a high shear. The oil-in-water emulsion 
is stabilized by magnetic nanoparticles, and styrene was easily 
polymerized at temperature 70C. Iron oxide nanoparticles then 
act as effective stabilizers during the polymerization process. 
The fabricated magnetic nanocomposites were characterized 
using the standard experimental techniques.

Generally, the stabilization of PEs is ensured by the charge 
carried by the anchored nanoparticles. But the resulting 
Coulomb force between the (oil) hairy-droplets are screened out 
by the presence of mobile small charges that are counterions 
and coions (coming from a dissociation of an electrolyte). In 
a very recent publication [48], the authors were interested in 
the determination of the structure and thermodynamics of PEs, 
using the so-called Integral Equation Method [49], which is based 
on the Statistical Mechanics principles. Such a method allowed 
the extraction of the spatial-correlation-function and the 
structure-factor and thermodynamic properties, as pressure, 
internal energy and thermal compressibility. To approach 
the static problem, the authors fi rst considered the clothed 
oil-droplets as monodisperse small spheres assimilated to 
charged soft-colloids. When the temperature of the considered 
emulsion is fi xed to some value (room temperature), the only 
remaining parameters of discussion are the density of droplets, 
their size and surface charge, and the salt-concentration. For 

the study, the adopted pair-potential was of Sogami-Ise type 
[50,51], which is an alternative of the standard Derjaguin-
Landau-Verwey-Overbeek (DLVO) potential [52]. Thereafter, 
the question [53] was addressed to investigate quantitatively 
the cage eff ect and the subdiff usion phenomenon within PEs. 
Such an anomalous diffusion originates from the fact that 
PEs are heterogenous (or complex) systems, where their 
constituents are strongly correlated. To this end, use was made 
of Molecular Dynamics Simulations. This computational method 
was introduced by Alder and Wainwright [54], in order to study 
the structure and dynamics of liquids. Also, an exact study of 
the spherical diffusion laws of anchored nanoparticles on the 
surface of the droplets of PEs has been recently achieved [55]. 
These exact spherical diffusion laws have been determined 
using the Green’s function techniques (further details are given 
below).

For some industrial purposes, the association of polymers 
to PEs is strongly recommended, in order to synthesize new 
nanocomposites dedicated to specifi c applications. Many 
experimental works have been devoted to such a question. 
For example, in a recent experimental paper [56], PEs were 
stabilized by cellulose monocrystals grafted with thermo-
responsive polymer brushes. An another example is provided 
by some recent experiment [57], dealt with PEs stabilized 
by nanoparticles with thermally responsive grafted polymer 
brushes. In the same context, dual responsive PEs stabilized 
by constructed core crosslinked polymer nanoparticles via 
reversible covalent bonds are reported Ref. [58]. Another 
interesting work [59] was recently achieved to tunable 
PEs with polymer-grafted lignin nanoparticles. It is well-
known that lignin is an abundant biopolymer that has native 
interfacial functions but aggregates strongly in aqueous media. 
In this experiment, the polyacrylamide was grafted onto kraft 
lignin nanoparticles, using reversible addition-fragmentation 
chain transfer chemistry to form polymer-grafted lignin 
nanoparticles. The study of PEs stabilized by palygorskite 
particles grafted with pH-responsive polymer brushes was the 
goal of a recent experimental investigation [60]. The one-step 
formation of multiple PEs stabilized by the self-assembled poly 
(dodecyl acrylate-co-acrylic acid) nanoparticles as emulsifi ers 
has been the subject of some experimental work [61]. As last 
example, we recall that a new approach to the formation of 
cross-linked colloidosomes was developed [62], on the basis 
of PEs, stabilized exclusively by peroxidized colloidal particles.

When the nanoparticles that emulsify the dispersion, 
are electrically uncharged or neutral, the most effective way 
to stabilize PEs consists in grafting polymer chains onto the 
surface of the dispersed (oil or water) droplets. Before adding 
the polymer chains to the emulsion, one terminates each by 
a solid nanoparticle that has no particular preference for the 
two immiscible liquids. Then, the polymer chains associated 
to the solid nanoparticles, go to the oil/water interface to form 
hairy-droplets, where the chains fl oat in the surrounding 
liquid. Also, use can be made of the polymer chains, which are 
terminated rather by big amphiphilic molecules (O/W case). 
Therefore, in this case, the grafted-polymer chains play the 
role of surfactants. Also, one can use telechelic polymers (di-

Figure 1: Optical microscopy images of O/W emulsions prepared at pH 4.7 
stabilised by WPM particles of different concentration in water.
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end-functional polymers) [63], or diblock polymers (one 
sequence prefers to contact water, and the other, oil) to get 
hairy-droplets. In a recent study [64], the aim was a rigorous 
theoretical determination of the expression of the effective 
potential between hairy-droplets, as a function of their 
center-to-center distance, versus the pertinent parameters 
of the problem, which are the solvent quality, the grafting-
density (number of grafted polymer chains per droplet) and 
the bulk monomer-concentration. Such an exact study allowed 
the classifi cation and the determination of the shapes of the 
effective potentials versus these parameters.

It should be pointed out that considerable scientifi c 
investigations have been addressed to Pickering emulsions in 
the past. In this paper, however, the goal is a review on recent 
advances dealt with the physical properties of PEs, such as the 
effective interactions between the clothed oil-droplets, their 
structure and thermodynamics, cage effect and subdiffusion 
phenomenon, and spherical diffusion of the anchored 
nanoparticles onto O/W interface.

This paper is organized as follows. In Sec. 2, we report on 
the essential static study of the structure and thermodynamics 
of PEs, which are stabilized by adsorbed charged nanoparticles. 
A succinct overview of the investigation of the cage effect 
and subdiffusion within PEs is the aim of Sec. 3. A recall of 
an exact study of the spherical diffusion of anchored charged 
nanoparticles is presented in Sec. 4. Finally, some concluding 
remarks are drawn in the last section.

Static study of structure and thermodynamics

Pair-potential: Consider a suspension of N droplets of 
a certain liquid that are dispersed in another chemically 
different liquid (O/W, for instance). The volume of the 
solution is denoted as V, and their number density as ρ=N/V. 
For simplicity, the droplets are assumed to be monodisperse 
spheres of common diameter  . The surface of each droplet 
is wetted by Z irreversibly adsorbed charged nanoparticles of 
small diameter in comparison with . The strong adsorption 
of the nanoparticles rigidifi es the surface of droplets, so that 
they can be considered as soft spherical charged colloids (as 
latex balls in water, for instance) that carry the same charge, 
Ze (macroions), where e is the electron charge. When they are 
added to the solution, the adsorbed nanoparticles are ionized 
and release small ions (counterions) in the solution. Generally, 
the colloids are in contact with other free ions resulting from 
a dissociation of an electrolyte (salt, for instance). It is well-
known that the surrounding mobile ions lead to a screening of 
the Coulomb force between charged colloids.

Beside the screened Coulomb interactions, the macroions 
experience attractive van der Waals forces, and the 
thermodynamic properties (phase transitions, structure...) of 
the system can be described correctly within the framework of 
DLVO theory [52]. In the same context, in his seminal paper [50], 
I. Sogami used a self-consistent theory (adiabatic approximation 
[65]), combined with a resolution of the Poisson-Boltzmarm 
equation, which is satisfi ed by the electric potential created by 
macroions (ionized latex polyballs), for the determination of 

their associated effective interaction potential. Such a potential 
involves a short-range (screened) Coulomb repulsion, whose 
origin is self-evident, in addition to a long-ranged exponential 
attractive tail. The Sogami potential has been used to describe the 
vapor-liquid transition and crystallization of charged colloids 
observed in experiments [66]. We note that, incidentally, the 
attractive part of the interaction potential, defi ned in Eq. (1) 
(see below), is similar to the (entropic) depletion potential that 
appears when small-ions (or macromolecules) are interposed 
between adjacent macroions (or colloids) [67], and the Debye-
Hückel screening length then plays the role of the small-ion 
size (or gyration radius). 

