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Abstract

For a reinforced concrete structure to be deemed satisfactory, it must satisfy both the ultimate and serviceability limits state criteria. Defl ection is one of the major 
criteria to be satisfi ed under the serviceability limit state. This paper derived a model by modifying Olanitori’s model to obtain the effective moment of inertia for slender 
beams without compression reinforcement. The beam without compression reinforcement was subjected to a one-point load in order to determine the experimental 
effective moment of inertia. It was observed that the beam had an ultimate load of 83 kN. At a service load of 55.33 kN, the beam’s actual defl ection was found to be 5.90 
mm and the experimental effective moment of inertia, Ie(EXP) was 206.96 x104mm4. At a service load of 55.33 kN, the estimated defl ections of the beam using the proposed 
model P, model 1, model 2, and model 3 were 3.32 mm, 2.60 mm, 1.33 mm, and 0.78 mm respectively, while the actual defl ection was 5.09 mm for the beam. From these 
results, the proposed model predicts more accurately the defl ection of the slender beam than the three other models.
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Introduction

The procedures for the design of reinforced concrete 
structures are based on concepts of limit states. The limit 
states are generally classifi ed as ultimate limit states and 
serviceability limit states. The major serviceability limit states 
for reinforced concrete structures are caused by excessive crack 
widths, excessive defl ections, and undesirable vibrations [1]. 

In practice, defl ection is not normally estimated, rather 
defl ection criterion satisfaction is based on the deemed-to-fi t 
provision of the codes [2]. It has been noticed that buildings 
that were satisfactory in the defl ection criterion of the service 
limit state, based on the deemed-to-fi t provision, were known 
to have large cracks on the partition walls due to excessive 
defl ections of slabs and beams [3]. The well-known equations 
for determining the defl ection of RC members rely on computing 
the fractured section’s effective moment of inertia. Branson’s 
equation was approved by ACI-318, and it appeared in the 1971 
publishing edition as a major equation for determining the 
effective moment of inertia in RC beam defl ection calculations 

[4]. Since then, several arguments have been raised concerning 
this equation for various reasons, but most of them have 
centred on the model’s correctness. Designers argued that 
computing the troublesome cracked moment of inertia Icr is 
diffi cult and time-consuming, especially for fl anged parts. 
Researchers discovered that adopting Branson’s methodology 
resulted in a 100 percent inaccuracy in several circumstances. 
These reasons prompted the researchers to investigate the 
validity of Branson’s equation for such systems [4]. Many 
studies have changed this equation to make it more suitable 
for concrete beams with steel/FRP reinforcement [5-12]. 

The models for the determination of the effective moment 
of inertia and defl ection of reinforced concrete beams from 
literature are the models derived from experiments conducted 
on beams cast using local materials of the various countries 
respectively. Therefore, there is a need to carry out research 
to determine the effectiveness of these models on reinforced 
concrete beams produced using our local materials in the 
country. The effective moment of inertia model derived from 
experiments carried out on beams produced from locally 
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to read off the load with the corresponding defl ection. The 
actual defl ections obtained from the experimental work are 
presented in column 4 of Table 1. 

The data in Table 1 were used to plot the graph of Figure 
3, from where the values of loads and defl ections in between 
the recorded values of 5, 10, 15, 20, and 25 seconds of starting 
and stoppage of the loading were taken. These values taken are 
presented in columns 3 and 4 of Table 2. 

Calculation of immediate defl ection

Beams specifi cations and strength characteristics: The 
dimensions of the beam used for the work were: 100 x 150 
x 750; fcu = 11.1N/mm2; fy = 572N/mm2. The provided area 
of reinforcement (Asprov) was 2Y10 bars with 157.1mm2. The 
defl ection check according to BS 8110-1 [16] was satisfactory. 

Concrete’s strength characteristics such as Young’s 
Modulus (Ec), Moment of Resistance (MR), Estimated Ultimate 
Load (PEULT), Estimated Maximum Moment (MEmax), and Actual 
Maximum Moment (MAmax) are determined below.

Ec can be estimated from (1):

available materials will be able to predict defl ection more 
accurately when compared with that from the literature. 

