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Abstract

Intensive development today is observed in the areas of data processing and analysis, as well as in the management of robotic systems; Artifi cial Intelligence (AI) 
systems are increasingly used. As the complexity of the tasks facing the Marine Robotic Complex (MRC) increases, the need for the use of AI technologies becomes clear. 
These technologies provide safe movement and control of marine objects, navigation of MRC in maritime space, development of behavior logic in unknown environments 
and planning of their movement, as well as optimization of data processing. The development of MRC currently covers various areas for which there is no single solution 
yet. This article outlines the development process of a simulation complex designed to model an intelligent system (IS) for strategizing the motion of a collective of marine 
robotic systems. It includes an in-depth exposition of individual modules and the mathematical modeling of the employed algorithms.

Introduction 

At present, intelligent systems enjoy a wide array of 
applications owing to progress in AI technology, which 
amplifi es human abilities and profi ciencies.

Artifi cial Intelligence (AI) is commonly employed today 
to describe applications handling intricate tasks that were 
previously exclusive to humans. AI enables the replication 
and enhancement of our learning from the surrounding 
environment and the utilization of such information. This 
aspect of AI serves as the foundation for innovation. AI relies 
on diverse machine learning technologies that identify data 
patterns and formulate predictions. Given this characteristic, 
AI serves as an intermediary or often intersects with multiple 
technologies, thereby enhancing the potential of the utilized 
system and achieving optimal results more effi ciently.

In the contemporary era, AI, ML (Machine Learning), 
and DL (Deep Learning) technologies are extensively applied 
within the realm of marine robotics. These methodologies 
are increasingly employed by developers for the deployment 

of planning systems, control mechanisms, and internal 
diagnostic systems across various types of robotic platforms, 
including airborne [1,2], terrestrial [3,4], and marine robotic 
systems [5-7], encompassing underwater gliders, surface 
gliders [8-10], and for tasks such as monitoring and patrolling 
potentially hazardous underwater entities. Intelligent systems 
facilitate adaptation to uncertain environments, enabling the 
execution of goal-setting functions and action planning for 
aerial, terrestrial, and maritime robotics [11-14]. 

In marine robotics, artifi cial intelligence technologies are 
widely used in the fi eld of docking underwater vehicles [15-17], 
in the system of planning the movement of single ANPA and 
their groups [18-22]. Artifi cial intelligence technologies are 
also increasingly being used in vision systems. They allow the 
ANPA to identify various objects in the water space [23-26], 
detect damage at underwater infrastructure facilities [27-30], 
and much more [31-35].

Reinforcement learning techniques are extensively 
employed in motion planning systems for both individual 
robots and their collectives [36-41]. However, existing fi ndings 
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from relevant research and literature predominantly discuss 
the utilization of Artifi cial Neural Networks under specifi c 
deterministic circumstances, where predetermined values for 
the operational environment are known. Additionally, these 
sources highlight the use of centralized AI systems to optimize 
the allocation of robot groups across an area and facilitate 
group coordination to address overarching objectives (e.g., 
employing the smart factory model) [19]. Many methodologies 
rely on analyzing data from pre-existing maps, a resource 
typically unavailable in real-world conditions.

The analysis conducted indicates that existing methods 
and algorithms are currently unable to directly address 
the challenges associated with monitoring, patrolling, and 
surveilling specifi c territories and objects. These objects 
include potentially hazardous underwater entities

Our study introduces a novel algorithm that integrates 
graph-analytical  and neural network methodologies. This 
combination of reinforcement learning and graph-based 
algorithms offers several advantages, allowing robotic 
complexes and their groups to swiftly identify potential 
research areas and leverage acquired knowledge to maximize 
rewards. For instance, graph-based algorithms can compute 
global situations, trajectories, and future states of individual 
robots or groups, which may yield high rewards, along with 
optimal strategies for state changes. Reinforcement learning 
can then utilize this information to enhance performance.

In the presented article, we address the formal statement of 
the problem and challenges related to utilizing the MRC group 
in environments with uncertainties and obstacles. 