The expression of the Sogami-Ise potential between 
charged oil-droplets reads [50,51]
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Here, r denotes the center-to-center distance between two 
interacting charged oil-droplets. In expression above, 0 is the 
free space permittivity and r is the relative permittivity of the 
host liquid (r =80, for water), and the screening parameter  is 
defi ned by

2 24  B i i
i

l z   
    

               (2)

where 2
0/ 4B r Bl e k T  stands for the Bjerrum length 

(lB=0.7 nm, for water, at room temperature), i for the number 
density of ions of type i, of common valence zi, T for the 
absolute temperature, and kB for the Boltzmann’s constant. 
The temperature T will be fi xed to the value 298 K (room 
temperature). The Debye-Hückel screening length is 1

Dl   . 
Notice that the Debye approximation remains valid, as long as 
the condition 1  is fulfi lled. For example, in the presence of 
a salt of concentration, cs, the above formula becomes.

 2 24 B sl Z c                    (2)

Then, the chosen potential depends on seven parameters:  
 0, , , , , ,r sZ c T      .

It is straightforward to see that the adopted pair-potential 
vanishes at some known characteristic distance, and exhibits 
only one known minimum that is located in the attraction 
region, and goes to zero, for infi nite distances.

Figure 2 shows the variation of the dimensionless pair-
potential,   / BU t k T , upon the dimensionless distance, r/,  for 
three values of the dimensionless screening parameter k= (by 
varying the salt-concentration cs). These curves are drawn with 
the parameters: * = 0.005, Z=300 and =500 Å. Here, * 3 
denotes the dimensionless number density.

Finally, we recall that, using this potential, Tata and 
coworkers [68] performed Monte Carlo and Brownian Dynamics 
simulations, and the obtained results agree well with certain 
experimental observations [69,70]. Also Kepler and Fraden 
[71] determined the pair-potential of the colloidal particles 
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from measurements of the pair-correlation-function of both 
dilute and moderately concentrated dispersions. Thus, the 
determined pair-potential can be reproduced by the Sogami-
Ise potential, assuming 2 ( 3)1.75 ?10? 1 , sc m  as pointed out 
by Tata and Arora [72]. The authors argued that the results 
by Kepler and Fraden supported the counterion-mediated 
attraction discussed by Sogami.

Basic equations: Consider a given PE which presents 
as a suspension of oil-droplets (dispersed phase) in water 
(continuous phase). These oil-droplets are clothed each by 
charged nanoparticles that ensure their stabilization, and then 
prevent the coalescence phenomenon. As we said before, these 
clothed droplets can be regarded as soft-colloids moving freely 
in water. Therefore, this PE is considered as a colloidal solution, 
where the oil-droplets are soft-beads and water is solvent. The 
investigation of its structural and thermodynamical properties 
crucially depends on the nature of the mutual interactions 
between oil-droplets. To this end, use is made of the so-called 
Integral Equation Method (IEM), usually encountered is Physics 
of Simple Liquids [49]. Such a powerful theoretical tool allows 
the determination of the structure of PEs in a thermodynamic 
state, characterized by the oil-droplet-density, , bath 
temperature, T, and a pair-potential, U(r), which expresses 
the mutual interactions between charged droplets. We note 
that IEM is a microscopic theory, based on the principles of 
Equilibrium Statistical Mechanics [73].

The basic physical quantity to consider is the structure-
factor, S(q), which can be measured using X-rays, neutrons 
or light scattering experiments. Here,    4 / / 2q sin  
denotes the amplitude of the scattering wave-vector, q, which 
depends on the incident wavelength, , and the scattering-
angle,. The structure-factor, S(q), is nothing else but the 
Fourier transform of the radial-distribution-function, g(r), 
where 3r R is a three-dimensional vector relating two 
correlated oil-droplets (one droplet is taken as origin). In fact, 
the function g(r) traduces the spatial arrangement of the oil-
droplets within PE under investigation. Then, we write

    .1 1 iS g e d      q rq r r                (3)

where   accounts for the number density of the oil-

droplets. Integral in relation above is performed on the hole 
real-space, R3. We note that the dependence of the structure-
factor, S(q), on the pair-potential is entirely contained in the 
radial-distribution-function, g(r). Therefore, the structural and 
thermodynamical quantities of PEs depend on the expressions 
of g(r) and U(r). Since, PEs are considered as spatially isotropic 
liquids, the corresponding structure-factor depends only on 
the wave-vector modulus, q, and both radial-distribution-
function and pair-potential, on distance r.

We write the fi rst important relationship giving the internal 
energy per oil-droplet, in terms of the radial-distribution-
function and pair-potential,

    23 2  
2 BE Nk T N U r g r r dr                       (4)

The fi rst part of the r.h.s. of the above equality stands for 
the contribution of an ideal PE (free from interactions).

The second important relationship expresses the 
dependence of the virial pressure on the PE structure,

 2 32
3B

dUP k T g r r dr
dr

                    (5)

This is the thermodynamical equation of state of PE.

The last interesting relationship is that relating the 
structure-factor, at vanishing scattering-angle, and the 
thermal compressibility, T , 

    . 20 1 4 1 i
B Tk T S g r e r dr         q r                  (6)

Thermodynamically speaking, 1
T
 is directly proportional 

to the variation of pressure upon the oil-droplet density, i.e.,

1
T

T

P 


  
   

                    (7)

Then, equality (6) establishes a link between strucrure and 
thermodynamics.

Of course, all the above relationships necessitate the 
knowledge of the radial-distribution-function, g(r), that 
crucially depends on the pair-potential between interacting 
charged oil-droplets, U(r), or equivalently, the total correlation-
function,     1h g r r . The latter solves the Orstein-Zernike 
Integral Equation [49]

       ' ' 'h c c h d  r r r r r r               (8)

Here, c(r) means the direct-correlation-function. Since 
we are concerned with homogeneous and isotropic PEs, the 
corresponding functions g, h and c, and the pair-potential U, 
depend only on the oil-droplet-distance, r, where one droplet 
is taken as origin. Then, 3rR is the position-vector of the 
second oil-droplet.

The above integral equation, however, contains two 
unknown quantities, which are h(r) and c(r). To solve it, a 
closure relation between these two quantities is needed. It is 
convenient to choose IEM with the so-called Hybridized Mean 
Spherical Approximation (HMSA) [74,75]. Its advantage is that, 
it ensures the thermodynamic consistency in calculating the 
internal compressibility by two different ways, defi nitions 
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Figure 2: Reduced Sogami-Ise pair-potential, U(r)/kBT, upon the dimensionless 
distance, r/ ,for three values of the dimensionless screening parameter, k=k, 
with the fi xed parameters: ρ*= 0.005, Z= 300 and 500 Å.
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(6) and (7). For simple fl uids, such a mixing IEM was solved 
using some numerical algorithm combined with the iterations 
techniques [76,77].

Structural properties: To investigate quantitatively these 
properties, use is made of IEM with HMSA, which allows the 
determination of the radial-distribution-function, g(r), the 
structure-factor, S(q), the pressure, P, the (internal) energy, 

E, and the thermal compressibility, xt. Naturally, the three 

last thermodynamical properties will be compared to their 

counterparts relatively to an ideal PE (without interactions), 

namely 0 BP k T , 0 3 / 2BE Nk T , and   10 1
0   T BP k T

.
All computations are achieved adopting Sogami-Ise 

potential, relation (1). In this study, the salt-concentration is 

fi xed to 21 31.75 10  sc m  , and the absolute temperature, T, to 

its room value. But the remaining parameters  (surface valence 

of oil-droplets),  (oil-droplet-size) and  (oil-droplet-

density) will be varied systematically. Discussion will be done 

considering the dimensionless variables: * 3/ ,  ,   .r q   

More details about this study can be found in Ref. [48]

A. Density effects

Here, the diameter of the oil-droplets, , and their 

surface charge, Ze, are fi xed to the values:  = 20000 Å and Z 

= 20000. These two parameters are mainly controlled by the 

concentration of the anchored charged nanoparticles on the 

surface of the oil-droplets. The density of the oil-droplets, , 

will be varied. We note that the chosen values of density are 

those used in some recent experiment study [78].

Figure 3a shows the variation of the correlation-function, 

g(r), against the dimensionless distance, r/, for various 

values of the dimensionless density, . First, remark that, 

as expected, the (principal) peak-height of the correlation-

function becomes more and more pronounced with increasing 

dimensionless number density, *. Such a result indicates 

that, when the number density of the clothed oil-droplets 

is increased, the local density around an oil-droplet, taken 

as origin, also increases. This means that the dispersion is 

more ordered by an increase of the droplet-density. Second, 

the position of the principal peak is shifted toward its smaller 

values, when the droplet density is increased. This can be 

explained by the fact that an increase of this density leads to 

a reduction of the inter-distance between oil-droplets (strong 

correlations). This tendency has been observed in several 

previous studies [79-82].

