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Abstract

The paper presents a model of the microplastic electrofl otation process and considers the factors affecting the effi  ciency of this process during wastewater 
treatment. The results obtained will help optimize the microplastic electrofl otation process and develop more effective ways to remove plastic particles from the treated 
water, as well as help in the development of new types of fl otation technology that allow several purifi cation processes to be carried out simultaneously in one device. 
These devices can prevent the destruction of the formed fl otation complexes, compared with the use of a traditional cleaning scheme with several autonomous devices 
installed in series. The results obtained provide a rationale for choosing the most effi  cient electrofl otation apparatus for wastewater treatment from microplastics.
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Introduction

Microplastics (tiny plastic particles less than 5 mm in 
size) have become a global environmental problem due to 
their widespread presence in the environment and potentially 
harmful effects on marine organisms and ecosystems. One 
of the main sources of microplastics is wastewater, which 
contains a signifi cant amount of it and enters natural water 
bodies (rivers, lakes, oceans), disrupting their ecosystems. 
Thus, the development of effective methods for the removal 
of microplastics from wastewater is important for the 
preservation of the health of aquatic ecosystems.

Let’s consider one of the effective ways to remove 
microplastics from wastewater - fl otation. This process 
involves attaching polluting particles to air bubbles that rise 
to the surface of the water and can be mechanically removed. 
However, the effectiveness of microplastic fl otation depends on 
various factors, such as the properties of the microplastic, the 
chemical composition of the water and the fl otation conditions.

In this research paper, we aim to simulate the process 
of microplastic fl otation using electrolysis production of gas 

bubbles and to investigate the factors affecting its effectiveness. 
Our results can help optimize the microplastic electrofl otation 
process and develop more effective methods for its removal 
from wastewater. This is extremely important since the 
growing use of plastics worldwide has led to the appearance of 
an alarming amount of microplastics in the environment [1,2]. 
For example, in the study [3] it is estimated that the oceans 
alone contain more than 5 trillion microplastic particles. 
Another study showed that wastewater after treatment 
facilities can emit up to 4.2 million microplastic particles into 
the environment per day [4]. The data obtained as a result of 
the literature review emphasize the need to solve the problem 
of microplastic pollution of water bodies [5].

Research of a multi-stage model

This paper considers B.S. Ksenofontov’s multi-stage model 
[6-9] of the electrofl otation process. The model is presented 
in Figure 1. Glitter consisting of small plastic particles was 
chosen as polluting particles, the peculiarities of the material’s 
behavior in water were taken into account and two different 
types of bubbles arising during electrofl otation were considered 
[10-12]: hydrogen bubbles and oxygen bubbles [13,14].
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 0 0CC                       (2)

 0 0CD 

 0 0CK 

The system of equations (1) was solved in the Mathcad 
software package.

The probability of the formation of a fl otation complex is 
determined by the constants k1,2, which can be calculated using 
the formulas [15,16]:

1,5· · · ;1 · ·0 2 2

k j Eýk
k DO O

      
                    (3)

1,5· · · ;2 · ·0 2 2

k j Eýk
k DH H


       

                 (4)

Where k3 is the electrochemical equivalent of the substance, 
kg/C;

j is current density, A/m2;

E is the effi ciency of particle capture by a gas bubble during 
fl otation, (DN);

K0 is bubbles polydispersity factor, (DN);

2HD , 
20D are mean diameters of the bubbles in the fl otation 

cell, m;

 is gas density, kg/m3;

q is the bubbling rate, m3/(m2 . s).

Sedimentation of microplastic particles is represented in k3 
coeffi cient. To determine the coeffi cient, an experiment was 
conducted to observe the deposition of microplastic particles. 
k3 the coeffi cient is determined by the formula:

,3
vsedk
H

                    (5)

Where vsed is sedimentation velocity of a microplastic 
particle, m/s;

H is the depth of the fl otation chamber, m.

Sedimentation velocity is determined by the formula:

,Svsed t
                     (6)

Where S is the distance traveled by a microplastic particle, 
m;

t is the time it took for the particle to travel the distance 
S, s.

To determine the sedimentation velocity, 10 microplastic 
particles were observed. Figures 2 and 3 show an example of 
observation. Table 1 shows the results of observations. 

Figures 2 and 3 show an example of a precipitating particle. 