Material and methods

The materials and methods used for this work are discussed 
below.

The Materials

Ordinary Portland Cement (OPC) of Dangote brand of 
grade 42.5 was used in this research as a binder according 
to ASTM C150/C150M-12 [13]. The cement was purchased in 
Akure metropolis of Ondo State, Nigeria. The coarse aggregate 
was purchased from JCC Quarry, along Akure- Owo road, it 
conforms to AASHTO M80-87 [14]. Also, the fi ne aggregate 
was collected from a borrowed pit from Akure metropolis, and 
conforms to AASHTO M6-93 [15], while fresh and clean water 
was used for casting and curing of the specimens. The water/
cement (WC) ratio used for the experimental work was 0.6. The 
reinforcements used for the work were high-yield steel of 8 
mm and 10 mm, with characteristic strengths of 550 N/mm2 

and 572 N/mm2 respectively.

The experimental beams

The experimental beam was cast using the mix ratio from 
the trial mixes that produced concrete strength of not more 
than 10% lesser or greater than the targeted concrete strength.

The specimen used for this work was a rectangular 
beam of dimensions 100 x 150 x 750mm. The beam was 
without compression reinforcement but with only tension 
reinforcement. The total length of each beam was 750 mm and 
was tested under one-point loading with a 550 mm effective 
span.

The equipment 

The equipment used for the testing of the concrete cubes 
and the experimental beam is the universal testing machine 
(UTM), shown in Figure 1. 

Loading of the beams

The experimental beam was simply supported, and loaded 
with a point load at the centre. To measure the defl ection, a 
dial gauge was placed at the centre. The beam was loaded until 
failure occurs. To measure the defl ection, the universal testing 
machine was started and stopped every 5 seconds and, read 
the load and the displacement from the UTM and the dial-
gauge respectively. Hence, at every 5 seconds, the UTM will 
be stopped, then the load will be read from the machine, while 
the defl ection will be read from the dial gauge. The stopping to 
take readings and starting at every 5 seconds continued until 
failure occurs. Figure 2 shows the schematic diagram of the 
beam.

Results 

The defl ection of the beam was measured using a dial 
gauge. The loading using the UTM was stopped every 5 seconds 

Figure 1: Setup of the Universal Testing Machine used for experimental works.

Figure 2: Experimental set-up of beam.

Table 1: Load, and defl ection for the experimental beam.

S/N Time (second) Load on Beam (kN) Actual defl ection (mm)ACT

1 0.00 0.0 0

2 5.00 11.25 0.17

3 10.00 32.59 2.79

4 15.00 57.12 6.19

5 20.00 81.64 9.83

6 25.00 83.00 14.95
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 1 24, 725.64   E f Nmmc c               (1)

Where 
1fc  is the characteristic strength of the concrete.

3 2 154, .7725.  x 1064 1 .1 /1E N mc m 

The moment of resistance MERB can be estimated by Eq. (2)

0.87 f A *y  sM ZERB                (2)

Substitute for the values of As, fy, and Z, where Z= d – s/2 = 
127 – 127/2 = 63.5 mm in Eq. (2)

60.87 f A * 0.87 1 000 1 57.1  63.5 1 0y  sM Z x x x xERB
 

8.68 M kNmERB 

Since the beam is simply supported, the maximum bending 
moment at the centre is M = PL/4.

The estimated ultimate load for the beam can be determined 
thus:

4 4  8.68
63.13 

0.55

M xERBP kNEULT L
  

Estimated service load PESLT = 63.13/1.5 = 42.09 kN.

From Table 2, the actual ultimate load PAULT = 83 kN 

Actual service load PASLT = 83/1.5 = 55.33 kN.