The use of intelligent planning systems for the formation 
of trajectories of movement of groups of marine robots should 
signifi cantly increase the safety of navigation, and eliminate 
the occurrence of emergencies in conditions of passage of 
narrow nesses, channels, and other previously unknown 
dynamic obstacles encountered in the water area.

The presented article has the following structure. The fi rst 
section describes the development of an algorithm for forming 
a group interaction area. The second section is devoted to 
the development of an algorithm for a single group visibility 
fi eld. The third section describes the development of a global 
planning module and the architecture of a unifi ed neural 
network multi-agent group interaction system. The process of 
modeling this system is presented.

In conclusion, the main results obtained during the work 
and the direction of further research are described.

Section 1. The problem statement

Employing MRC groups in genuine maritime settings 
invariably demands the utilization of high-precision 
technologies to guarantee accurate positioning and essential 
parameters for radio and hydroacoustic communication. 
Nevertheless, developers often encounter challenges in 
accounting for diverse indicators of marine environmental 
stratifi cation, the existence of multidirectional currents, and 

other non-stationary processes, particularly when MRCs are 
deployed in 3D marine environments. Striving for precision 
in the application of MRC groups results in the intricacy of 
algorithm development, and conversely, in the complexity of 
implementation and application under real-world conditions.

As a result, the authors of the paper opted to depart from the 
conventional approach of constructing a “hard-coded system” 
for forming MRCs and instead adopted a method based on AGI 
(the Area of Group Interaction). This method can be outlined 
by the following parameters (when applying the algorithm in 
a 2D context) (1):

þ1 1 2
þ þ  2 1 3
 þ þ þ1 2

  
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 group

                 (1)

where ( , ), ( , ), ( , )1 2 31 2 3
  r dist r dist r distcon r con r con r  The 

operational boundaries for each agent within the group are 
determined by considering the distance between agents and 
the permissible communication range.

An illustration depicting the formation of the AGI is 
provided in Figure 1.

The resulting values following the execution of the 

algorithm consist of the variables, þ[ , , ]dist con groupR E E  . 

which characterize the relationships among all agents within 
the group (2)
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The provided set of parameters is utilized for the subsequent 
training of the group neural network, tasked with analyzing 
and providing recommendations for future actions, either as a 
single agent within the group or for the group as a whole.

Figure 1: Depicting the formation multi-agent marine system based on AGI.
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Section 2. Development of an algorithm group fi eld of 
view (GFOV) for a multi-agent marine system

To simulate the operation of the Visual System (VS), 
we employed the Astra Pro Realsense camera model, which 
is compatible with ROS (Robot Operating System). During 
operation, the depth camera generates an array of points with 
a resolution of 640 x 320, resulting in 204800 points. These 
points are converted into the PointCloud2 type and then 
transmitted to the Rapidly-exploring Random Tree (RRT) 
module. To enhance processing speed, it is feasible to decrease 
the resolution of the depth camera. The GFOV module receives 
a PointCloud2 data set consisting of 204800 * N points from 
the Realsense camera (where N- count of the agent in the 
group). Figure 2 illustrates an example of obtaining images 
from the camera.

Utilizing data from the sensory system, the agent can gather 
information about the surrounding environment. VS comprises 
two primary functional modules: the obstacle detection module 
and the object identifi cation module. The object identifi cation 
module is responsible for recognizing objects within the 
agent’s fi eld of view and serves as a supplementary component, 
providing additional data to the Autonomous Vehicle’s (AV) 
neural network. For simplifi cation, only two classes were 
defi ned: “obstacles” and “agents”.

The task of class distribution is handled by the YOLOv5 
pre-trained neural network, profi cient in resolving such tasks. 
This neural network is trained on user data by incorporating 
an additional dataset containing predefi ned “obstacles” and 
“agent” areas.

As this work focuses on the design of a planning system for a 
2D setting, readily available TurtleBot3 models with predefi ned 
action sets were utilized to streamline the development of a 
software simulation complex.