In the considered model, state A is the initial state of the 
system; B and C are the states of adhesion of particles to 
bubbles; E is the precipitation of particles; D is the state of 
particles in the foam layer. 

The process can be described by a system of differential 
equations:
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Where CA, CB, CC, CD, CE – particle concentrations in states А, 
B, C, D, and E; state А – polluting particles in their original form, 
В – fl otation complexes with oxygen bubbles, С – fl otation 
complexes with hydrogen bubbles, E represents the state of 
precipitated particles, D is the state of particles in the foam 
layer; k1 coeffi cient describes the probability of formation of the 
“polluting particle –oxygen bubble” fl otation complex, k2 is the 
probability of the formation of a “polluting particle – hydrogen 
bubble” fl otation complex, k3 is the probability of precipitation 
of a particle from state A; k4 coeffi cient characterizes the rising 
process of the fl otation complex “particle–oxygen bubble”, 
k5 characterizes the rising process of the fl otation complex 
“particle–hydrogen bubble”, k6 represents the probability of 
the particle passing directly into the foam layer.

Initial conditions for this system of equations at t = 0:

 0 1 /0C C mg lA A 

 0 0CB 

Figure 1: Hydrogen and oxygen bubbles electrofl otation process model.
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Table 1 shows the results of observations. According to the 
results of the experiment, the coeffi cient k3 = 0,0036 s-1 .

The rise of the fl otation complexes is characterized by 
coeffi cients k4,5, which can be calculated by the formula:

4,5 ,4,5
vrk
H

                    (7)

Where vr4,5 is rise velocity of fl otation complex, m/s;

H is the depth of the fl otation chamber, m.

The transition of the polluting particle into the foam layer 
is characterized by the k6 coeffi cient, which is calculated by the 
formula:

,6
v fk
H

                 (8)

Where vf is the velocity of self-ascent of a microplastic 
particle, m/s;

H is the depth of the fl otation chamber, m.

The determination of the coeffi cient k6 according to the 
formula (8) by the formula (8) is possible if the density of the 
microplastic is less than the density of water. Since part of the 
microplastics rose to the surface during the experiment, this 
assumption was accepted. The particle self-ascent velocity is 
determined similarly to the sedimentation velocity.

To determine the self-ascent velocity and the coeffi cient 
k6 10 microplastic particles were observed. Figure 4 shows the 
initial state of the particle, Figure 5 shows the fi nal state.

The results of the experiment are presented in Table 2. 
According to the results of the experiment, the value of the 
coeffi cient k6 is 0,0025 s-1.

The effi ciency of particle capture by gas bubbles is 
determined by the formula [11]:

1,6
1/60,5· · ,2

rpE A
rb

                (9)

Where rų is particle radius, m;

n is bubble radius, m;

A is the Hamaker constant, J.

Figure 2: The initial position of the particle.  The time is 45 seconds from the 
beginning of the experiment, and the distance from the bottom of the chamber is 
71 mm.

Figure 3: The fi nal position of the particle. The time is 51 seconds from the beginning 
of the experiment, and the distance from the bottom of the chamber is 29 mm.

Table 1: The results of the particle sedimentation experiment.

Particle 
number

Time of 
sedimentation, s

The height of the 
traversed water layer, m

Sedimentation 
velocity, m/s

k3, s-1

1 12 0,04 0,0033 0,0033

2 10 0,04 0,0040 0,0040

3 10 0,04 0,0040 0,0040

4 11 0,04 0,0036 0,0036

5 10 0,03 0,0030 0,0030

6 13 0,04 0,0031 0,0031

7 12 0,04 0,0033 0,0033

8 10 0,04 0,0040 0,0040

9 11 0,04 0,0036 0,00363

10 10 0,04 0,0040 0,0040

The average value of the coeffi  cient 0,0036

Figure 4: The initial suspended state of the microplastic particle. The time is 46 
seconds from the start of the experiment, and the distance from the bottom of the 
chamber is 30 mm.

Figure 5: The self-ascent of a microplastic particle. The time is 63 seconds from 
the beginning of the experiment, and the distance from the bottom of the chamber 
is 70 mm.
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In addition to electrofl otation, the model takes into account 
the presence of Al(OH)3 coagulant. The value of the Hamaker 
constant for this case is given in Table 3.