Figure 3b shows the structure-factor, S(q), versus the 

dimensionless scattering wave-vector amplitude, q , for 

the same values of the dimensionless number density as in 

fi gure 3a. The conclusions are the same, as before, except for 

the position of the principal peak that is rather shifted to its 

higher values, as the oil-droplet density is increased. This 

fact is not surprising, since the wave-vector amplitude, q, is 

dimensionally the inverse of a distance.

B. Charge effects

Now, the aim is to quantify the infl uence of the charge 
carried by the dispersed oil-droplets on the structure of the 
considered PE. Their size and dimensionless density were fi xed 
to the values:  = 20000 Å and *= 0.0020.

Figure 4a shows the dimensionless Sogami-Ise pair-
potential,   / BU r k T , versus the dimensionless distance, 
r/, for three values of the charge parameter Z, fi xing the 
other parameters to the values: *= 0.0020,  = 20000 Å and 
 = 0.25. These curves clearly indicate that the potential-
depth is diminished by an increasing of the surface charge. 
In other words, the potential becomes less attractive, by 
an augmentation of the charge that ensures more stable 
emulsions, due to the electrostatic repulsion. Such a tendency 
is confi rmed in fi gures 4b,c representing the correlation-
function and the structure-factor, respectively. Remark that 
the position of the principal peak of the correlation-function 
is shifted toward its higher values, as the surface charge is 
increased. In contrary, that of the structure-factor becomes 
less important. This can be understood by the fact that the size 
of the local ordered region made of fi rst neighbors (principal 
peak position), is more and more larger, as the surface charge 
is augmented, due to the repulsion of the charged droplets. In 
addition, Figure 4b indicates that the height of the principal 
peak of the correlation-function increases, as the charge 
increases. Finally, we emphasize that the correlation-function 
and the structure-factor shapes are in agreement with MC 
simulations [83].

C. Size effects

To quantify the effects of the droplet-size on the structure of 
PEs, the surface charge of the droplets and their dimensionless 
density are fi xed to the values: Z= 2000 and *= 0.0020, and 
their size will be varied.

Figure 5a shows the shapes of the pair-potential versus 
distance, for several values of the droplet-size. According 
to these curves, the potential-depth diminishes, and the 
position of its minimum is shifted toward its higher values, 
by a progressive increase of this size. This indicates that the 
emulsion becomes more and more repulsive for larger droplets.
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Figure 3: (a) Correlation-function, g(r), upon the dimensionless distance, r /, 
and (b) structure-factor, S(q), versus the dimensionless scattering wave-vector 
amplitude, q, for various values of the dimensionless number density, ρ*.
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On the other hand, Figure 5b clearly shows that the height 
of the principal peak of the correlation-function decreases 
progressively, and its position is shifted toward its higher 
values with increasing droplet-size. Then, the size of the 
local ordered region made of fi rst neighbors (around some 
given droplet) increases with increasing droplet-diameter. 
Such a fi gure also shows that the mean-distance between the 
dispersed droplets is diminished by an augmentation of their 
size. This tendency is confi rmed by Figure 5c that represents 
the evolution of the structure-factor, for different values of the 
droplet-size. We emphasize that such a behavior agrees with 
those results from MC simulations [83].

Thermodynamical properties: We have seen above that 
the structure of PEs is substantially infl uenced by a change 
of the pertinent factors (density, surface charge, size). It is 
the same for their thermodynamical properties, as pressure, 
internal energy, and thermal compressibility, since structure 
and thermodynamics are intimately related, equalities (4) 
to (6). The aim of this paragraph is to recall how these 
thermodynamical properties can be modifi ed under a change 
of these parameters. Here, the bath temperature is fi xed.

A. Charge effects: We start with the evolution of the 
pressure, knowing the simulated correlation-function and 
the expression of the pair-potential between the interacting 
oil-droplets. The variation of the (reduced) pressure, upon 
droplet-density, is depicted in fi gure 6a, for various values of 
the surface charge. Remark that the pressure curve presents 
two density-regimes. The fi rst corresponds to low-densities 
less than an unique minimum, which is sensitive to the 
variation of the surface charge. For high-densities, however, 
the pressure increases (as expected).

Now, the question is addressed to the internal energy, 
usually chosen as the thermodynamical potential for the 
colloidal suspensions studied by IEM, instead of the free 
energy. But the later can be obtained integrating the pressure 
with respect to volume (or equivalently with respect to 
density). Hence, the increasing of stability of the system 
must be discussed in term of the internal energy. Denote by 

0  E E E , the shift of the real internal energy, E, from that 
of an ideal emulsion, 0 3 / 2BE Nk T , or simply excess internal 
energy. Figure 6b shows the evolution of the (reduced) internal 
energy with the droplet-density, for several values of the 
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surface charge. These curves indicate that the energy exhibits a 
minimum that strongly depends on the droplet surface charge. 
Then, PEs are more stable by the presence of strong charges.

The last quantity to consider is the thermal compressibility, 
as a function of the droplet-density, keeping fi xed the remaining 
parameters. Its variation is shown in fi gure 6c, for different 
values of the surface charge of the droplets. This fi gure tells 
us that the thermal compressibility admits one maximum (for 
low-densities), of which the location and intensity are very 
sensitive to the variation of the charge carried by the droplets. 
Remark that the position of this maximum is shifted toward 
its higher values, and the maximal intensity is diminished, 
as the surface charge is increased. But for high-densities, the 
variation of the charge does not affect the (almost linear) decay 
of the thermal compressibility with density.

Typical magnitudes of pressure, internal energy and 
thermal compressibility are given in Ref. [48], versus some 
values of the surface charge.

B. Size effects: The fi rst thermodynamical quantity to 
consider is the pressure, and we are interested in its variation 

upon the droplet-density. Such a variation is reported in 
fi gure 7a, for several values of the droplet-size. Remark that, 
as before, the pressure curve exhibits two regimes. The fi rst 
corresponds to the lower values of density less than an unique 
minimum of the pressure, which is weakly sensitive to the 
variation of the droplet-size, and much more prominent for 
the smallest-size droplets. In the second regime, however, the 
pressure monotonously increases with density (as expected).

The second question is addressed to the evolution of the 
internal energy versus the density of the droplets, for different 
values of their size. This evolution is drawn in fi gure 7b, and 
remark that the internal energy admits an unique minimum, 
which strongly depends on the droplet-size. Then, the 
emulsion is rather more stable for smaller droplets.

The last thermodynamical quantity to consider is the 
thermal compressibility, and we are concerned with its 
variation upon the density of the droplets, for several values 
of their size. Figure 7c shows this variation indicating that 
the thermal compressibility passes by a maximum, which is 
strongly sensitive to the variation of the droplet-size, from 
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position and intensity point of view. For high-densities, 
however, a variation of the size does not affect the decay of the 
thermal compressibility, as the droplet-density is increased.

Typical magnitudes of pressure, internal energy and 
thermal compressibility are given in Ref. [48], choosing some 
values of the droplet-size.

Study of cage effect and subdiffusion

   Introduction: In this introductory section, we present a 
bibliographic note on the subdiffusion phenomenon appearing 
in complex systems, as PEs, and precise the main goal. We 
recall that the subdiffusion movement of the dispersed oil-
droplets within PEs was extensively studied in Ref. [54].

Due to the thermal agitation, the clothed oil-droplets 
execute a lateral diffusion with the molecules of water. At the 
beginning, a single droplet normally diffuses, but at large-
time, this motion is hampered by the presence of the other 
neighboring oil-droplets. As consequence, a given oil-droplet 
executes rather an anomalous diffusion we are interested in. As 
shown below, this anomalous phenomenon crucially depends 
on the pertinent factors, which are the (surface) charge 
carried by the droplets, their size and density, and the salt-
concentration.

