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Abstract

Background: Face morphometry has been shown to work as a diagnosis tool in a set of syndromes. Face similarities are usually indications of more complete genetic 
similarities. 

Purpose: To show preliminary results on the face morphometry profi le of the Cuban population and to argue that it could be used to defi ne early markers for diseases 
like Alzheimer’s. 

Methods: A dataset composed of photos of 200000 men is processed. Facial landmarks are extracted by means of the DLIB library and distances between them are 
computed. By clustering samples with similar facial traits, groups are formed and their densities inside the population are computed. 

Results: The face morphometry profi les for two age cohorts are obtained, showing the population dynamics. Genes involved in facial development are shown to be 
related to Alzheimer’s disease. 

Conclusion: Late multifactorial diseases develop against the genetic background of each individual, which is expressed by its face morphometry. The latter can be 
thus considered a risk marker.
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Introduction

Population-wide studies, such as infant height and weight 
tables [1,2], are useful tools for the early detection of metabolic 
disorders or any other kind of disruption of normal state in 
children. By comparing the infant’s parameters with the 
reference values, we get a fi rst signal of a possible disorder and 
may proceed to further studies. At present, when the molecular 
approach to medicine is prevailing more and more in clinical 
analyses [3-6], genetic and epigenetic markers [7-9] and their 
reference values in a population become extremely important 
in many diseases.

However, genetic studies are still relatively expensive [10-
12]. In certain situations, in particular the “trivial” Down’s 
syndrome, a direct examination of the face is enough for 
diagnosis. Less known, but similarly strong as a marker, is the 
diagnosis of Down’s syndrome from fi ngerprint patterns [13]. 
Both markers: face characteristics and fi ngerprints, are easily 
obtained. In a sense, they are indirect markers, that integrate 
genetic and epigenetic information [14]. As an example of 
papers using Face Morphometry (FM) for the diagnosis of a set 
of syndromes, we may cite Refs. [15-19].

Instead of pretending a diagnosis from indirect markers, we 
may try to defi ne risk groups inside the population. It is well 
known that, in many diseases, the risk has an ethnic or group 
component [20-22]. Consider, for example, the following cancer 
risk data from 423 cancer registries in the world (Ref. [23], 
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Supplementary information). A Principal Component Analysis 
(PCA) [24,25] of the data shows that ethnic and cultural groups 
exhibit distinct patterns, as is apparent in (Figure 1).

For a given population, in particular the Cuban population, 
mixing between groups could be an element hindering ethnic 
origins or other factors. A more detailed analysis based on FM 
measurements, for example, could be a valuable tool to identify 
groups inside the population and, indirectly, multivariate 
markers for predisposition to certain diseases.

Materials and methods

We performed a preliminary analysis of FM data of the 
Cuban population. A group of 200,000 randomly chosen 
persons, were studied. The data we receive contains only a set 
of two-dimensional vectors (face landmarks) obtained from 
the widely used Dlib library [26-30]. Additionally, popular 
Python data analysis libraries such as NumPy [31], Pandas 
[32,33], Matplotlib [34], Scikit-Learn [35] and MLxtend [36] 
were used.

The dataset

As mentioned, a dataset of random 200,000 facial images of 
Cuban men was processed by means of the DLIB software. The 
images correspond to two age cohorts - the fi rst comprising 
men born between 1940 and 1960, and the second including 
men born between 1961 and 1980. Racial information was also 
available for each image, but not used.

The landmark localization model was unsuccessful in 
extracting facial landmarks for 1,968 images in the 40 - 60 
years cohort and 470 images in the 61 - 80 years cohort. 
Combined, these landmark detection failures accounted for 
approximately 1% of the total image dataset. As such, the 
missing landmark data is not expected to substantially impact 
downstream analyses.