The rise velocity of the fl otation complex is determined by 
the formula [15]:

 
2

· ·
,

18·

D g w g
vr

 






                (10)

Where D


 is the mean diameter of the bubbles in the 
fl otation cell, m;

w is water density, kg/m3;

g is gas density, kg/m3;

μ is water viscosity, kg/m·s.

Thus, the presented multi-stage fl otation model allows us 
to consider the infl uence of various parameters on the effi ciency 
of the process, such as the size of bubbles (depending on the 
nature of the fl otation process), current density, and bubbling 
rate. In addition, the multi-stage model takes into account 
various options for the location of pollution particles during 
the water treatment process.

Calculation of fl otation time

For the calculation and graphical representation of the 
model, a similar process was carried out for the purifi cation 
of oily wastewater [17,18]. The calculation was made using the 
initial data presented in Table 3. Reference data is taken from 
[15,16,18-66].

The parameters calculated by formulas (9), and (10) are 
presented in Table 4. The obtained values of the constants are 
presented in Table 5.

The solution of the system of differential equations in 
graphical form is shown in Figure 6.

Using the graphical solution, the fl otation time was 
determined. To achieve a degree of purifi cation of 80%, the 
required fl otation time is 1900 seconds.

Conclusion

From the presented fl otation process model, it can 
be concluded that despite the ability of microplastics to 
independently rise into the foam layer and precipitate other 
features of the material slow down the fl otation time. 

Thus, it is necessary to provide additional stages of fi ner 
purifi cation, but the use of electrofl otation with the ability 
to adjust the size of bubbles can signifi cantly reduce the 
concentration of microplastics in water. In the future, the 
model will be tested experimentally and refi ned to obtain the 
fi nal results. 

The results obtained in this work provide a rationale for 
choosing the most effi cient electrofl otation apparatus for 
wastewater treatment from microplastics.

Table 2: Calculation of the k6 coeffi  cient value.

Particle 
number

Self-ascent 
time, s

The height of the 
traversed water layer, m

Self-ascent 
velocity, m/s

K6, s-1

1 17 0,04 0,0023 0,0023

2 16 0,04 0,0025 0,0025

3 14 0,04 0,0029 0,0029

4 16 0,04 0,0025 0,0025

5 14 0,04 0,0029 0,0029

6 18 0,04 0,0022 0,0022

7 15 0,04 0,0026 0,0026

8 16 0,04 0,0025 0,0025

9 17 0,04 0,0023 0,0023

10 18 0,04 0,0022 0,0022

The average value of the coeffi  cient 0,0025

Table 3: Source data.

Parameter Value

Hydrogen bubble mean diameter, 2
DH  , m 52·10-6

Oxygen bubble mean diameter, 2
DO , m 60·10-6

Microplastic particle diameter, d÷ , m 1·10-4

Hamaker constant for Al(OH)3, A, J 12,5·10-20

Current density, j, mA/cm2 10

The electrochemical equivalent of hydrogen, 2H
k , kg/C 1,045·10-8

The electrochemical equivalent of oxygen, 2
kÎ , kg/C 8,29·10-8

Bubbles polydispersity factor, k0, (DN) 1

Bubbling rate, q, m3/(m2.s) 1,65·10-5

Depth of the fl otation chamber, H, m 1

Hydrogen density, 2H
 , kg/ m3 0,09

Oxygen density, 2O
 , kg/ m3 1,329

Water density,  ρw, kg/ m3 1000

Water viscosity, μ, kg/m·s 1·10-3

Table 4: Calculated process parameters

Parameter Value

The effi  ciency of particle capture by hydrogen bubbles, 2
DH , (DN) 6,9·10-2

The effi  ciency of particle capture by oxygen bubbles, 2
DO , (DN.) 5,1·10-2

Rise velocity of the fl otation complex with a hydrogen bubble, d÷ , m/s 1,5·10-3

Rise velocity of the fl otation complex with an oxygen bubble, 2
vrO , m/s 1,4·10-3

Sedimentation velocity of microplastic particles, vsed, m/s 0,36·10-2

The self-ascent velocity of microplastic particles, vf, m/s 0,25·10-2

Table 5: Calculated coeffi  cients values.

Coeffi  cient Value

K1, s
-1 7,93·10-3

K2, s
-1 23·10-3

K3, s
-1 3,6·10-3

K4, s
-1 1,4·10-3

K5, s
-1 1,5·10-3

K6, s
-1 2,5·10-3
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