The anomalous diffusion in various fi elds of science 
(physics, chemistry, biology, ecology...) has received much 
attention from a theoretical and experimental point of view. 
In fact, such a diffusion appears in heterogeneous, disordered, 
fractal, colloidal and polymer systems, and in general, it 
produces within the complex systems containing entities that 
move on different scale-times. In opposition to the normal or 
Brownian diffusion, the anomalous diffusion is more slower, 
due to an extreme diffi culty that a particle (tracer) moves in 
a complex structure. This kind of diffusion is usually referred 
to as subdiff usion, and it is characterized by a mean-square-
displacement that behaves as

      20 2W t r t r D t     .  0 1                 (9)

This large-time behavior then deviates from the linear 
dependence on time found for the Brownian motion [84-86]. 
In expression above, r(t) represents the time-position of the 
random walker, and the generalized diffusion coeffi cient, Da, 
also called “fractional diffusion coeffi cient”, is expressed in 

2 /length time  unit.

We emphasize that the sub diffusion is a feature of 
the crowded system, where the trajectories of their mobile 
constituents are strongly correlated. Notice that the above 
scaling relation is valid for large-times that is beyond some 
characteristic time depending on the specifi c details of the 
diffusion process and the structure of the host medium. In 
general, a particle is said to be subdiffusive if the condition 

  / 0W t t , for t , is satisfi ed (very slow diffusion). This 
explains why the exponent  must be in the interval 0 1  .

It is noted that the subdiffusive transport appears in a variety 
of systems, such as the random-walk in fractal structures [85], 

fractional-time Brownian motion [87], living systems [88], 
charge carrier transport in amorphous semiconductors [89,90], 
NMR diffusometry on percolation structures [91], and the 
motion of a colloid in a polymer network [92]. For example, for 
diffusion in fractal structures, 2 / wd  , where 2wd   is the 
walk-dimension ( 2 /w f sd d d , where fd and sd are the fractal 
and spectral dimensions, respectively), and for the fractional-
time Brownian motion, 2H  , where H is the Hurst index. 
Examples of enhanced diffusion  1   include tracer particles 
in vortex arrays in a rotating fl ow [93], layered velocity fi elds 
[94], and Richardson diffusion [95]. The case 1 2   refers 
to superdiff usion (turbulent plasmas, Levy-fl ights, transport 
in polymers), 2  , to ballistic diff usion (optical traps), and 

3  , to Richardson diff usion (atmospheric turbulence). The 
subdiffusion or superdiffusion exponent, , is not a universal 
quantity, but mainly depends on the pertinent parameters 
that control the phenomenon. As we shall see below, for 
the subdiffusion of the clothed droplets, this exponent shall 
depend on their size, density and surface charge, and the salt-
concentration.

In a very recent work [53], a quantitative study of the 
subdiffusion phenomenon within PEs was achieved, using 
Molecular Dynamics (MD) simulations. We recall that this 
kind of computational method was introduced by Alder and 
Wainwright [96], for the investigation of the structure and 
dynamics of liquids. Within the framework of MD simulations, 
the dynamic properties are investigated through the time-
evolution of the mean-square-displacement (MSD), combined 
with the velocity auto-correlation function (VACF). In 
particular, the latter informs on the appearance of the cage 
effect within complex media.

For the study of the cage effect and subdiffusion within PEs, 
the authors of Ref. [53] have adopted the Sogami-Ise [50,51] 
pair-potential between the charged clothed oil-droplets (Eq. 
(1)), and applied MD techniques, for the computation of both 
MSD and VACF, from which the transport coeffi cients were 
extracted.

From an experimental point of view, the subdiffusion was 
observed in many different areas of science. Crowded biological 
media [97-102], electrons in porous media [103], colloidal 
suspensions under certain conditions [104-108] and granular 
materials [109] constitute particular examples.

For the dynamics study (subdiffusion) in relation with PEs, 
the starting point was a proposition of a dynamic theory [53], 
based on a generalized Langevin equation (with memory). 
This integro-differential equation is solved by VACF, which 
is intimately related to MSD (see below). The exact solution 
of this equation, with an appropriate choice of the memory-
function, enables one the validation of the results form MD, as 
a computer experiment.

Dynamic theory

Normal diffusion: Consider a given oil-droplet with 
anchored charged nanoparticles, termed tracer or random 
walker, which executes a diffusion movement in the continuous 
phase (water). For early times, this diffusion is normal, due to 
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the absence of the correlations. This means that the random 
walker is not yet trapped in a cage. The existence of such a 
regime was demonstrated by computer simulations in Ref. 
[53], for small-times.

We recall that the Brownian motion of a random walker (a 
droplet, in our case) is well-described by the classical Langevin 
equation

       s

d t
M t t

dt
  

v
v F                            (10)

Here, M denotes the mass of the random walker,   3t v R
is its velocity,   is the friction coeffi  cient, and Fs (t) represents 
a stochastic force. We recall that the friction coeffi cient,  , is 
related to the viscosity of the emulsion, , and the oil-droplet 
radius, R, by the classical Stokes’ relation, 6 R   . Naturally, 
the viscosity of the solution depends on the number density of 
the dispersed oil-droplets, . For small values of the density, 
this effective viscosity obeys the well-known law [110],

  * 1 5
2 3

O W
W

O W

    
 

 
  

 
 ,  * 1                          (11)

where * 3   denotes the reduced oil-droplet number 
density (or oil-droplet volume fraction),  w is the viscosity 
of water, and o is that of oil. As it should be, we have the 
inequality   W   , since O W  .

There, the stochastic force is considered to be a white noise, 
with

  0s t  F                                 (12a)

     . 0 6s s Bt k T t  F F                                (12b)

with the Dirac distribution,  t . The brackets ...  mean 
an average over time. For two dynamic variables A and B, their 
individual average and time correlation-function are defi ned 
as follows

   0 0
0

1lim  A t dtA t t


 
                (13a)

       1 0 1 0
0

1lim  A t B t dtA t t B t t


 
               (13b)

Here, is the time-interval, in which the quantities A and B 
are measured. We note that for dynamic systems that are very 
close to the thermodynamic equilibrium (stationary stochastic 
processes), the mean-value  0A t   does not depend on its 
argument, t0, and then, the correlation-function    1 0A t B t   
depends only the time difference 1 0t t .

In addition to equalities (12a) and (12b), we have

   0 . 0s t  v F                 (14)

This is the so-called orthogonality relation traducing the fact 
that  s tF  is a stochastic force, and it must not be correlated 
with the velocity of the tracer, at another time.

The basic dynamic quantities of our interest are VACF, 

     . 0 vvt c tv v , and MSD,       2
0 t W t  r r . Notice that 

these quantities are not independent each other (see below).

VACF solves the following simple differential equation [111].

   vv
vv

dc t
c t

dt
                                (15)

whose solution is

  2 t
vvc t e   v  ,  2 0 3 /vv Bv c k T M               (16)

with the mass weighted friction constant / M  , called 
relaxation rate.

On the other hand, VACF and MSD are generally related by 
[111]

       
1

0 0 0

1 2 1 2, 2 ' ' '
tt t

vv vv
t t t

W t dt dt c t t dt t t c t                  (17)

Also, it straightforward to show that MSD and VACF are 
related by [111]

   2

2

1  
2vv

d W t
c t

dt
  .  0t               (18)

Now, combining expression (16) of VACF with basic 
relations (17) or (18) gives the time-evolution of MSD [111],

  2
1 t6

t
Bk T eW t
M





    
 
 

                             (19)

For times much greater than the inverse relaxation rate 

 1 *t t   , MSD grows linearly, and we have

  6W t Dt  ,  *t t                             (20)

with the diffusion coeffi cient

B Bk T k TD
M 

                               (21)

This is the standard Einstein relation that expresses a 
compromise between the thermal fl uctuations (through the 
thermal energy Bk T ) and the dissipation (via the friction 
coeffi cient  ). Then, the linear growth of MSD, versus time, 
is reached beyond the characteristic time

 
* 1

6
Mt 

 
                                 (22)

The characteristic time, t*
, depends only on the droplet-

density, through the viscosity, (), relation (11). For small-
times, that is for *t t , the factor te   can be approximated by 

2 21 / 2t t   , and one fi nds

   2 2 23 /BW t t k T M t  v  ,  *t t                (23)

This small-time behavior shows that MSD grows with time 
as t2. Then, in the initial phase, MSD is parabolic, and the oil-
droplets execute rather a ballistic motion.

