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Abstract

Structural characteristics of dietary fi bers are closely related to its biological functions in the 
human body. Previously, soluble dietary fi bers from prunes were extracted and characterized. In this 
work, structural analysis of insoluble dietary fi bers was conducted using monosaccharide composition, 
methylation, molecular weight determination and 13C-NMR data. Prunes’ non-cellulosic insoluble fi bers 
were found to contain, a pectic type I arabinogalactan, a fucogalactoxyloglucan and a heteroxylan. These 
fi ndings suggest that insoluble dietary fi bers can be composed by some pectic polysaccharides besides 
cellulose and hemicellulosic polymers. This paper brings important structural features of insoluble dietary 
fi bers from prunes that may be of biological signifi cance.
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Introduction 

Dietary fi bers are carbohydrate polymers composed by 
ten or more monomeric units, which are not hydrolyzed by 
endogenous enzymes in the small intestine and can be partially 
or totally fermented in the large intestine of humans[1,2] . 
Health benefi ts associated with dietary fi ber consumption result 
from its low caloric content, physical effects in the stomach and 
small intestine and fermentation in the colon. Dietary fi bers 
can be classifi ed as either water soluble and mostly fermentable 
(such as pectin) or insoluble, less fermentable, and nonviscous 
(such as cellulose, lignin, and some of the hemicelluloses) [3]. 

Soluble fi bers are generally known to increase viscosity of 
the stomach and small intestine content, improving satiety, 
reducing post-prandial glycaemia and preventing reabsorption 
of bile acids, thus reducing circulating blood cholesterol 
levels. Moreover, due to its high fermentability, soluble fi bers 
can positively modulate the colonic microfl ora preventing 
pathologies such as infectious diseases, allergy or asthma, 
colon cancer, obesity, liver disease, diabetes and infl ammatory 
bowel disease. On the other hand, insoluble fi bers are known 
to be poorly fermentable, but are able to increase fecal bulk 
and decrease transit time, increasing stool frequency [4]. 
However, not all soluble/insoluble fi bers behave in the same 
way. For example, the soluble dietary fi ber inulin was shown 
to increase stool frequency [5]. Likewise, insoluble fi bers, such 
as resistant starch, are highly fermented by the human gut 
microbiota [6]. This may be because carbohydrate polymers, as 

dietary fi bers, represent the most heterogeneous and diverse 
group of associated molecules found in nature. Therefore, 
not only water solubility, but other structural features such 
as monosaccharide composition, linkage types between 
monosaccharides, size of the polymers, branching patterns, 
etc., also dictates their biological activities [6,7]. Thus, the 
knowledge about chemical structure of food dietary fi bers is 
important to explore how it interacts with the human body and 
possibly produce health benefi ts.

Prunes, the dried fruits of plums (Prunus domestica), possess 
as high as 62.7% of carbohydrates and its consumption is 
related to laxative effects, reductions in cardiovascular risk and 
sugar metabolism control that may be associated with dietary 
fi ber constituents [8]. We have previously carried out the 
isolation and characterization of soluble dietary fi bers found in 
prunes [9] and the pectic polysaccharides homogalacturonan 
and rhamnogalacturonans with type I arabinogalactans side 
chains have been described. In this work, our objective was 
to further analyze the chemical structure of insoluble dietary 
fi bers through monosaccharide composition, linkage analysis, 
molecular weight determination and 13C-NMR data and thus 
expand our knowledge about their structural characteristics.

Materials and Methods

Plant material

Pitted prunes (Prunus domestica) from cultivar d’Agen were 
purchased at local market in Curitiba (Brazil) (LA VIOLETERA®).
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Extraction and purifi cation of polysaccharides

Prunes (2 kg) were blended and exhaustively extracted with 
water (6 L) at 100 ºC under refl ux for 2 h as previously described 
[9] to remove soluble dietary fi bers (SDF). The residue of hot 
water extraction, containing the insoluble dietary fi bers (IDF), 
was separated after centrifugation (8000 rpm, 15 min at 15 °C). 
To solubilize some of the polysaccharides present in the IDF, 
mainly hemicelluloses, the residue was submitted to alkaline 
extraction with KOH 10% (2 L each, 3x) at 100 ºC under refl ux 
for 2 h. Alkaline extract was then obtained by centrifugation 
(8000 rpm, 15 min at 15 °C), followed by neutralization with 
HOAc, dialysis and lyophilization, resulting in a polysaccharide 
fraction named herein as PK (prunes’s alkaline extract) (Figure 
1). The residue remaining of this extraction contained cellulose 
that has not been solubilized with this treatment.