The actual maximum bending moment:

83  0.550 45.65
11.41 

4 4 4

PL x
M kNmAMAX    

The actual bending moment at service:

55.33  0.550 30.431.5
7.6 

4 4 4

PL x
M kNmASMAX    

The estimated maximum bending moment:

63.13  0.550 34.72
8.68 

4 4 4

PL x
M kNmEMAX    

The estimated bending moment at service:

42.09  0.550 23.15
5.79 

4 4 4

PL x
M kNmESMAX    

Estimation of defl ection for beam under estimated ser-
vice load

The volume of beam = 0.75 x 0.15 x 0.1 = 0.01125 m3

Unit weight of reinforced concrete = 24 kN/m3

Dead load of beam = volume x unit weight = 0.01125 x 24 = 
0.27 kN

 It was built of materials with strength characteristic fcu = 
11.1 N/mm2 for concrete, fy = 572 N/mm2 for steel and concrete 
density γ = 2465 kg/m3, Ec = 15.7 x 103N/mm2.

Check if the beam has cracked at service loads: Compute 
Ig for the un-cracked beam section (ignore the effect of the 
reinforcement for simplicity):

Beam width bw = 100mm

I. Compute the centroid of the cross-section
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Figure 3: Load, Actual defl ection, and estimated defl ection. 

Table 2: Summary of Loads and defl ections.

S/N Time (second) Load on Beam (kN) Actual defl ection (mm) ∆ACT

1 0.00 0.0 0

2 3.17 0.05

3 5.19 0.09

4 8.08 0.12

5 5.00 11.25 0.17

6 15.29 0.41

7 19.90 0.83

8 23.94 1.48

9 27.69 1.99

10 10.00 32.59 2.79

11 38.08 3.28

12 41.82 3.71

13 46.73 4.49

14 53.08 5.53

15 15.00 57.12 6.19

16 63.75 6.86

17 67.79 7.31

18 72.40 7.94

19 76.73 8.67

20 20.00 81.64 9.83

21 82.5 10.53

22 81.92 11.19

23 82.79 11.94

24 82.79 13.03

25 25.00 83.0 14.95
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150
75

2 2
y

h
mm  

yt = 75mm; yb = 75mm

II. Compute the moment of inertia, Ig

3 3100 150 42812.5 1 0  mm4
12 12

bh x
I xg   

III. Determine the fl exural cracking moment from Eq. 
(3):

f Ir g
Mcr

yt
                    (3)

Where fr can be estimated using Eq.(4):

10.623   f f MPar c c               (4)

 γc = 1 for normal concrete and 
1fc is the characteristic strength 

of concrete. Using Eq. (4):

1 2 0.623  0.623 1   11.1 2.08 /f f x x N mmr c c  

In the positive moment region, using Eq. (3):
42.08 2812.5 1 0

780, 000 . 0.78  
75

x x
M N mm kNmcr   

 The positivie moment at mid-span for a simply supported 
beam with point load = wl/4

0.27  0.55
Dead load moment  0.037  0.78 

4

x
kNm M kNmcr   

Hence, section not cracked

 42.09 0.27   0.55
     

4

5.82 0.78 

x
Dead plus live load MEDL LL

kNm M kNmcr




  

Hence the section has cracked.

Therefore, it will be necessary to compute Icr and Ie at the 
mid-span.

Compute Icr at midspan. It is known that the beams have 
rectangular sections

Beam without compression steel

3 3
2 ( )

3

bk d
I nAs d kdcr                  (5)

2 1 1
 

dB
kd

B

 
                (6)

Where: 

200
12.74 

15.7

Esn
Ec

  

100 100
0.05

12.74 1 57.1 2001.5

b
B mm

nA xs
   

From Eq. (6) the value of kd can be determined as shown 
below for the beam without compression reinforcement:

2 127 0.05 1 1
 

0.05

x x
kd

 


13.7 1

0.05
kd




3.70 1

0.05
kd




2.7
54   

0.05
c kd mm  

54
0.425 

127
k  

k=54/127=0.425 

The crack moment of inertia can be determined using Eq.(5) 

3 3100  0.425  1 27 212.74 1 57.1(127 0.425 1 27)
3

x x
I x xcr   

4 2524.15 10  2001.5(73.02)I xcr  

4524.15 10  2001.5(5332.92)I xcr  

4 4524.15 10 1067.18 10I x xcr  

41591 10  mm4I xcr 

Therefore, Icr at mid-span for the beam with only Tension 
reinforcement = 1591×104mm4

[For SI unit, where Es = 200 kN/mm2 and Ec = 15.7 kN/mm2]

Compute immediate dead-load defl ection: When the load 
acting on the beam is less than the cracking load (Ma<Mcr), the 
section is uncracked therefore Ie = Ig 

I. Compute Ie at mid-span 

Because MESMAX = 5.79 kNm is greater than Mcr = 0.78 kNm, 
hence the section is cracked and Ie must be determined by using 
Eq.(7). 