B. Anomalous diffusion

Generalized Langevin equation: Now, the raised question is 
how a random walker (a given droplet) diffuse in water, beyond 
the relaxation rate, t*. In this time-regime, the random walker 
(target) feels to be trapped in a cage formed by other oil-
droplets (traps), and then, it cannot escape from this cage, only 
after a long-time. We denote by Nc, the average-number of 
traps around the considered random walker. Consequently, the 
presence of the traps makes diffi cult such a diffusion process, 
and then, the random walker executes rather a subdiffusion, 
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characterized by an exponent, . The latter naturally depends 
on the essential factors governing dynamics, namely, the 
charge carried by the oil-droplets, and their density, and the 
concentration of salt in solution. Here, the bath temperature, T, 
is fi xed to its room value. As demonstrated by MD simulations 
[53], before the subdiffusion takes place, there exists a time-
interval we shall precise below, over which MSD is independent 
of time (plateau-regime), and VACF exhibits oscillations.

To investigate quantitatively the cage effect and the 
subdiffusion phenomenon, the authors of Ref. [53] started 
from a generalized Langevin equation (GLE) [111], developed 
in the past by Zwanzig [112]. GLE that is an extension of the 
standard Langevin equation (10), where the friction is assumed 
to be determined by the instantaneous velocity of the particle. 
Then, GLE describing the motion of the random walker, reads

         
0

' ' '
t

s
t

d t
üüü

dt
     

v
v v F               (24)

Here, v  stands for the velocity of the moving tracer, 
/ M   for the relaxation rate (  is the friction coeffi cient 

and M is the mass of the tracer), and  for the memory-function 
that expresses the friction retardation, which must not be 
confused with the Coulomb screening parameter appearing in 
the pair-potential expression (1), and  ss tF (with 0t  ) is a 
random force felt by the moving oil-droplet due to its collisions 
with the molecules of the surrounding liquid (water). We note 
that this random force also satisfi es equalities (12a) and (14), 
but with a non-trivial second moment,

       . 0 6s s Bt Mk T t t      F F  ,  0t                (25)

which is a generalization of Eq. (12b).

We emphasize that the basic relationships (17) and (18) 
between MSD and VACF remains valid for memory-diffusion-
processes, but equality (15) becomes

       
0

' ' '
t

vv
vv vv

t

dc t
c t dt t t c t

dt
                   (26)

This is an integro-differential equation solved by VACF, 
knowing the form of the memory-function,  t .

Oscillating regime: Beyond the normal diffusion regime, 
the random walker is subject to oscillations before it undergoes 
a subdiffusion process. Therefore, the tracer moves in a 
harmonic potential resulting from its interactions with its 
nearest neighbors. This is equivalent to take, for the memory-
function, the following form

   2
0t t                   (27)

Here,  t  denotes the Heaviside step function. The frequency 

0  must be considered as a phenomenological parameter that 
depends, of course, on the essential factors, which are the 
surface charge of the oil-droplets, Ze, their number density, 
 , and the salt-concentration, cs. Intuitively, the frequency 

0  increases with increasing Z and  and decreasing cs. In 
particular, we expect that this frequency scales with the 
valence Z as 0 ~ Z . The form (27) is attributed to the so-
called Langevin oscillator.

With the particular memory-function (27), the integro-
differential (26) becomes

     
0

2
0 ' '
t

vv
vv vv

t

dc t
c t dt c t

dt
                    (28)

Then, the dynamic model depends on two phenomenological 
parameters that are the relaxation rate 0   and frequency 

0 0  of the Langevin oscillator.

To derive the expressions of VACF and MSD upon time, 
use was made of the Laplace transform (LT) [53]. We recall 
that, for an arbitrary function,  f t , defi ned for 0t  , the 
corresponding LT writes

   
^

0

stüüü


                (29a)

The inverse LT is

   
^1  

2
 

st

c

üüü
i

            (29b)

where C is an integration contour in complex-plan C, with 
Re[s] >0. We recall that LT of a convolution product (f * g) (t)  is 
simply    

^ ^
f s g s .

Laplace transforming of basic equation (28) yields

2 2 2
2 2 1 20

( ) ,      (0) ,
( - )( - )vv vv

s sc s v v c v
s s s ss s 

     
 




           (30)

with the two complex poles

~

1,2 2
s i                  (30a)

where the characteristic frequency, 
~
 , is given by

2~
2
0 4

    ,  02             (30b)

VACF is then obtained by the inverse LT, using the contour 
integral,

        2 /2 / 2t
vvc t e cos t sin t         v ,  02      (31)

Therefore, for high-frequencies, that for 0 / 2  , VACF 
is a quasi-periodic function of time. This is the underdamped 
regime. For low-frequencies  0 / 2  , however, VACF does 
not oscillate and is given by

        2 /2 / 2ˆ ˆ ˆt
vvc t e cosh t sinh t      v ,  02         

                (32)

with the notation 
2^

2
04

    ,  02              (32a)

This is the overdamped regime. For intermediate-frequencies 

 02  , marking the passage from the oscillating behavior 
to the non-periodic one, VACF is simply given by

   2 /2 1 / 2 ,t
vvc t e t   v    02              (33)

This is the critical regime.

Also, MSD can be calculated using LT. Combining Eqs. (18) 
and (30) yields

    
2

1 2

1Ŵ s
s s s s s

  
 

v              (34)
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An inverse LT gives

 
~ ~ ~

/ 2
2
0

6 1 / 2tBk TW t e cos t sin t
M

    


                       
 ,  02    

                           (35)

for the overdamped regime,

 
^ ^ ^

/ 2
2
0

6 1 / 2tBk TW t e cosh t sinh t
M

    


                       
 ,  02     

                     (36)

for the underdamped regime, and

    / 2
2
0

6 1 1 / 2tBk TW t e t
M

 


    ,  02              (37)

for the critical regime. 

As it should be, in the limit 0 0  , results (16) and (19) 
are recovered.

Contrary to the normal Brownian diffusion, MSD approaches 
its plateau value, in the t  limit, independently of the 
dynamic regime,

  2
0

6 Bk TW t
M

  ,  1 **2t t                (38)

Then, this corresponds to a vanishing diffusion exponent, 
that is 0P  . Notice that the second characteristic time, t** 
, is two times the time t*, defi ned in Eq. (22), that is ** *2t t .

Subdiffusive regime: Beyond the plateau regime, the tracer 
follows a slow motion, and the large-time behavior of its MSD 
is defi ned in relation (9). Notice that the normal diffusion, with 

  ~W t t  (large-time), corresponds to a vanishing VACF, that 
is   0vvc t   (large-time), whereas   0vvc t  , for an anomalous 
diffusion. Specifi cally,   0vvc t  corresponds to a subdiffusion 
(since a < 1), and   0vvc t  , to a superdiffusion (since a > 1). The 
property   0vvc t  , at large-time, implies that MSD is a concave 
function. Physically speaking, the negativity of VACF, for large-
time, indicates a persistence tendency of the diffusive oil-
droplet to invert its direction of motion and to stay localized. 
This is due to the fact that the survival probability is not zero.

Combing general relationship (18) with MSD behavior (9) 
gives

    21vvc t D t     ,  t              (39)

Remark that, contrary to the normal diffusion, for which 
VACF exponentially fails, at infi nity that relatively to the 
subdiffusion is long-ranged. From the above asymptotic 
behavior, the generalized diffusion coeffi cient, Da, is deduced,

 
 

2

1  lim  
1

vv

t

c t
D

t   

 
    

              (40)

In the same sense, it was demonstrated [113] that the 
fractional diffusion coeffi cient Da is given by a generalized 
Green-Kubo formula

   1
0

0

1
1 t vvD dt c t

 


 

    ,  0 1                  (41)

where

     11
0

0

' ' '
t

t vv vv
dc t dt t t c t
dt

   
   

 
              (42)

is the fractional Riemann-Liouville derivative [114] of order 1 - 
a of function  vvc t , and  Ã x  is the Euler gamma function. For 
normal diffusion (a = 1), the usual Green-Kubo formula is then 
recovered,

 
0

vvD dtc t



   ,  1                               (42a)

Laplace transforming integro-differential equation (28) 
and using a Tauberian theorem due to Hardy, Littlewood and 
Karamata [113], which establish a relation between slowly 
growing functions an their LT, leads to the large-time behavior 
of the (positive) memory-function [113]

   2
,~  

sin
t t

D








 v    t              (43)

It is noted that the asymptotic behavior,   ~t t   t , 
can be reproduced choosing the following expression for the 
memory-function [113]

   2
0 ,1, /t M t                    (44)

Here, M (a,b,z) denotes the confl uent hypergeometric function 
[115]. The quantity 0 has the dimension of frequency, and   
is a time-scale. In particular, for a - 0, we have    2

0t t   , 
and then, expression (27) is recovered. For 1  ,  k(t behaves, 
at large-time, as [113]

     2
0~ / / 1t t        ,  t                (45)

which is conform to behavior (43).