Facial landmarks

Facial landmark localization was performed using the 
68-point face model from the DLIB library. A representation 
of such points is shown in (Figure 2) top panel [37]. After 
extracting the landmark coordinates from each image, the 
landmarks were fi ltered to select only those representing 
relevant facial features that accurately refl ect the underlying 
osseous structure. They are represented in (Figure 2) the bottom 
panel in an image of the public UTKFace dataset (https://
susanqq.github.io/UTKFace/, [38]). This accuracy is captured 
by landmarks that are the most stable against variations in 
facial expression. Consider, for example, the analysis of eye 
landmarks. Point 38 would vary with the openness of the eye, 
while point 39 maintains its position despite such variations. 
Selecting stable points according to these criteria ensures 
important noise reduction and guarantees better reproducibility 
of results across different images of the same person.

Based on these stability criteria, the selected DLIB 
landmarks were: 0, 4, 7, 8, 9, 12, 16, 17, 19, 21, 22, 24, 26, 27, 
30, 31, 33, 35, 36, 39, 42, 45, 48, 51, 54, 57, for a total of 26 
points per image.

Figure 1: Top: Principal Component Analysis of World Cancer Risk Data. Ethnic and 
cultural groups exhibit distinctive patterns. Bottom: Component variances and 
directions of maximal increase in the risk for different cancers.

Figure 2: Top: Face landmarks coming from the DLIB software. Bottom: The selected 
landmarks, which capture the osseous structure and are relatively independent of 
face expression (green points).



010

https://www.peertechzpublications.org/journals/international-journal-of-oral-and-craniofacial-science

Citation: Herrero R, Martinez-Diaz Y, Mendez-Vazquez H, Nieves J, Gonzalez A (2023) Face morphometric profiles of groups as early markers for certain diseases? 
Int J Oral Craniofac Sci 9(1): 008-015. DOI: https://dx.doi.org/10.17352/2455-4634.000060

Let us stress that our landmarks coordinate inference 
script was tested with public databases. We received from 
a national database an anonymized pull of numbers (the 
68 Dlib landmarks coordinates), respecting in this way the 
confi dentiality of image data and making possible a kind of 
epidemiological study.

Data fi ltering

To ensure all facial images exhibit a frontal pose and 
neutral expression, two fi ltering criteria were imposed. First, 
the frontal pose was quantifi ed through a symmetry coeffi cient 
defi ned as s = distance (0,8) / distance (16,8), requiring that 
0.90 < s < 1.10, where distance (0,8) denotes the distance 
between landmarks 0 and 8, for example.

Second, mouth closure was assessed via a coeffi cient given 
by: m = y66 / y62, requiring that m < 1.02. In this case, y62 
and y66 correspond to the vertical coordinates of the central 
upper and lower lip landmarks 62 and 66. Tighter clustering 
of these landmarks indicates mouth closure. Notice that these 
landmarks are used only for fi ltering purposes.

Building the distance matrix

Rather than absolute facial landmark coordinates, the 
distances between landmarks are more informative. Two 
highly stable landmarks were chosen as reference points, with 
all other points defi ned by their normalized distances to these 
references. Specifi cally, the outer eye corners (points 36 and 
45) served as the reference landmarks in this study, with the 
distance between them constituting the reference distance 
for a given image. Each remaining landmark distance was 
normalized to this image-specifi c reference distance, resulting 
in comparable measurements across the dataset.

To reduce dimensionality, symmetric and homologous 
landmark distances were consolidated by averaging. Symmetric 
distances were defi ned as those between landmarks along the 
mid-sagittal plane (points 8, 27, 30, 33, 51, and 57) and each of 
the references (e.g. d {8-36} and d_{8-45}).

Equivalent distances were defi ned as those between 
symmetrical counterpart landmarks across the mid-sagittal 
facial plane and the reference landmark on the opposite side of 
the face (e.g. d_{12-36} and d_{4-45}). Equivalent landmark 
pairs consisted of (0, 16), (4, 12), (7, 9), (17, 26), (19, 24), (21, 
22), (31, 35), (39, 42) and (48, 54). After averaging symmetric 
and equivalent distances, each facial image was characterized 
by a 24-dimensional distance vector.