3 3

1
M Mcr crI I Ie g cr
M Ma a

  
        
     

              (7)

;    ; 
4

42.36  0.55
5.82 

4

wl
M where w unfactored live loada

x
M kNma

 

 
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Therefore:

 
3 3 30.78 675.91 1 0 0.002 0

5.82

Mcr x
Ma

   
   

     

We have: 

 4 40  2812.5 1 0 1 0 1 591 10

4 41591 1 0  

I x x x xe

x mm I Icr g

  

  

II. Compute Ie at mid-span for the beam with compression 
reinforcement

Because MEDL+LL = 5.82 kNm is greater than Mcr = 0.78 kNm, 
hence the section is cracked and Ie must be determined by using 
Eq.(7):

3 3

 1
M Mcr crI I Ie g cr
M Ma a

  
        
     

              (7)

Therefore:

 
3 3 30.78 675.91 1 0 0.002 0

5.82

Mcr x
Ma

   
   

     

We have: 

 4 4 4 40  2812.5 1 0 1 0  2621.91 10 2621.91 1 0  I x x x x x mm I Ie cr g     

III. Compute estimated immediate dead load defl ection: 
Since it assumed that the beam behaved like a simply supported 
beam with a concentrated load at the centre, the mid-span 
defl ection can be estimated using Eq.(8) below.

3

48

wl

EI
                   (8)

Eq.(8) is the general equation for the estimation of 
defl ection for beams without compression reinforcement and 
it can be derived as follows:

Substituting for the values of Ec, l, and I = Ie in Eq. (8), we 
have:

3 3 3  550
3 448 48 48 15.7 1 0  1 591 1 0   

wl w x wl
max

EI EIx x x xe
   

3 81 .664 1 0
1348 1 .22 1 0   

wl w x
max

EI xe
  

3
51.36  1 0

48

wl
w x mmmax

EIe

               (9)

Using Eq. (9), the estimated mid-span defl ection for the 
beams was determined. The results obtained are presented in 
column 5 of Table 3. 

The estimated defl ection is lesser than the actual defl ection. 
The ultimate beam load was 83 kN, and the service load is 
about 66.66% of the ultimate load and which equals 55.33 
kN for the beam. From Figure 3, the corresponding estimated 
defl ection for a service load of 55.33 kN is 0.75 mm, while the 
corresponding actual defl ection is 5.90 mm. From Table 3, 
column 4, the actual defl ection increases as the load increases. 
Also from Figure 3, the actual load-defl ection curve is not 
linear, and defl ection increases as load increases. At the beam’s 
ultimate load of 83 kN, the defl ection curve fl attened out and 
the collapse of the beam took place. Column 5 of Table 3 and 
Figure 3, shows the estimated defl ection, which increases with 
the load and linear throughout. Column 6 of Table 3 shows how 
much the actual defl ection exceeded the estimated defl ection. 
At the service load of 55.33 kN, the difference between the 
estimated and actual defl ection is 687%. From the above, Ie 
used in the computation of the estimated defl ection is grossly 
inaccurate. Since the estimated defl ection is lesser than the 
actual defl ection, indicates that Ie is overestimated.

Determination of Experimental Icr(exp)

The defl ection at mid-span, of the beam and load case is 
calculated using equation (8) repeated below:

Table 3: Load, and defl ection for a beam without compression reinforcement.