As a fi rst step of fractionation, a freeze-thaw treatment 
was applied in fraction PK, to give cold-water soluble (SPK) 
and insoluble (PPK) fractions. In this procedure, the sample 
was frozen and then thaw at room temperature followed by 
centrifugation (8000 rpm, 15 min at 15 °C).

Fraction SPK was further fractionated by Fehling’s 
treatment. Briefl y, it was dissolved in distilled water and treated 
with Fehling’s solutions [10] resulting, after centrifugation 
(8000 rpm, 15 min at 15 °C), in a xyloglucan-copper complex 
as the pellet (fraction PF-SPK) and a soluble fraction (SF-SPK). 
After neutralization with HOAc, both fractions were dialyzed 
against tap water and deionized with cation exchange resin. The 
fraction PF-SPK was later purifi ed by ultrafi ltration through 
a membrane with cut-off of 100 kDa (PLHK04710-Ultracel, 
Millipore), yielding the fractions PF-SPK-100E (eluted in 100 
kDa) and PF-SPK-100R (retained in 100 kDa) (Figure 1).

Fraction PF-SPK-100R was further purifi ed by anion 
exchange chromatography. It was dissolved in distilled water 
(50 mg/mL), centrifuged (12000 x g, 10 min at 10 ºC) and the 
supernatant applied to a DEAE-Sepharose Fast Flow column 
(3.0 cm×25 cm). The column was eluted with distilled water 
(F1) followed by 4.0 M NaCl solution (F2) at a fl ow rate of 1.5 
mL/min. Polysaccharides in the eluted fractions were detected 
using phenol–sulfuric acid method [11] . The obtained fractions 
were concentrated and freeze-dried.

The yields were expressed as % based on the weight of 
dried prunes pulp that was submitted to extraction (1400 g) 
(Figure 1).

Sugar composition

Polysaccharides’ neutral monosaccharides composition 
was determined by hydrolysis with 2 M TFA (8 h/100 °C), 
conversion into alditol acetates using successive NaBH4 
reductions, and acetylation with Ac2O-pyridine (1:1, v/v, 2 
mL - 100 °C, 30min). A Varian gas chromatograph and mass 
spectrometer (Saturn 2000R), with He as carrier gas were used 
for analysis. For quantitative analysis, a capillary column (30 
m x 0.25 mm i.d.) of DB-225 was held at 50 ºC during injection 
for 1 min, then programmed at 40 ºC/min to 220 ºC and held at 
this for 19.75 min.

The determination of uronic acid contents was conducted 
according to the m-hydroxybiphenyl method [12].

Determination of homogeneity and molecular weight of 
polysaccharides

The homogeneity of polysaccharides was evaluated by high 
performance steric exclusion chromatography (HPSEC), with 
a Waters 2410 differential refractometer as equipment for 
detection. A series of four columns, with exclusion sizes of 7 x 
106 Da (Ultrahydrogel 2000, Waters), 4 x 105 Da (Ultrahydrogel 
500, Waters), 8 x 104 Da (Ultrahydrogel 250, Waters) and 5 x 
103 Da (Ultrahydrogel 120, Waters) was used. The eluent was 
0.1 M aq. NaNO2 containing 200 ppm aq. NaN3 at 0.6 mL/min. 
The sample, previously fi ltered through a membrane (0.22 μm, 
Millipore), was injected (250 μl loop) at a concentration of 1 
mg/mL. To obtain the molecular weight, standard dextrans 
(487kDa, 266kDa, 124kDa, 72.2kDa, 40.2kDa, 17.2kDa and 
9.4kDa, from Sigma) were employed to obtain the calibration 
curve. The molecular weight of the sample was calculated 
according to the calibration curve.

Methylation analysis of polysaccharide

Fraction PF-SPK-100R was O-methylated as described by 
Ciucanu and Kerek [13]. The per-O-methylated polysaccharide 
was further submitted to methanolysis in 3% HCl–MeOH (80 
°C, 2 h) followed by hydrolysis with H2SO4 (0.5M, 12 h) and 
neutralization with BaCO3. The material was then reduced 
an acetylated as described above for monosaccharides 
composition, except that NaBD4 was used for reduction. The 
resultant partially O-methylated alditol acetates were analyzed 
with a GC-MS. For separation, a 30 m x 0.25 mm i.d. capillary 
column of DB-225 was held at 50 ºC during injection for 1 
min, then programmed at 40 ºC/min to 210 ºC and held at this 
temperature for 31 min. Typical electron impact breakdown 
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Figure 1: Scheme of extraction and fractionation of alkali soluble polysaccharides 
from prunes (Prunus domestica).
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profi les and retention times of partially O-methylated alditol 
acetates were used for identifi cation [14].