For the determination of the diffusion exponent, a, relation 
(1) will be used, which is expressed in log-log scale. This 
exponent is 1, for normal diffusion regime, 0, for the plateau 
regime, and between 0 and 1, for the subdiffusive one.

In the next section, we shall report on MD simulations of 
dynamic properties of the clothed oil-droplets, in particular, 
their stay duration in a cage, denoted as ct . In a cage, a 
given oil-droplet is surrounded by Nc nearest neighbors 
(traps). As pointed out in Ref. [53], the duration ct  scales 
as:  1/2~c ct N a


 , where a is the subdiffusion exponent and a 

denotes the mean-distance between traps.

Results from MD simulations

A. Simulation strategy

For the description of the dynamic properties of PEs, 
using MD method, the equations of motion are solved in 
the canonical ensemble using the Velocity Verlet Algorithm 
(VVA) [116], with the Thermostat of Berendsen [117], in 
order to keep the temperature constant. In addition, periodic 
boundary conditions are applied to remove the surface effects 
and simulate an infi nite emulsion. In the following, it will be 
convenient to use dimensionless units, where the length unit 
is , time in units of /M   , where M is the oil-droplet 
mass and  is the depth of the interaction potential,  Bk T is the 
energy unit, and  1/3

0 6 /L N V N   is the box-size, where N 
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is the number of the clothed oil-droplets, and V is the volume 
of simulation box (in periodic conditions). MD simulations [53] 
where carried out with 1728 particles and the dimensionless 
time-step for VVA is chosen to be 0.05.

MD strategy consists of the numerical solution, step-
by-step, of the classical (coupled) equations of motion of N 
droplets on a discrete time-scale,

2

2
i

i
i

d UM
dt


 


r

r
 ,  1, , i N                (46)

Where ri is the position of a droplet i, of mass Mi, subject 
to a total force, /i iU  F r . It will be assumed that the oil-
droplets have the same mass, M.

The analysis of the oil-droplets trajectories, produced by 
MD simulations, infers the type of motion that these droplets 
are undergoing. MSD is one of the most commonly used 
function for analyzing the motion of small entities (colloids, 
droplets,...). It is a measure of the squared-average-distance 
executed by the moving oil-droplets. It is defi ned as

      2

1

1 0
N

i i
i

W t t
N



     r r               (47)

Here, the brackets <…> denote the ensemble-average, which 
is the statistical average of the quantity inside the brackets, 
at a given time over all systems of the ensemble. Formula (9) 
in log-log scale allows the computation of the subdiffusion 
exponent, a, and the fractional diffusion coeffi cient, Da, by 
extrapolation.

The second basic quantity is VACF that measures the 
correlations between the velocity of the oil-droplets, at times 
t = 0 and t. Within MD simulation scheme, VACF is defi ned as

      2

1

1 0
N

vv i i
i

c t t
N



     v v                (48)

As we shall see below, in particular, such a function informs 
on the existence of the cage eff ect.

B. Charge effects

The goal of this paragraph is to quantify the infl uence 
of the charge carried by the oil-droplets on their dynamic 
properties. More details concerning the charge effects can be 
found in Ref. [53], we simply recall the essential of the study. 
Here, the size of the oil-droplets, their reduced number density 
and the salt-concentration are fi xed to the values: 20000   
Å, * 0.0020   and 2.91 sc M . But the valence, Z, is varied 
from 1000 to 4500.

Figure 8 shows the log-log plot of the reduced MSD upon 
dimensionless time, t/, for various values of the surface 
charge. First, remark that, for short-times, the curves for 
different surface charges are superposed, and then, the tracer 
follows a normal diffusion, that is   6W t Dt , for times 
less than a reduced transition time, 1 2.483t  . The (reduced) 
normal diffusion coeffi cient is 

^
14.120D  , independently 

of the values of the surface charge. This normal behavior is 
synonym of the absence of the correlations between the oil-
droplets, at intermediate times, whatever are the values of 
their surface charge. We recall that such a regime has been 

already observed in some work by Tata and coworkers [118] on 
colloidal suspensions using the Brownian Dynamics simulation 
[116]. Then, the simulated normal regime agrees well with the 
predicted theoretical formula (20).

Remark that the normal diffusion is followed by a transient 
plateau-like regime, before a subdiffusion takes place. As 
shown in Figure 8, the plateau is more and more pronounced, 
for higher surface charges. We note that the existence of this 
plateau regime is conform with the theoretical equation (38).

For large-times, however, the situation is quite different 
and the dynamic of the oil-droplets depends heavily on their 
surface charge, and one assists to a formation of cages, where 
a given charged oil-droplet is surrounded by their nearest 
neighbors. Also, remark that the crossover time, 2 1t t , between 
the plateau-like regime and the subdiffusion depends on the 
value of the surface charge. In this large-time regime, MSD 
behaves rather as   ~W t D t , with an average subdiffusion 
exponent 0.418c  .

As already shown [53], the stay duration in a cage of a 
given moving oil-droplet, denoted as 2 1Ä ct t t  , increases 
with increasing surface charge. This tells us that the moving 
oil-droplet needs more time to break free of the cage of its 
nearest neighbors, as the surface charge increases. Physically 
speaking, for higher surface charges, the available space for 
the oil-droplets becomes effectively reduced by the volume-
excluding, due to a strong repulsion force between them. 
Then, one assists to a slowing down of the diffusion process 
of the oil-droplets, which stay localized for some time that 
increases with increasing surface charge. Such a behavior is 
also refl ected in VACFs displayed in fi gure 9, for the same 
values of the surface charge. VACFs are characterized by an 
underdamped (oscillatory) decay, more pronounced, for higher 
surface charges, in perfect agreement with the predicted 
theoretical formula (31). In fact, this underdamped feature 
can be related to the confi nement of the random walker in the 
cage formed by its nearest neighbors [113], and means that the 
diffusion process is not Markovian, but rather has memory 
[111]. For low-surface charges, as can be seen in this fi gure, 
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Figure 8: MSD versus the dimensionless time, t / , in log-log scale, for various 
values of the oil-droplet surface charge, with the fi xed parameters:  = 20000 Å, ρ* 
= 0.0020 and cs = 2.91Μ.
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VACF is rather an overdamped function, as predicted by the 
theoretical expression (32). Also, observe that, for any value of 
the surface charge, the tail or the long-time behavior of VACFs, 
which refl ects the diffusional regime of the oil-droplets under 
consideration, approaches asymptotically zero, from negative 
values. Therefore, the oil-droplets display a subdiffusion. This 
negative region indicates that, on average, a displacement of the 
oil-droplets surrounded by its nearest neighbors is followed by 
a displacement back toward its initial position (non-vanishing 
survival probability) [113]. In other words, this refl ects the fact 
that the velocity of the oil-droplets is, on average, reversed by 
repulsion with the cage made of nearest neighbors.

As already shown [53], both anomalous diffusion 
exponent,  , and fractional diffusion coeffi cient, Da, decrease 
progressively with the surface charge. As the later is augmented, 
the correlations between the oil-droplets become stronger, and 
consequently, one assists to a slow dynamic.

Also, it was pointed out [53] that the charge-behavior of 
the fractional diffusion coeffi cient can be described using an 
Arrhenius’ law [53], that is   2*

0 /D D exp Z Z   , with known 
amplitude, D0, and range, Z*, which are not universal, but they 
mainly depend on the other remaining factors (density, salt-
concentration).

C. Density effects

Now, we report on the study of the infl uence of the density 
of the clothed oil-droplets on their dynamics [53], fi xing their 
surface charge and size, and the salt-concentration to the 
values: 2000Z  , 20000   Å, and 2.91 sc M .