S/N
Time 

(second)
Load on 

Beam (kN)

Actual 
defl ection (mm) 

∆ACT

 Estimated 
Defl ection (mm) 

∆EST

100
  


ACT EST x %

EST

1 00 0.0 0 0.00 0.00

2 3.17 0.05 0.04 25.00

3 5.19 0.09 0.07 28.57

4 8.08 0.12 0.11 9.09

5 5.00 11.25 0.17 0.15 13.33

6 15.29 0.41 0.21 95.24

7 19.90 0.83 0.27 207.41

8 23.94 1.48 0.33 348.49

9 27.69 1.99 0.38 423.68

10 10.00 32.59 2.79 0.44 534.09

11 38.08 3.28 0.52 530.77

12 41.82 3.71 0.57 550.88

13 46.73 4.49 0.64 601.56

14 53.08 5.53 0.72 668.06

15 15.00 57.12 6.19 0.78 693.58

16 63.75 6.86 0.87 688.51

17 67.79 7.31 0.92 694.57

18 72.40 7.94 0.99 702.02

19 76.73 8.67 1.04 733.65

20 20.00 81.64 9.83 1.11 785.59

21 82.5 10.53 1.12 840.18

22 81.92 11.19 1.11 908.11

23 82.79 11.94 1.13 956.64

24 82.79 13.03 1.13 1053.10

25 25.00 83.0 14.95 1.13 1223.01



038

https://www.peertechzpublications.com/journals/journal-of-civil-engineering-and-environmental-sciences

Citation: Olanitori LM, Oniyide MM, Oni ST, Otuaga MP (2023) Effective moment of inertia of reinforced concrete slender beams with only tension reinforcement. J 
Civil Eng Environ Sci 9(2): 033-041. DOI: https://dx.doi.org/10.17352/2455-488X.000065

3
 

48

wl
max

EIe
 

Taking E = EC, an experimental effective moment of inertia, 
Ie(exp) can be worked out using Equation (9) by substituting 
maximum defl ection (∆max) with measured defl ection (∆ACT) as 
given by Equation (11).

3

( ) 48

wl
Ie EXP Ec ACT




             (10)

Substituting the values of l and Ec into Eq. (10), we have: 

3550
( ) 348 1 5.7 10

w
Ie EXP x x x ACT




81.664 10
220.69( ) 57.54 10

w x w
Ie EXP x x ACTACT

 


             (11)

Using Eq. 11, Ie(exp) is determined and presented in Column 4 
of Table 4.

At a service load of 55.33 kN and actual defl ection of 5.90 
mm, the experimental effective moment of inertia, Ie(exp) = 
206.96 x104mm4 

Discussion

The main aim of this work is to develop a model that will 
be able to predict the defl ection of beams produced from locally 
available materials more accurately than the ones from the 
literature.

Proposed model

The proposed model is based on Olanitori’s model [3], 
which is presented here as Equation (12).

3 3

1
M Mcr crI I Ie g cr
M Ma a

  
        
     

             (12)

Where α the experimentally determined reduction is a 
factor, and equals 0.24.

In the proposed model α is replaced with β. Thus the model 
is in the form of Equation (13).

3 3

1
M Mcr crI I Ie g cr
M Ma a

  
        
     

              (13)

Where:

β: Experimentally determined reduction factor

3 3
4206.96 10  1

M Mcr crx I Ig cr
M Ma a

  
        
     

Where β is the reduction factor for the effective moment of 
inertia Ie. 

Therefore: 

33 30.78 1 0 3 2.43 1 0 035.8 1 0

M xcr x
M xa

  
  
  

   

Since we are interested in the defl ection at the service load, 
then, Ie(EXP) = 206.96 x104mm4 at service load 55.33kN.

We have a crack moment of inertia Icr to be:

4 41591 10 mmcr  I  

 4 4 4206.96 10 0  2812.5 1 0 1 0 1591 10   x x x x x   

4 4206.96 10 0 1591 10  x x  

Therefore 

4 206.96 10
0.13041591*10

x
  

Table 4: Determination of Ie(exp)

S/N
Load on 

Beam 
(kN)

Actual 
defl ection 
(mm) ∆ACT

Ie(EXP) (mm4) Ig (mm4) Ig (mm4)
( )

100
( )