Nuclear magnetic resonance (NMR) spectroscopy

Spectra of 13C NMR were acquired using a Bruker spectrometer 
(DRX 400 MHz AVANCE III NMR - Bruker Daltonics, Germany). 
Samples were dissolved in D2O and placed in a 5 mm inverse 
gradient probe, at 70 °C for analysis. Chemical shifts were 
expressed as  ppm and acetone CH3 group’s resonance was 
used as internal standard ( 30.2). The spectra were handled 
using the Topspin® (Bruker) computer program.

Results and Discussion

In order to extract water insoluble polysaccharides from 
prunes, the residue of prunes’ water extraction was submitted 
to alkaline extraction, which resulted, after dialysis, in 
fraction PK. This was further fractionated through freeze-
thaw treatment followed by centrifugation to give rise to a 
supernatant fraction (SPK) and a precipitated fraction (PPK) 
(Figure 1). The latter presented arabinose and glucose as main 
monosaccharides (Table 1), but NMR analysis was not possible 
due to its high insolubility in different solvents.

On the other hand, SPK presented arabinose and galactose 
as main monosaccharides (Table 1). The 13C-NMR spectrum 
(Figure 2A) had signals of -D-Galp at  104.3 (C-1),  74.5 
(C-5),  73.5 (C-3),  72.1 (C-2) and  77.6 (substituted C-4) 
[15-17]. The anomeric signal at  107.6 was assigned to units 
of -L-Araf [17]. These data could indicate the presence of a 
type I arabinogalactan (AG-I) in fraction SPK, already reported 
for prunes’ water extract [18]. However, besides the signals of 
an AG-I, SPK presented a diversity of other anomeric signals 
in the region between  98.0 and  104.0 (Figure 2A), as well 
as signifi cant content of glucose and xylose according to the 
monosaccharide analysis (Table 1), indicating the presence of 
another polysaccharide. 

In order to separate the different polymers present in SPK, it 
was treated with Fehling’s solution, resulting in a precipitated 
fraction (PF-SPK) and a supernatant fraction (SF-SPK) (Figure 
1). As previously observed for water extracts [18], the AG-I 
remained in the Fehling supernatant as could be seen in the 
13C-NMR (Figure 2B) and monosaccharide analysis (Table 1), of 
fraction SF-SPK. The fraction precipitated with Fehling solution 
PF-SPK, had glucose and xylose as main monosaccharides 
(Table 1). Besides, anomeric signals of -Glcp and -Xylp could 
be seen at  102.3 and  99.4/98.9, respectively, in the 13C-NMR 
spectrum of PF-SPK [19] (Figure 2C). These data indicate that 
while the AG-I present in SPK remained soluble after Fehling 
treatment, the fraction containing xylose and glucose was 
precipitated.

Once PF-SPK had a heterogeneous profi le in HPSEC (data 
not shown), it was further fi ltrated with 100 kDa cutoff 
Milipore membrane, yelding an eluted fraction PF-SPK-100E 
and a retained fraction PF-SPK-100R (Figure 1). Only fraction 
PF-SPK-100R presented a homogeneous elution profi le when 
analysed by HPSEC (Figure 3). The calculated molecular weight 
was 66 kDa.

The monosaccharide composition of PF-SPK-100R showed 
glucose and xylose as main sugars, and minor amounts 
of arabinose, galactose and fucose (Table 1). Methylation 
data of PF-SPK-100R is presented on Table 2. The major 
methylated derivatives were 2,3,6-Me3-Glc-ol acetate (15%) 
and 2,3- Me2-Glc-ol acetate (21.6%), indicating the presence 
of 4-O- and 4,6-O-substituted glucose units. Terminal and 
2-O-substituted xylose units were also found, according to 
the derivatives 2,3,4-Me3- and 3,4-Me2-Xyl-ol acetates, 
respectively. These data suggest the presence of a xyloglucan 
in fraction PF-SPK-100R. However, the presence of 2,3-Me2- 

and 3-Me-Xyl-ol derivatives, relative to 4-O- and 2,4-di-O-
substituted xylose units were also present. This type of linkage 
is uncommon in xyloglucans since typically xylose units are 
exclusively O-2-linked. Although few exceptions could be 
found in the literature [20,21], it’s most likely that these 4-O 
and 2,4-di-O- substituted xylose arose from the concomitant 
presence of a heteroxylan in fraction PF-SPK-100R. 