Consequently, a software simulation complex was developed 
based on the ROS framework, incorporating its Gazebo and 
RVIZ software components. The collected dataset comprises 
simulated group motions of TurtleBot3 Autonomous Vehicles 
(AVs) and a camera mounted on their platform, as depicted in 
Figure 2.

Additionally, a dataset containing 270 images has been 
compiled, where specifi c 2 class “obstacles” and “neighboring 
agents” have been delineated and appropriate labels assigned. 
Training was conducted using the following parameters:: epoch 
= 500, batchsize = 16. 

Section 3. Development of a simulation complex for in-
telligent modeling

The devised system for global trajectory planning relies on 
the real-time RRT* method. The main objective of the MRC 
group is to navigate from the initial point to the destination. 
To achieve this, the proposal suggests constructing a map of 
random tree branches that span the entire designated area. 
This procedure is effi cient and can be conducted before launch. 
The authors have previously conducted thorough investigations 

and adjustments of this algorithm for application in the realm 
of marine robotics [40-42].

Utilizing the internal libraries ROS framework, the points 
obtained from the Visual System are recalibrated, considering 
both the heading angle and the global coordinate system. In 
the application of the RRT algorithm, the proximity of graph 
points to obstacle points is assessed, resulting in the blocking 
of inaccessible graph points.

An illustration of the algorithm’s functionality is depicted 
in Figure 3, showcasing a group of robots in motion.

The proposed method of forming interaction of a group 
of robots allows the exchange of data using vision systems 
between agents in the group. The global planning module, 
informed by the GFOV module, establishes a comprehensive 
motion trajectory. The AGI generation module facilitates 
the selection of optimal paths for group reconfi guration and 
obstacle avoidance, considering the required communication 
distance between agents.

The structure of the newly created intelligent planning 
system, taking into account both input and output parameters, 
is depicted in Figure 4. To produce control signals for the 
actuators of each group member, an internal planning logic 
has been incorporated. This logic relies on an artifi cial neural 
network and employs deep learning techniques tailored to each 
agent. 

The operation of an algorithm, based on the cascade 
intelligent planner illustrated in Figure 4, unfolds as follows: 
The GPOV, GIA (group interaction area (the same as AGI), and 
RRT* modules receive input data from the navigation systems 

Figure 2: Demonstrating the functionality of the neural network within the Visual 
System module for classifying 2 class visible objects.

  
(а)     (b)   (c) 

   
(d)     (e)   (f) 

Figure 3: Multi-agent group RRT* simulates ( (a) - in motion process, (b,c) - obstacle 
detection process, (d-e) - bypassing an obstacle).
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and Visual Systems (VS) of each agent within the group. 
As explained earlier, the output of the GPOV operation is an 
array of data describing the current status of the shared fi eld 
of view, including object classifi cations. The AGI algorithm 
provides data on the current state of the formation as n and 
D. Additionally, the auxiliary trajectory planning module 
computes the recommended trajectory in the form of Hgroup. 
This dataset is then forwarded to the neural system responsible 
for path planning for each agent within the group, governing 
the actions of each agent during learning. Consequently, 
each agent operates within its environment (the agent’s local 
environment Eagent), from which it receives feedback in the form 
of an updated state S′ and the reward R. Simultaneously, the 
agent remains in constant interaction with other agents within 
the group, meaning its local environment is an integral part of 
the overall group environment Eagent  Egroup.

As a result, there is an easily implemented and scalable 
decentralized group planning system. Such a system 
implements algorithms, which provide the preparation and 
generation of data for the onboard agent’s neural network 
training.

The architecture of the neural network is shown in Figure 5.

The neural network comprises 364 input values, 
encompassing arrays representing distances between group 
agents, the distance and directional angle of the current agent 
relative to the target, as well as data from the Visual System, 
the identifi er of detected objects (obstacles or group agents), 
and the current status of the agent. This information feeds 
into the internal block of the neural network, which consists 
of three dense layers, each containing 64 neurons, along with 
two dropout layers featuring an exclusion parameter of 0.2. 
The RMSProp optimizer is employed, with parameters set as 
follows: learningrate = 0.00025,  = 0.9,  = 1−6, serving as the 
activation function.