I Ie e EXP
x %

Ie EXP

1 0.0 0 0 2812.5 x104 1591 x104 -

2 3.17 0.05 1399.17x104 2812.5 x104 1591 x104 13.71

3 5.19 0.09 1272.65x104 2812.5 x104 1591 x104 25.01

4 8.08 0.12 1485.98x104 2812.5 x104 1591 x104 7.07

5 11.25 0.17 1460.45x104 2812.5 x104 1591 x104 8.94

6 15.29 0.41 823.01x104 2812.5 x104 1591 x104 93.32

7 19.90 0.83 529.12x104 2812.5 x104 1591 x104 200.68

8 23.94 1.48 356.98x104 2812.5 x104 1591 x104 345.68

9 27.69 1.99 307.08x104 2812.5 x104 1591 x104 418.11

10 32.59 2.79 257.79x104 2812.5 x104 1591 x104 517.17

11 38.08 3.28 256.22x104 2812.5 x104 1591 x104 520.95

12 41.82 3.71 248.77x104 2812.5 x104 1591 x104 539.55

13 46.73 4.49 229.68x104 2812.5 x104 1591 x104 592.70

14 53.08 5.53 211.83x104 2812.5 x104 1591 x104 651.07

15 57.12 6.19 203.65x104 2812.5 x104 1591 x104 681.24

16 63.75 6.86 205.09x104 2812.5 x104 1591 x104 675.76

17 67.79 7.31 204.66x104 2812.5 x104 1591 x104 677.39

18 72.40 7.94 201.23x104 2812.5 x104 1591 x104 690.64

19 76.73 8.67 195.31x104 2812.5 x104 1591 x104 714.60

20 81.64 9.83 183.29x104 2812.5 x104 1591 x104 768.02

21 82.5 10.53 172.91x104 2812.5 x104 1591 x104 820.13

22 81.92 11.19 161.56x104 2812.5 x104 1591 x104 884.77

23 82.79 11.94 153.02x104 2812.5 x104 1591 x104 939.73

24 82.79 13.03 140.22x104 2812.5 x104 1591 x104 1034.65

25 83.0 14.95 122.52x104 2812.5 x104 1591 x104 1198.56



039

https://www.peertechzpublications.com/journals/journal-of-civil-engineering-and-environmental-sciences

Citation: Olanitori LM, Oniyide MM, Oni ST, Otuaga MP (2023) Effective moment of inertia of reinforced concrete slender beams with only tension reinforcement. J 
Civil Eng Environ Sci 9(2): 033-041. DOI: https://dx.doi.org/10.17352/2455-488X.000065

3 3  550
3 448  48 1 5.7 10 0.130  2812 10

wl w x
pmax

E I x x x x xc e
  

3  550
0.00006  3 448 1 5.7 10 0.130  2812 10

w x
wmmpmax

x x x x x
     

              (14)

Other existing models

Model 1: Akmaluddin and Thomas Model [16]

  I I I I ee cre g cre
                (15)

Where:

 

 

3
0.1618 0.0418

12
3100 150

0.1618 0.0418 12.74 0.0124
12

bh
I ncre

x
x x

  



  4 4 0.1618 0.0066 2812.5 10 473.62 10I x x xcre   

 28.474 9.0607 2.842
M La cr
M Lcr

     
  

  
  

1
McrL Lcr
Ma

 
 
 
 

30.78 1 0
 550 1 476.04 35.8 1 0

x
L mmcr

x
  

 
 
 

 

35.8 1 0 476.04
3 5500.78 1 0

28.474 9.0607 0.0124 2.842 0.0124

x

x

x x

  

 

  
  

  

 6.440 8.474 0.1124 0.00044 53.85      

 
 

          

4 4 4 53.85473.62 10 2812.5 10 473.62 10

I I I I ee cre g cre

x x x e

   

 

 4 4 53.8473.62 10 2338.9 10

4 17473.62 10 9.60 10

I x x ee

x x

 

 

4 4473.62 10  I x mme 

3 3  550
1 3 4 48 48 1 5.7 10   473.62 10

0.000047  

wl w x
max E I x x x xc e

wmm

  


            (16)

Model 2: Ammash and Muhaisin Model [7]

 

 
 

 * *  
M Mcr crI I Ie g cr
M Ma a

   

   

 

    
                 

  

                 (17)