Table 1: Monosaccharide composition of fractions obtained from alkali extraction 
of prunes (Prunus domestica).

Fraction
Neutral sugars (%)a

Uronic acidb

Rha Fuc Ara Xyl Gal Glc

PPK - - 66.9 6.9 5.8 18.5 1.9

SPK 2.5 2.7 34.7 10.0 25.8 17.3 6.8

SF-SPK 1.5 - 45.7 4.8 37.1 4.5 6.8

PF-SPK - 2.3 17.3 33.1 16.3 24.9 5.9

PF-SPK-100R - 3.5 12.7 34.0 11.2 38.6 -
a % of peak area relative to total peak areas, determined by GC-MS.
b Determined using the m-hydroxybiphenyl method [12].

 

 

A 

B 

C 

Figure 2: 13C-NMR spectra of fractions SPK (A), SF-SPK (B) and PF-SPK (C) in D2O 
at 70 ºC.
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As the derivatives 3,4-Me2-xylitol acetate and 2,3-Me2-
xylitol acetate have the same retention time in the conditions 
employed in the GC-MS, they were deuterated at C-1, so each 
component of the peak was detected by their fragmentation 
patterns. The 3,4-Me2-derived xylitol acetate gives ions of m/z 
190, 130, 117 and 88, while the 2,3-Me2-derived xylitol acetate 
gives ions of m/z 189, 129, 118 and 87 [20]. From the intensity 
of each ion, it was observed a 1.0:1.4 ratio of 3,4-Me2-Xylp and 
2,3-Me2-Xylp (Figure 4). 

In addition to the methylated derivatives of glucose 
and xylose, 2,3,4,6-Me4-Gal-ol acetate relative to terminal 
galactose from xyloglucan branches was also present. 
Derivatives 2,3,4-Me3-Fuc-ol acetate, 2,3,4-Me3-Ara-ol-
acetate and 2,3,5-Me3-Ara-ol-acetate, indicate the presence of 
terminal units of Fucp, Arap and Araf, respectively. Terminal 
fucose units are commonly found in xyloglucans from 
dicotyledonous [22]. Moreover, instead of fucose, Araf units 
were identifi ed on side chains of xyloglucans from solanaceous 
plants [23]. Despite this, the concomitant presence of Fucp, 
Arap and Araf units is an unusual feature in xyloglucans. Thus, 

these Araf are likely to be side chains in the xylan, corroborating 
for the assumption that fraction PF-SPK-100R is composed by 
a mixture of a fucogalactoxyloglucan and a heteroxylan. The 
xyloglucan content in fraction PF-SPK-100R was estimated to 
be 68% based on the sum of 4-O and 4,6-O-linked glucose, 
terminal and 2-O-substituted xylose and terminal galactose 
and fucose. 

The presence of xylan–xyloglucan complexes has been 
previously identifi ed in the cell walls of olive pulp [24]. In 
our research group, a xyloglucan and an acid heteroxylan 
were also found together in alkaline extracts from starfruit 
(Averrhoa carambola L.) and separated through anion exchange 
chromatography (unpublished data). In fraction PF-SPK-100R 
however, due to the absence of uronic acid linked to the xylan 
backbone, no polymers were retained after anion exchange 
chromatography (Fraction F1) making its separation from 
the xyloglucan not possible (data not shown). Moreover, the 
presence of the xylan and xyloglucan was also observed in 
the fraction PF-SPK-100E (Figure 5A), which demonstrated 
a similar 13C-NMR spectrum as that of fraction PF-SPK-
100R (Figure 5B). Attempts were also made to separate these 
polymers through ultrafi ltration with 50, 30 and 10kDa 
membranes. However, all the retained and eluted fractions 
showed the presence of both polymers.