The previously established software simulation complex 
was utilized as the training environment. Interaction between 
the agent and the environment is facilitated through fi ve 
potential actions, outlined in Figure 6.

During interaction with the environment, the Autonomous 
Vehicle (AV) transitions from state (S) to state (S′) based on a 
specifi c reward (R). The expression defi ning the internal policy 
responsible for the AV’s reward function is as (3):

( )*5* rate
/cur goal2  rate

( ) 1 4 | 0.5 0.5* |
heading

R Y A Dr r
D D

D
Y Ar 






  


              (3)

Here, “heading” represents the current direction of the 
agent. Drate and Yr(A) denote the components of the reward 
derived from the distance and the agent’s current heading, 
respectively. Dgoal - represents the distance between the agent 
and the target

The neural network correction module for planning the 
actions of the MRC group is tasked with assessing the actions 
executed by each agent within the group. The principal aim 
of this module is to establish an intragroup behavior policy 
by analyzing the states and rewards (Sn, Rr, n) for all agents 
within their local environment Eagent and the collective group 
environment Egroup..

The neural network correction module for planning actions 
of the MRC group is responsible for evaluating the actions 

Figure 4: Architecture of intelligent path-planning system for the multi-agent MRC 
(GFOV – group fi eld of view, GIA – group interaction area).

Figure 5: Neural network architecture.

Figure 6: Agent’s actions.
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performed by each agent in the group. The primary objective of 
this module is to form an intragroup policy of behavior through 
the analysis of states and rewards for all agents in local and 
overall group environments. 

The expression defi ning the policy of intragroup interaction 
among agents, which governs the formation of the group 
reward component, is as (4-6):

2.113 if 2.113
1.9 13 if 1.913 13

3 othercases

D
e D

D
R e Dg


 


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





             (4)

( 2 0.1)12 if 2 0.112
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

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
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             (5)

1 12 13R R R Rrg g g                    (6)

To train a group of three agents, various scenarios were 
simulated in the software simulation complex, including 
scenarios without obstacles, with stationary obstacles, and 
with dynamically changing obstacles. These scenarios are 
depicted in Figure 7. It is important to highlight that during 
this stage, the initial structure of the wedge-type formation 
was employed.

The training was carried out on a PC featuring an NVIDIA 
GeForce 3060 graphics card with 12 GB of RAM (utilizing pre-
installed CUDA 11.7), 64 GB of DDR4 RAM, and an Intel Core 
i9 processor running at 4.016 GHz. The duration of training 
varied for each scene: approximately 2 hours for the fi rst scene, 
10 hours for the second scene, and around 15 hours for the third 
scene.

The graphs depicted below in Figure 8 illustrate the learning 
outcomes for the three generated scenes. Additionally, an 
instance of training a group within a scene devoid of obstacles, 
yet incorporating the AGI display and its alterations throughout 
the motion, is depicted in Figure 9.

In Figure 8, plots (a) depict the outcomes of group training 
in an obstacle-free environment. As evidenced by the fi gures, 
the developed group neural network effectively manages (with 
a 90% probability) accident-free group motion after 400 
training epochs (episodes), while adhering to the conditions 
stipulated by the AGI and shared fi eld of view algorithms to 
attain the target coordinates.

Plots (b) and (c) illustrate the results of group training 
in environments featuring static and dynamic obstacles, 
respectively. Following 800 epochs (episodes) of training, the 
neural network adeptly navigates (with a 75% probability) the 
group motion to reach the target coordinates, all while evading 
obstacles.

The peculiarity of the functioning of UUV and MRC is their 
movement in a non-deterministic environment, in which 
complex hydrodynamic conditions, such as dynamic water 
fl ows caused by various factors, tides, wind forces, and other 
geographical features, can have a signifi cant impact on the 
movement of the vessel.