Density map

To reduce dimensionality and decorrelate the data, principal 
component analysis (PCA) was performed on the distance data. 
The facial data samples were then projected onto the fi rst 5 
principal components, which account for nearly 90% of the 
variance. The vectors defi ning the principal components for 
the 40 - 60 years age cohort are used in the 61 - 80 cohort 
as well in order to compare them. The space was divided into 

equal-width intervals. The number of sub-divisions in each 
component is taken roughly proportional to its variance. 
Specifi cally, the fi rst principal component was partitioned 
into 5 intervals and the second into 3 intervals, resulting in 
a total of 15 cells partitioning the PC1 vs. PC2 plane, and thus 
the whole space. Samples are counted in each cell in order to 
determine the incidence per 1000 individuals and construct the 
2D density map.

Results

Face morphometric profi le of the Cuban population

As mentioned above, we performed a preliminary analysis of 
FM data of the Cuban population. To the best of our knowledge, 
this is the fi rst FM study in a population. Two cohorts of men 
were studied. The data we receive contains only a set of two-
dimensional vectors (face landmarks) obtained from the widely 
used, Dlib library. We select 26 landmarks based on their 
importance in the underlying osseous structure and stability 
with respect to changes in facial expression. From pairs of face 
points in a normalized image we compute distances. At the end, 
a vector of 24 distances comes up from each original photo.

The distance data is processed by means of PCA. The fi rst 
5 components are shown to account for nearly 90 % of data 
variance. We restrict ourselves to these 5 components and 
divide the PCA space into 15 cells corresponding to well-
defi ned groups of similar face characteristics. The results are 
shown in (Figure 3) in the form of a histogram comparing the 
two cohorts. The x-axis is a number labeling the cell, whereas 
the y-axis is the population density per 1000 inhabitants. That 
is, if the column height for a given cell is 300, for example, 
there are 300 men with these facial characteristics per 1000 
inhabitants.

We notice that there are measurable differences between 
cohorts in spite of the relatively small time lapse between 
them, 20 years. We checked by a kind of bootstrap analysis that 
in the cells with high differences error bars are small enough, 
thus differences are not artifacts. Our hypothesis is that the 
differences signal a change in the mixing dynamics inside the 
population after the event of the Cuban revolution in 1959, 
with the abolishment of racial prejudices. As mentioned, these 
results are preliminary and should be further confi rmed.

Face morphometric profi les as early markers?

A fi gure like (Figure 3), comparing the 40 - 60 cohort 
with data for AD patients born in the same time interval, for 
example, would indicate whether there is some population 
group with higher or lower risk for these diseases. The null 
hypothesis is that AD patients are randomly distributed inside 
the population. Thus, the density of AD patients inside a given 
cell should be proportional to the cell density, with the same 
proportionality constant for all cells. Deviations in a given cell 
would indicate an increased (or decreased) risk. Of course, the 
number of AD patients should be high enough to get relevant 
statistics. Population-wide studies are needed. A preliminary 
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study is already running in Cuba [39]. On the other hand, as 
morphometric characteristics are more related to osseous 
structure than to expression or fat in the face, indications may 
be used as early risk markers for the younger groups in the 
same morphometric groups.

It is worth discussing recent fi ndings on the genetics of face 
and brain shape [40]. Observed correlations are only between 
FM and brain shape, not affecting behavioral-cognitive 
traits, in particular AD. One could rephrase these results in a 
simplifi ed way as the absence of genetic correlations between 
phase morphometry and early AD.

However, AD is mostly a disease of the elderly [41], 
essentially multifactorial. There are even hypotheses of 
infectious origin [42]. These multiple causes evolve against 
a given genetic background, which may accelerate or slow 
down the progression towards AD. By measuring correlations 
between FM and AD we would point out predisposition to AD in 
later stages of life.