Figure 10 shows the log-log plot of MSD, versus the 
dimensionless time, t/, for various values of the droplet-
density. First, remark that for 1't t , with 1' 1.449t  (second 
reduced transition time), MSDs present as straight lines having 
the same slope, but decrease, as the oil-droplet density is 
increased. This time-behavior agrees well with the predicted 
theoretical formula (20). Therefore, the tracer executes a 
normal Brownian diffusion, whose MSD is    6W t D t , 
for 1't t . Here,    / 6BD k T R    accounts for the usual 
diffusion coeffi cient, where R is the droplet-radius and    is 
the density-dependent viscosity, relation (11). As demonstrated 
by MD simulations [53], this same coeffi cient decreases with 
increasing density. Second, for 1't t , a cage effect is observed, 
where MSDs are very sensitive to the variation of the oil-droplet 
density, and exhibit a subdiffusive behavior, with an average 
subdiffusion exponent, 0.432d  . The existence of such a 
regime is conform with the predicted theoretical formula (39).

It was also observed [53] that, as it ∆t’
C
 should be, the 

stay duration of the random walker in a cage, , increases with 
increasing droplet-density.

The subdiffusive behavior we evoked above is shown in 
fi gure 11, which represents the variation of VACFs versus the 
reduced time, /t  , for different values of the droplet-density. 
These plots clearly show that the negative region of VACFs 
becomes more larger, by a progressive increase of the droplet-
density. In particular, it was observed that VACF is underdamped 
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Figure 9: VACF versus the dimensionless time,  t / , for various values of the oil-
droplet surface charge, with the fi xed parameters:  = 20000 Å, ρ* = 0.0020 and cs 
= 2.91Μ.
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Figure 10: MSD versus the dimensionless time, t / , in log-log scale, for various 
values of the oil-droplet density, with the fi xed parameters: Z = 2000,  = 20000 Å, 
and cs = 2.91 Μ.
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Figure 11: VACF versus the dimensionless time, t / , for various values of the 
oil-droplet density, with fi xed parameters: Z = 2000,  = 20000 Å, and cS = 2.91 Μ.
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(oscillatory), for high-densities, and overdamped, for low-

densities. This is in perfect agreement with the theoretical 

formulae (31) and (32), respectively. In addition, these plots 

show that VACFs tails approach asymptotically zero, from 

negative values. This means that the oil-droplets undergo a 

subdiffusion, with a subdiffusion exponent, a, in the interval 

0 1  .

On the other side, MD data [53] indicate that the subdiffusion 

exponent, a, and the corresponding fractional diffusion 

constant, Da, decrease progressively, as the droplet-density 

is augmented. This tendency is due to the strong correlations 

between the droplets, in high-density regime.

Finally, as already shown [53], the behavior of the fractional 

diffusion coeffi cient can also be modelled by a law of Arrhenius 

type, that is  0 0' /D D exp    , with known amplitude, 0'D
, and range, 0 . Naturally, these quantities are not universal, 

but mainly depend on the values of the other pertinent factors 

(surface charge, salt-concentration).

D. Salt-concentration effects

In this paragraph, we report on a quantitative investigation 

of the effects of the salt-concentration. cs, on the oil-droplets 

dynamics, fi xing the remaining parameters to the values: 

500Z  , 5000   Å, and * 0.0020  .

Figure 12 shows the log-log plot of MSD, versus the 

dimensionless time, /t  , for several values of the salt-

concentration. First, observe that, for 1''t t , with 1'' 1.439t 
(third reduced transition time), MSDs increase linearly with time, 

and have practically the same slope, whatever is the value of 

the salt-concentration. This indicates that the random walker 

follows a normal Brownian diffusion, whose MSD is   6W t Dt
, for 1''t t , with the (reduced) normal diffusion coeffi cient 

^
14.186D  . As noted [53], such a time-behavior agrees well 

with the theoretical formula (20).

Second, for large-times  1''t t , as observed by MD 

simulations [53], MSDs become very sensitive to the variation 

of the salt-concentration, and then, they present a subdiffusive 

behavior, due to a cage effect, with an average subdiffusion 

exponent, 0.467s  . Before this regime is reached, MSDs 

exhibit a plateau, which is pronounced, only for low-salt-

concentrations. The existence of such a regime is in perfect 

agreement with the theoretical formula (39).

Figure 13 represents VACFs, versus the reduced time, /t 
, for various values of the salt-concentration. These curves 

show that VACFs are underdamped (oscillatory), for low-salt-

concentrations, and overdamped (non-oscillatory), for high-

salt-concentrations, before they reach a negative region that 

becomes more and more pronounced, as the salt-concentration 

is decreased. Emphasize that the existence of the underdamped 

and overdamped behaviors agree with the theoretical formulae 

(31) and (32). Therefore, the cage effect is more signifi cant, and 

the stay duration of a random walker in a cage, ''ct , decreases 

with increasing salt-concentration. In fact, this is due to a 
drastic diminishment of the strength of the mutual interactions 
between charged oil-droplets. Also, these curves indicate that 
VACFs tails reach asymptotically zero, from negative values. 
This is a signature of the existence of a subdiffusion regime, 
with an anomalous diffusion exponent, a, between 0 and 1.

In addition, it was numerically observed [53] that the 
subdiffusion exponent, a, and the associated fractional 
diffusion coeffi cient, Da, increase progressively, as the salt-
concentration is augmented. Then, by an increase of this 
concentration, the diffusion becomes less slower, due to the 
weak correlations between the random walkers.

Finally, as reported in Ref. [53], the behavior of the 
fractional diffusion coeffi cient can be approached by a shifted 
Arrhenius law, that is  *1 2 /s sD D D exp c c    , with known 
quantities D1,D2 and *

sc , which naturally depend on the other 
pertinent factors (density, surface charge).
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Figure 12: MSD versus the dimensionless time, t / , in log-log scale, for various 
values of the salt-concentration, with fi xed parameters:  Z = 500,  = 5000 Å, and 
ρ* = 0.0020.
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Spherical diffusion of anchored nanoparticles

Introduction : Consider a PE of O/W type, where the 
oil-droplets are covered by strongly adsorbed charged 
nanoparticles that ensures their stabilization. The adsorption 
energy is high enough, in comparison with the thermal energy, 

Bk T . Then, the presence of the charge carried by the droplets 
prevent the coalescence phenomenon, when two neighboring 
droplets touch.

Diffusion on a curved surface, like a sphere, is a major 
problem that arises in several contexts. For example, the 
diffusion is an important mode of transport of biological 
substances (lipids and proteins) on the cell walls, which are 
curved surfaces. Spherical diffusion also crops up in surface 
smoothening in computer graphics and global migration 
patterns of marine mammals. While planar diffusion has 
been studied extensively both analytically and numerically, 
but there have been fewer analytical studies of diffusion on 
spherical surfaces.

In a very recent work [55], using PEs as templates, the 
authors have established the diffusion laws of the anchored 
nanoparticles undergoing Brownian motion on the surface of 
droplets.

The aim is an investigation of the spherical diffusion laws 
of the adsorbed charged nanoparticles, using some theory 
based on the Green’s function techniques.

Theoretical formulation : In this paragraph, the aim is the 
determination of the Green’s function allowing the derivation 
of the surface diffusion laws. As we shall see below, such a 
function solves the spherical diffusion equation.

When modelling the diffusion phenomena in an infi nite 
medium, one often solves the diffusion equation for the 
probability density,  ,u x t , subject to a given initial condition: 

   ,0u x f x , where  f x is a regular distribution (Cauchy 
condition). Here, x denotes the space coordinate and  is the 
time-variable.

A one-dimensional linear diffusion equation, with constant 
diffusion coeffi cient, is defi ned as [119]

u D u
t


 


                (49)

Where D is the diffusion coeffi cient, and  represents the 
Laplace operator.

The spherical diffusion equation reads

   2
, ,

, ,
S

u t
k u t

t
 

 


 


             (50)

with the notation: 2/k D R , where R accounts for the 
droplet-radius. Here, 2( )S

 denotes the spherical Laplace 
operator, called Laplace-Bertlami operator. Its expression is

2
2 2 2

1 1(sin )
sin sins


   

  
  

  
             (51)

In obtaining the solutions to Laplace’s equation in spherical 
coordinates, it is traditional to introduce the spherical harmonics, 

 ,m
lY   . These special functions are defi ned by [115].