Modern UUV planning and control systems must take into 
account complex hydrodynamic conditions to ensure reliable 
and safe movement. Consideration of the impact of currents 
on navigation becomes extremely important in the context of 
the growing number of offshore vessels, where the vessel is 
controlled completely autonomously in real-time. Thus, the 
lack of information about currents in the water area where the 
UUV operates can lead to non-optimal routes, increased energy 
consumption, and the risk of emergencies.

 
(a)   (b)   (c) 

Figure 7: The scenes created are designed to facilitate simulations within the motion 
planning neural system for the group of objects: (a) - stage without obstacles; (b) - 
scene with static obstacles; (c) - scene with dynamic obstacles.

 
(a) 

 

 

(b) 

(c)

Figure 8: The learning outcomes of the path-planning multi-agent neural network 
system for the MRC group are as follows: (a) - Total score plot depicting the group’s 
performance in a scene without obstacles. (b) - Total score plot illustrating the 
group’s performance in a scene with obstacles. (c) - Total score plot indicating the 
successful mission completion in a scene with moving obstacles.
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As a rule, current maps are an image that shows the 
directions of currents characteristic of the region in question. 
In this case, surface currents are considered, which can be 
described by two parameters, intensity and direction.

Let us denote the fi eld of currents by ϱ and ξ , which describe 
the parameters of intensity and direction, respectively. Figure 
8 shows examples of such maps for the White and Black Seas. 

From the data presented on the maps, one can judge the 
parameters of the direction and intensity of currents. Figure 10 
shows the intensity and direction of the current at the selected 
point (0.3 knots and SE direction).

The description of the current fi eld can be provided by a set 
of nodal points (7):

  [ , , ..., , ]1 1x x x x xi i k k  
                 (7)

  [ , , ..., , ]1 1y y y y yi i k k  

Where i = 1..k, K– fi nite number of spline points Ni,k(x). 
b-spline is used as a function limiting the fl ow zone W. General 
formula for calculating b-spline coeffi cients (8):

    ( ), , 1 1, 1
11

t xx ti i kN x N x N xi k i k i kt t t ti ii k i k

        

  
       
       

                (8)

Where I - is the index of the current point, x is the value 
from i to i+1 (step), t is an array of indices (9):

0,  
1,   
2,  

if i k
i k if k i n
n k if i n


   
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



              (9)

Let us determine the values of intensity ϱ and direction ξ  
of the fl ow at each point ( ϱ,ξ)W, as a deviation from the 
standard value (for example, Flow=5) as per the expression 
(10):

* (1 ), 11 Flow Q jj                  (10)

*1 ( 1)1 , 2Kint jj j  

Where ∆Q = [-0.1…0.1] is the coeffi cient of change in fl ow 
intensity, Kint = 0.3 is the coeffi cient describing the gradient of 
change in fl ow intensity from ϱ11 to ϱj1 (11).

11 1

1

j
Q

k jk



 
 
 
  



  


 

 
                (11)

where j - is the number of splines defi ning the digital fl ow fi eld, 
k- is the number of key points of the Pfl ow splines. It should be 
taken into account that ϱjk = const for all values of Pfl ow(j,k).

The fl ow direction ξ at each point X(ϱ, ξ)  W can be described 
by the following expressions (12):

 , Ñi   

   ( / )atan y xi i i                  (12) 

  1y y yi i i  

  1x x xi i i  

Where xi, yi are the current points at which the direction 
of the current is calculated, ∆C is the random component 
introducing error (non-deterministic impact/noise) in the 
range (0.3 ....0.3).

Thus, for any arbitrary point Pcur on the map of the water 
area, the intensity and direction parameters can be calculated 
taking into account expressions (8-12) taking into account the 
defi nition of two adjacent points Xi and Xi-1 (13):

  1
2

i i
Pcur

 


      
 

(  )1
( , )  

2

jk jk
j kPcur

 

 

             (13)

A schematic representation of the fl ow fi eld construction is 
presented in Figure 11.