Consider, for example, the more limited set of 51 genes 
identifi ed in Ref. [43] as involved in facial development. We 
list them in (Table 1). From them, 16 genes have been related 
to AD. We indicate in the Table the links to relevant literature. 
Baseline alterations of these genes could provide a background 
for the evolution towards AD in later stages of life.

Discussion

A recent surprising result [14] states that facial similarities 
are indications of more complete genetic similarities among 
individuals. Thus, our FM groups are probably groups of people 
with very similar genetic backgrounds, against which factors 
leading to AD evolve.

The risk for Parkinson’s disease or certain cancers could 
also be correlated to FM. We indicate also in (Table I) that 21 of 
these genes are related to cancer, according to Genecards [44]. 
An example is the Tumor Protein P63 gene (TP63), a member 
of the P53 family of transcription factors. At the mutational 
level, there is no correlation to cancer. Probably, a statement 
like that of Ref. [40] may be formulated: No direct genetic 
correlation between FM and early cancer. However, cancer is 
also a multi-factorial disease of the elderly, and the baseline 
expression level of mutated TP63 could be a factor facilitating 
evolution toward prostate cancer, for example. Indeed, we 
identifi ed TP63 among the 33 most important expression 
markers in prostate cancer [45].

In order to check whether the expressions of the set of 51 
genes play a role in defi ning the tumor state, we perform PCA 
calculations for TCGA expression data [46] in a set of tissues. 
Only the 51 genes in the set are used to conform to the PCA 
matrix. Details on methods can be found elsewhere [47]. In 
general, this limited set is able to discriminate between a 
normal tissue and a tumor in many tissues, with low confusion 
matrices. We show in (Figure 4) an example of perfect 
discrimination in Glioblastoma. This seemingly surprising 
result reinforces the idea that the baseline expressions of these 
genes could play a role in late cancer.

Conclusion

We reported preliminary results for the FM profi le of the 
Cuban population and indicated that it could be used to fi nd 
risk markers for groups inside the population for diseases 
such as AD, the idea behind this statement is the following. 
First, people inside an FM group share a considerable amount 
of genetic background. Second, multifactorial, late diseases 
such as AD develop against the genetic background of each 
individual, thus the background itself may be considered a 
risk factor. By comparing the density of AD patients with the 

Figure 3: Preliminary results for the face morphometry profi le of the Cuban 
population. Two cohorts are compared, one from men born between 1940 and 
1960, and the second from men born between 1961 and 1980. A schematic of face 
characteristics is shown on top.
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Table 1: The 51 genes involved in facial development, according to Ref. [14]. We indicated whether they have been associated to cancer (Genecards) or to AD in the literature.

Role in cancer and AD of genes involved in 
facial development

Gene Alias
Role in facial development 

(Frontiers in Genetics)
Role in cancer 
(Genecards)

Role in AD Ref. for AD

ACAD9 Acyl-CoA Dehydrogenase Family Member 9 Philtrum Not reported Not reported

ALX3 ALX Homeobox 3 Eye width Neuroblastoma Not reported

ASPM Assembly Factor For Spindle Microtubules Chin prominence Cancer related
Brain Size, AD 

protection
https://www.sciencedirect.com/science/

article/pii/S2352873719300642

CASC17
Cancer Susceptibility Candidate 17 (Non-

Protein Coding)
Nose prominence No? Not reported

CHD8
Chromodomain Helicase DNA Binding 

Protein 8
Nose prominence Cancer related Not reported

COL17A1 Collagen Type XVII Alpha 1 Chain Eye width and depth Cancer related Not reported

SMIM23 
(C5orf50)