   ,m m im
l lm lY N P cos e                  (52)

with the normalization constant

2 1
4lm
l l mN

l m
        

                             (53)

and the associated Legendre functions

       
/ 2

21 1
1

2 !

m m l m lm
l l l m

x dP x x
l dx





 
                    (54)

We note that the normalization factor, lmN , has been 
chosen such that the spherical harmonics are normalized to 1.

For solving the diffusion equation, use is made of the usual 
separation of variables

     , , ,m
lm lu t Y T t                                 (55)

Inserting this decomposition into the spherical diffusion 
equation (50), and using the fact that the spherical harmonics 
are eigenfunctions of the spherical Laplace operator yield

     1, , , l l ktm
lm lu t Y e                   (56)

Now, to derive the expression of the Green’s function, the 
following initial condition is imposed

   2, ,0 ,lm S
u                    (57)

where symbol  2 ,
S

   denotes la spherical Dirac 
distribution, defi ned by [119]

   2

2 1,
4 lS

l

l P cos   


   
 


N

                  (58)

Therefore, the fi nal expression of the Green’s function is

   0
2 1, , , ,
4 l

l

lG t u t   



 

N

                 (59)

with

     10
0 , , , l l kt
l lu t Y e       , 2/k D R              (60)

Results and Discussion

The statistical properties of the anchored nanoparticles 
can be described by the Green’s function (propagator) 

   , , ,G t G t r . The latter represents the probability to fi nd 
an anchored nanoparticle (random walker) at position r, at 
time t, with the initial condition:    2,0G r r , where 2 is 
the two-dimensional Dirac distribution.

Once the Green’s function is known, all the statistical 
properties can be computed. For instance, MSD can be obtained 
from

         12 2

0

2 1 1l l kt
l

l
r t R l e d sin cos P cos


    


     

N
           (61)

where 2 /R D  denotes the relaxation time, and R is the 
droplet-radius.

From the well-known results of integrals [115], one fi nds

   2 2 2 /2 1 .tr t R e                    (62)
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As expected, MSD saturates to  2 2,2r t R   , for large-
times, that is for t  . For short-times  t  , however, 
MSD does not depend on the radius of the sphere, and the 
celebrated (planar) Einstein’s diffusion law is then recovered. 
This result can be explained by the fact that, in short-time 
limit, the anchored nanoparticle has not enough time to feel 
the infl uence of the curvature of the spherical surface of the 
dispersed droplets.

To sum up, we recall that, in this paragraph, we have 
reported on the diffusion of confi ned nanoparticles on a sphere, 
using PEs as templates. In particular, as we noted above, for 
short-times, the nanoparticle does not feel the infl uence of the 
droplet-shape.

Conclusion

This survey focuses on physics of PEs of O/W type, which 
are stabilized by a strong irreversible adsorption of charged 
nanoparticles on the surface of the dispersed oil-droplets. 
The adsorption energy is very high, compared to the thermal 
energy, Bk T . As consequence, on one hand, this special 
process prevents the coalescence phenomenon leading to a 
complete separation between oil and water, and on the other 
hand, it ensures a long-time stabilization of these emulsions, 
in comparison with the standard way that consists in using 
surfactant molecules.

For the study, PEs was regarded as colloidal solutions, where 
the clothed oil-droplets play the role of soft-colloids. For the 
sake of simplicity, the anchored nanoparticles were assumed 
to be point-like. In fact, such an assumption makes sense only 
when their size is much smaller than the droplet-diameter, and 
in addition, when one is concerned with phenomena occurring 
at large-scale (distance, wavelength...). Particles shape and 
form are pertinent regarding their diffusion on the droplets 
surfaces. Also, it was supposed that the anchored nanoparticles 
are uniformly distributed on the O/W interfaces, but as pointed 
out in some recent experiment [7], these nanoparticles may be 
aggregated due to a depletion force, contrarily to charged solid 
colloids (latex polyballs, for example). Then, the presence of 
strong charges on O/W interfaces prevents such an aggregation.

Emphasize that an adsorption of charged nanoparticles 
on the interfaces between two incompatible liquids is not the 
only way to stabilize PEs. For instance, an alternative method 
consist in adding a diblock-copolymer formed by two unlike-
chains (PS/PVME, for example), each is soluble in one liquid, 
only. The droplets can be regarded as star-polymers, and 
then, the fl oating chains ensure their stabilization, due to the 
excluded volume forces between monomers. Such a question 
is of interest, due to the fact that this stabilization mechanism 
may be very useful for the elaboration of new nanocomposites, 
for industrial purposes.

We reported on three important points: (1) Structure and 
thermodynamics of PEs of O/W type, from a static point of 
view, using the integral equation approach, (2) some dynamic 
aspect in relation with the cage effect and subdiffusion within 
these emulsions, and (3) spherical diffusion of the anchored 
nanoparticles on the (curved) water/oil interface.

For the study of the structure and thermodynamics of PEs, 
the adopted pair-potential between the clothed oil-droplets is 
that of Sogami-Ise. The virtues of this potential are that, fi rst, 
it reproduces the features of the real potential, since it is the 
sum of a repulsive part and an attractive one, and second, it 
was a good candidate for the explanation of many experimental 
measurements, in the past.

The computed quantities are the structure-factor and the 
spatial correlation-function, from which were extracted the 
thermodynamical properties, as pressure, internal energy 
and thermal compressibility. Discussion was done, in terms 
of the essential factors governing physics, as the density of 
the oil-droplets, their size and surface charge, and the salt-
concentration. In the same context, a successful comparison 
[48] between results from integral equation method and MD 
simulations has shown their good agreement.

The second raised point is how the stabilization process 
is accomplished in time. MD simulations [53], with Sogami-
Ise potential, has been used to investigate quantitatively this 
dynamic process, and it has been shown that the clothed oil-
droplets execute rather a slow diffusion motion (subdiffusion), 
due to the complex structure of PEs leading to a cage effect, 
contrarily to the diffusion in the homogeneous media. A 
random walker (a given clothed oil-droplet) is then subject 
to a subdiffusion characterized by an anomalous diffusion 
exponent, , between 0 and 1. Of course, this exponent is not a 
universal quantity but, as observed [53], it mainly depends on 
the pertinent factors cited above. In particular, it was found 
[53] that the subdiffusion process is pronounced only for high 
surface charges and densities, and low salt-concentration. But 
for experimentalists, the good way is to vary rather the salt-
concentration (keeping fi xed the other parameters), in order to 
control well the diffusion phenomenon.

To validate MD simulations data, the authors have proposed 
a memory diffusion theory, based essentially on a generalized 
Langevin equation. Physics was studied through the evolutions 
of MSD and VACF in time. It was observed [53] that the results 
from simulations agree well with the theoretical predictions.

It is noted that the added nanoparticles stabilizing the 
emulsion are abundant, and only some of them are adsorbed 
onto the O/W interfaces. The remaining nanoparticles are 
dissociated in water in form of coions, and then contribute 
to an increase of the salt-concentration coming from the 
counter-ions and the added salt. The subdiffusion process is 
then disadvantaged by the presence of an excess of the added 
nanoparticles.

Underline that we have not discussed the effect of the 
size of the clothed oil-droplets on their dynamic properties. 
In fact, this size is controlled by the number of charged 
nanoparticles anchored on the surfaces of the oil-droplets, 
which approximately equals their valence, Z. As observed 
experimentally [3], the droplet-size decreases with the valence 
Z. Therefore, small sizes correspond to strong surface charges. 
Consequently, the subdiffusion process is more pronounced, 
only for droplets of small-size.
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We point out that the present study may be extended to 
PEs that are composed of two incompatible polymers trapped 
in a common good solvent (water, for instance). There kinds 
of emulsions are called “water-in-water solutions” in the 
literature [7].

The last discussed point is an exact study of the spherical 
diffusion of the confi ned nanoparticles on the spherical surface 
of droplets. In particular, it was found [55] that, for short-
times, the diffusion of a given nanoparticle (tracer) does not 
feel the infl uence of the droplet-shape, and this diffusion 
remain normal.

Finally, it will be interesting to extend these extensive 
studies to the situation where the anchored nanoparticles have 
arbitrary shapes and forms (rods, ellipsoids, polyelectrolytes...).
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