Where:

 11
; ; 

 5.26 0.525 ;  ; 

n
fl

Id Hg

b I Lw cr

 
 

 

  


  

   
 
 
 

fl – factor depending on loading type such as:

Distributed load =1.25; 2. Two-point load =1.0 and 3. 
Concentrated load =0.75

127
5.26 0.525 6.01;  

100
42812.5 10

1.7741591 10

I xg

I xcr





  

  

 
 
 

157.1
0.0124

100 1 27

As
bd x

   

ρ1 is the reinforcement ration at the compression area

ρ is the reinforcement ration at the tension area

ρ^1/ρ=0.0124/0.0124=1; ε=H/L=150/550=0.27

 

 

1

0.75

0.0124 6.01 0.0124 12.74
0.12

1.77

n
fl

x

 





   




 

 
 

0.27 0.1230.78 1 0 42812.5 1035.8 1 0

0.27 0.1230.78 1 0 4(0.27 0.12) 1591 10 0.27 135.8 1 0

x
I x xe

x

x
x x

x



 



  

 
 
 

           

 

0.39 4       0.0135 2812.5 10

0.39 40.39 0.0135 1591 10 1.27

I x xe

x x

 

  

 

1 41.87 10 2812.5 10

40.39 0.187 1591 10 1.27

I x x xe

x x



   
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 4 4 4525.94 10 0.203 1591 10 1.27 936.12 10I x x x xe   

3 3  550
2 3 4 48 48 1 5.7 10   936.12 10

0.000024  

wl w x
max E I x x x xc e

wmm

  

             (18)

Model 3: Bischoff’s Model [12]

1 1 1
  1   

m m
M Mcr cr

l M I M Ie a g a cr
  

    
    
                    (19)

 Substituting for the values of Ig = 2812×104 mm4, Icr = 
1591×104 mm4, Mcr = 0.78×103

NM, Ma = 5.8×103 NM and m = 2, we 
have:

2 23 31 0.78 1 0 1 0.78 1 0 1
 13 4 3 45.8 1 0 2812.5 10 5.8 1 0 1591 10

x x
x x

l x x x xe
  

        
     

 1 1 1
0 1 0 4 41591 10 1591 10

x
I x xe

   

41591 10 mI xe m

3 3  550
3 3 4 48 48 1 5.7 10  1 591 10

0.000014  

wl w x
max E I x x x xc e

wmm

  

             (20)

Comparative analysis of the models

The proposed model (model P), model 1, model 2, and 
model 3 were used to estimate the defl ection of the beam. The 
results of the estimation were presented in Table 5. For the 
beam at a service load of 55.33 kN, the estimated defl ections 
using model P, model 1, model 2, and Model 3 are 3.32 mm, 
2.60 mm, 1.33 mm, and 0.78 mm respectively. The percentage 
differences between these defl ections to the actual defl ection 
of 5.09 mm at the service load are 53.31%, 95.77%, 282.71%, 
and 552.56% respectively.

Conclusions and recommendations

Based on the analysis and comparison of the different 
models of estimating defl ection, the following conclusions and 
recommendations were made: 

Conclusion

The actual defl ection of the experimental beam at service 
load was 5.90 mm which exceeded the maximum permissible 
computed defl ections (ACI 318, 2005) of L/480, which equals 
1.15 mm. Therefore, non-structural elements, such as partition 
walls, supported by such beams are likely to be damaged by 
large defl ections, and therefore the beam is not satisfactory 
in defl ection. Models P, 1, 2, and 3 grossly underestimated 
the defl ection by 53.31%, 95.77%.282.71%, and 552.56% 
respectively.

Recommendation

The recommendations made are as follows:

1. Research should be done on the effect of tension 
reinforcement sizes on the effective moment of inertia 
and defl ection of reinforced concrete slender beams.

2. More research should be conducted on the effect of 
compression reinforcement on the effective moment 
of inertia and defl ection of reinforced concrete slender 
beams so that more accurate estimated defl ection can 
be achieved.

3. The span/effective depth ratio alone should not be 
used in checking for defl ection, rather this should be 
complemented by actual defl ection calculation.
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