The resulting model of the characteristic current map 
can be used in the module for planning the global trajectory 

Figure 9: An illustration showcasing the changes in AGI during the simulation of 
object group motion within an obstacle-free environment.

Figure 10: Map of fl ow Black and White Sea.
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of a multi-agent group MRC and introducing appropriate 
adjustments during the mission.

An example of taking into account a circular fl ow on a stage 
with a “wall” obstacle is shown in Figure 12.

As can be seen from the simulation results, the developed 
system ensures that a group of agents successfully bypasses 
detected obstacles.

It is important to note that the system effectively takes 
into account the complex structure of the current map, which 
can include both currents directed following the movement 
of a group of agents and currents opposite to the direction of 
movement of the group.

Conclusion

The article considered the process of developing an 
intelligent planning system for the movement of a group of 
marine mobile objects and the possibility of safely (accident-
free) performing positional tasks related to monitoring and 
patrolling a given territory.

The proposed system relies on modules that integrate 
neural network methodologies and machine learning 
techniques, forming representations for the group’s fi eld of 
visibility, intragroup interaction area, and an auxiliary global 
RRT* planner module.

The amalgamation of reinforcement learning algorithms 
and graph-based methods more effective exploration of 

potential solutions. This integration enables agents to navigate 
both deterministic and probabilistic environment policies, 
broadening the scope of solutions and ultimately enhancing 
performance. This combination proves advantageous over 
sole reliance on reinforcement learning, as it allows for a 
more comprehensive understanding of the environment and 
exploration of a wider array of solutions.

The available dataset supports deep learning for each 
agent’s neural network within the group. Additionally, 
continuous data exchange regarding the states of neighboring 
agents and subsequent analysis enables the implementation of 
a scalable and decentralized system structure for intragroup 
interaction. A supplementary policy for evaluating intragroup 
states involves exerting corrective infl uence on the training of 
the cascaded neural network action planner.

A software simulation complex has been developed based on 
ROS, RVIZ, Gazebo, and machine learning libraries, facilitating 
research on the developed models and planning methods. The 
simulation results showcase the effi cacy of the proposed neural 
network planning algorithms.

All source code is written in Python, chosen for its ease 
of use and the availability of numerous auxiliary libraries. 
However, Python’s interpreted nature is considered slow. 
Once a fully functional prototype of the system is developed 
using full-scale models, there are plans to transition to C++ to 
enhance the system’s speed.

The methods and algorithms presented for group 
interaction, along with practical demonstrations, illustrate 
the potential use of the intelligent system within the Marine 
Robotic Complex (MRC) in a 2D environment. The existing 
architecture and modular principle of the planning system 
allow for further adaptation to utilize this system within 
Autonomous Underwater Vehicles (AUVs), considering the 
existing limitations and operational features of AUVs in a 3D 
environment.

Simulation modeling demonstrates a 90% probability of 
successful mission completion for group motion in obstacle-
free environments and a 75% probability in environments with 
moving obstacles. An essential consideration is enhancing the 
neural network’s performance in environments containing 
obstacles, with the potential incorporation of convolutional 
layers into the agent’s neural network architecture.

A fundamentally new algorithm for constructing a 
characteristic model of the global current fi eld is presented, 
taking into account the parameters of the intensity and direction 
of currents. The application of this algorithm in maritime 
navigation opens up new prospects for ensuring the safety and 
effi ciency of ship movement in various hydrological scenarios. 
The model provides the ability to digitally predict currents, 
which allows ships to effectively choose optimal routes and 
minimize time costs. Vessels equipped with this algorithm can 
effectively navigate obstacles such as currents, wandering ice, 
and other hydrodynamic challenges with greater accuracy and 
anticipation. The developed model provides information on the 

Figure 11: Scheme for constructing a fl ow fi eld.

Figure 12: An example of taking into account circular fl ow when moving in a scene 
with a “wall” obstacle.
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intensity and direction of currents in narrows and channels, 
which signifi cantly facilitates the navigation process and 
reduces the risk of collision.
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