Small Integral Membrane Protein 23
Nasion, eyes and zygoma 

prominence
Not reported Not reported

DCHS2 Dachsous Cadherin-Related 2
Ala aperture, Nose 

prominence
Not reported

AD Related, 
age of onset

https://www.nature.com/articles/
mp2011135

DHX35 DEAH-Box Helicase 35 Nose width Not reported
AD Related 
(Not clear)

https://www.frontiersin.org/
articles/10.3389/fpsyt.2019.00843/full

DLX6 Distal-Less Homeobox 6 Chin prominence Not reported

DVL3 Dishevelled Segment Polarity Protein 3 Nose bridge Cancer related
Dysregulated 

in AD
https://www.nature.com/articles/

s41598-019-54782-y

DYNC1LI1
Dynein Cytoplasmic 1 Light Intermediate 

Chain 
Chin prominence Not reported Not reported

EDAR Ectodysplasin A Receptor Chin prominence and shape Breast cancer Not reported

EPHB3 EPH Receptor B3 Nose bridge Cancer related Not reported

EYA4
EYA Transcriptional Coactivator And 

Phosphatase 4
Forehead Not reported Not reported

FOXA1 Forkhead Box A1 Face width Cancer related AD related
https://www.sciencedirect.com/science/

article/abs/pii/S0888754321003189

FREM1 FRAS1 Related Extracellular Matrix 1 Lip (upper) Not reported Not reported

GLI3 GLI Family Zinc Finger 3 Nose width
Basal cell, Brain and 

Colorectal cancer

Language 
dysfunction 

in AD

https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5583024/

GNAI3 G Protein Subunit Alpha I3 Eye width Not reported
AD possibly 

related
https://www.biorxiv.org/

content/10.1101/322503v1.abstract

GSTM2 Glutathione S-Transferase Mu 2 Eye width Hepatocell. Carcinoma Not reported

HDAC8 Histone Deacetylase 8 Eye width Not reported Not reported

HOXD1 Homeobox D1 Eye shape, Lip prominence Not reported Not reported

KCTD15
Potassium Channel Tetramerization Domain 

Containing 15
Nose prominence Not reported Not reported

MAFB MAF BZIP Transcription Factor B Face width Cancer related
Expressed 

Transcription 
Factors in AD

https://www.frontiersin.org/
articles/10.3389/fnagi.2022.881488/full

MBTPS1
Membrane Bound Transcription Factor 

Peptidase, Site 1
Upper facial profi le height Not reported Not reported

MIPOL1 Mirror-Image Polydactyly 1 Face width Bronchus adenoma Not reported

MTX2 Metaxin 2 Eye shape Not reported Not reported

OSR1 Odd-Skipped Related Transcription Factor 1 Face height/depth Not reported Not reported

PABPC1
Poly(A) Binding Protein Cytoplasmic 1 

Pseudogene 1
Eye width Not reported AD Related

https://onlinelibrary.wiley.com/doi/
full/10.1111/cns.13117

PRKN
Parkinson Protein 2, E3 Ubiquitin Protein 

Ligase
Face height Ovarian, Lung cancer

Mitophagy, 
AD related

https://alz-journals.onlinelibrary.wiley.
com/doi/full/10.1002/alz.12198

PAX1 Paired Box 1 Nose width Ovarian, Cervical cancer Not reported

PAX3 Paired Box 3
Eye width, Nasion 

prominence, Nose width
Not reported AD Related

https://content.iospress.com/articles/
journal-of-alzheimers-disease/jad140729

PAX9 Paired Box 9 Face width Lung cancer Not reported

PCDH15 Protocadherin Related 15
Upper facial profi le 

prominence
Not reported AD Related

https://link.springer.com/
article/10.1007/s10048-010-0234-9

PDE8A Phosphodiesterase 8A Allometry Not reported Not reported
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population density one may, in principle, determine whether 
there are FM groups with predisposition to AD. As FM groups 
are based on osseous structure they could be used as early 
markers for younger groups with the same characteristics, 
allowing more detailed studies inside the group and early 
diagnosis. Early markers for other diseases like Parkinson’s 
and certain cancers could be obtained in the same way. A direct 
comparison between AD and population data is required in 
order to validate the statement.
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