The 13C-NMR spectrum of PF-SPK-100R (Figure 5B) is in 
accordance with methylation data and presented the main 
signals related to the xylan and xyloglucan mixture. Anomeric 
signals related to (1→4) and (1,4→6)-linked -Glcp units that 
form the main chain of the xyloglucan are found at  102.3 and 
 103.2, respectively [25,26]. The signal at  98.9 was assigned 
to anomeric carbons of terminal and 2-O-substituted -Xylp 
units, while that at  99.4 and  15.8 can be assigned to C-1 
and C-6 of terminal Fucp units, respectively. In addition, the 
signal at  104.4 can be assigned to C-1 of terminal -Galp units 
[25]. Signals from the heteroxylan could be seen at  101.6 and 
 107.7 from anomeric carbons of -Xylp and -L-Araf units, 
respectively.

Overall, fraction SPK, which contains the insoluble dietary 
fi bers of prunes was composed of a type I arabinogalactan, 
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Figure 3: HPSEC elution profi le of fractions PF-SPK-100E and PF-SPK-100R 
obtained from prunes (refractive index detector).

Table 2: Linkage types based on analysis of partially O-methyl alditol acetates 
obtained from methylated fraction PF-SPK-100R from prunes (Prunus domestica).

Partially O-methylalditol acetate PF-SPK-100Rb Linkage typec

2,3,5-Me3-Araa 6.7 Araf-(1 

2,3,4-Me3-Ara 5.3 Arap-(1

2,3,4 –Me3-Xyl
2,3,4 –Me3-Fuc 

10.8 Xylp-(1

3.6 Fucp-(1

2,3,4,6-Me4-Gal 9.8 Galp-(1

3,4-Me2-Xyl/2,3-Me2-Xyld 15.9 2)-Xylp-(1/4)-Xylp-(1

3-Me-Xyl 10.3 2,4)-Xylp-(1

2,3,6-Me3-Glc 15.4 4)-Glcp-(1

2,3- Me2-Glc 22.2 4,6)-Glcp-(1
a 2,3,5-Me3-Ara = 2,3,5-tri-O-Methylarabinitolacetate, etc.
b % of peak area of O-methylalditol acetates relative to total area, determined by 
GC-MS. 
c Based on derived O-methylalditol acetates.
d The ratio of 3,4-Me2-xylitol acetate and 2,3-Me2-xylitol estimated by their 
fragmentation patterns in GC-MS was 1.0:1.4.

 

Figure 4 

 

 

 

 

 

 

 

 

Figuuuuuuuuuuuurrrrrrrrrrrrrrrrrrrreeeee 4

Figure 4: Fragmentation of 2,3- and 3,4-Me2-xylitol acetates mixture with deuterium 
at C-1 in GC-MS analysis obtained from fraction PF-SPK-100R.



005

Citation: Cantu-Jungles TM, Iacomini M, Cordeiro LMC (2017) Investigation of Structural Features of Prunes (Prunus domestica) Insoluble Dietary Fibers. J Food 
Sci Nutr The 3(1): 001-006. 

a fucogalactoxyloglucan and a heteroxylan. Despite being a 
soluble dietary fi ber and solubilized with water [9], the type I 
arabinogalactan was also found herein in the fraction extracted 
with alkali. The presence of pectic polysaccharides associated 
with hemicelluloses and cellulose within the cell wall and 
that required harsher extraction conditions was also reported 
by Oechslin and others [27] in apple cellulosic residue. Thus, 
these fi ndings suggest that prunes’ insoluble dietary fi bers are 
composed by some pectic polysaccharides besides cellulose and 
hemicellulosic polymers.

Some biological activities have already been attributed 
to type I arabinogalactans, such as immunological [28-30] 
and anti-ulcer activities [9,31]. Xyloglucan from different 
sources were also previously shown to display biological 
activities such as hypolipidemic [32], anti-tumoral [33,34], 
immunomodulatory [35-38] and hypoglycemic [39-41]. It’s 
noteworthy, that some of these effects, such as hypolipidemic 
and hypoglycemic, were previously found in prunes, however, 
the responsible components were not fully resolved [8]. 

Conclusion

Prunes’ non-cellulosic insoluble fi bers were found to 
contain, a pectic type I arabinogalactan, a fucogalactoxyloglucan 
and a heteroxylan, suggesting that IDF can be composed by some 
pectic polysaccharides besides cellulose and hemicellulosic 
polymers. Moreover, this paper brings important structural 
features of insoluble dietary fi bers from prunes that may be 
associated to biological functions, and provides new insights 
into the diversity of fruit hemicellulosic polymers.
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