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Introduction

Biological sciences have been for so long dominated by 
observational approaches as shown by the scarcity of studies 
trying to infer causality from association, starting from the 
historical and very instructive studies of Pierre Louis (1835) 
on the effi cacy of the standard treatments for pneumonia and 
John Snow (1855) on the causal relationship between cholera 
and water contamination [1]. 

Several paradigms have occurred in successive waves 
during the last two centuries and they have moved life 
sciences from empiric to experimental (typically hypothesis-
driven) and then to data-driven, concretized by the recent 
entry in the “big data” era. The value of large, complex and 
linkable information generated by genomics and other -omics 
fi elds and large scale epidemiologic studies has resulted in 
the domination of associational reasoning, where scientists 
look for association/correlation between a large number 
of diverse and heterogeneous attributes (genes, proteins, 
polymorphisms, phenotypes). This associational approach 
based on observational data has dominated genomics studies 
because of the scarcity of experimental data, where some 
variables are controlled (fi xed to some values) or manipulated 
and their effects on other variables are measured. The lack of 
‘experimental’ interventional data in genomics is mainly due 
to the logistical feasibility and high cost of their production, 
which requires genes and proteins experimental perturbations 
(gene knockout for example). 

The analyses of data from observational genomics studies 
are associational by nature, when one looks to make some 
kind of inference and knowledge discovery from patterns of 
association using statistical and data mining techniques. 
Most of these techniques, even those that model relationships 
between dependent and independent variables (such linear/
logistic regression), have limited interest in inferring causality 
which means establishing a cause-effect relationship among 
variables [2], for a general and wide review on the subject). In 

fact, to make causal inference, we must assume that equations 
of correlations linking variables are invariant under proposed 
interventions and it is problematic to verify such assumptions 
without making interventions. Moreover, if the model changes 
when variables are subject to intervention (rather than 
being simply measured) then this model is of poor utility for 
predicting results of interventions. Although this conceptual 
hurdle is well understood by most investigators in life sciences, 
the use of such models is still widespread despite the high risks 
of misinterpretation [1]. 

Although huge efforts have been made to separate ‘signal’ 
from ‘noise’ in associational analyses of genomics data by 
requiring replication and imposing more stringent criteria 
for statistical signifi cance, the major weakness of this 
approach is that it has not allowed yet to show which of these 
associations have meaning, and particularly a causal meaning. 
Observational data are sensitive to many biases, such as 
selection, confounding, latent unobserved variables and lack of 
generalizability. To overcome these problems a new reasoning 
framework was needed, providing an iterative process of 
interpreting what we know and what we need to know. This 
management, synthesis and translation of data to knowledge 
need methods and algorithms that can use observational data 
to extract some information on causal relationships that can be 
thereafter confi rmed by experimental approaches [3,4].

A outlined by Pearl [2], there are two mental barriers in 
causal inference that have slowed the development of an 
appropriate reasoning framework for this purpose; the fi rst is 
that causality cannot be tested from observational data alone 
and the second is that it cannot be inferred based on classical 
probability calculus (and the statistical approaches based on 
it). To overcome these barriers, he developed the do-calculus 
framework for the identifi cation of causal effects in non-
parametric models. 

Using this framework, Maathuis et al. [3], in a seminal 
paper showed that when making some assumptions on the 
distribution of the data, one can estimate bounds on causal 
effects of variables on a target variable using graphical models. 

In this short review paper I present the rationale behind 
this method and give examples of its application for inferring 
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causality in gene expression data. I then discuss its possible 
application to microbiome data. 

Theoretical Issues

What is meant by causality in biology?

Mayr [5], gave the following pragmatic defi nition of cause 
in functional biology: “a member of a set of jointly suffi cient 
reasons without which the event would not happen”. A typical 
causal question in genomics is whether a given gene acts 
causally on the expression of another gene or whether a given 
gene mutation or a genotype is a cause of a phenotype. One way 
to check this causal relationship is to make the gene ‘disappear’ 
(this can be done by what is called knock-out experiments) 
or fi x it to some genotype and see how the phenotype 
changes. However, since most of these experiments cannot 
be done on humans and are very heavy in models organisms, 
establishment of causality in biology is a big challenge. Even if 
these experiments could be done, causality is always diffi cult 
to demonstrate due to the high complexity of living systems 
and as Mayr [5] noted “in view of the high number of multiple 
pathways possible for most biological processes and in view of 
randomness of many of the biological processes particularly 
on the molecular level, causality in biological systems is not 
predictive or at best is only statistically predictive”. 

What is the difference between observational and expe-
rimental data?

We call observational data , data that are gathered by 
observing/measuring variables of a biological system (tissues, 
cells, bacteria..) under some conditions, for example expression 
or methylation levels of genes, genotypes for a set of markers 
in diseased and control individuals. 

Experimental data, also called interventional data, arise 
when the researchers apply some treatments to a biological 
system in a randomized controlled experiment and look to the 
effect of such treatments on a response variable. 

Why estimating causal effect from observations is very 
useful?

In genomics studies, experimental data are sometimes 
infeasible, unethical and often time consuming and expensive 
while observational data are cheaper, more abundant and 
available. Thus developing methods that can answer causal 
questions, at least partially, about biological systems from 
observational data only is very useful. However, moving from 
the observational world to the experimental world, i.e. from 
pre-interventional to post-interventional distribution of data, 
is impossible without some assumptions.

One of these assumptions is to consider that data were 
generated from a causal structure that can be modeled by a 
directed acyclic graph (DAG) either it is known or to be learned 
from the data. In the following paragraphs, I gave brief 
presentation of the methods that can be used to achieve this 
task.

What is DAG? 

A graph is a set of nodes (variables) connected by a set 

of, directed or indirected, edges; in expression data nodes are 

genes whose levels of expression are measured while edges 

might mean regulation relationships (regulation means that a 

gene inhibits, stimulate or moderate the expression of another 

gene). A graph is called complete if every pair of nodes is 

connected by an edge and we call the parents of any node X 

(denoted Pa(X)) all those nodes that are connected to X with a 

directed edge pointing to X. A Directed Acyclic Graph (DAG) is 

a graph where there exist no path (a set of edges that go from 

one node to another) linking any node X to any node Y that can 

go from X to Y by a directed set of edges and then back from Y 

to X by another set of directed edges. 

What is a structural equation model (SEM) and what are 
its properties?

A SEM is a model that describes how any variable X 

(observed) is generated from the set of all or part of the other 

variables i.e. how changes in these variables lead to a change in 

X, added to some random noise. The SEM can be represented as 

a DAG, where the edges are drawn such that a set of variables 

other than X is the parent set of X. This graph is called the 

causal graph since an edge that goes from Y to X means that Y 

is a direct cause of X. Assuming that the causal structure is a 

DAG means that we do not allow feedback loops or unmeasured 

confounding variables. We also assume that the errors are 

jointly independent. 

Given these assumptions one can show[2] that the joint 

density function of all nodes f (x1,x2,.. xp) can be factorized as the 

product over all nodes of the conditional densities of each node 

Xi given its parents : fi(xi/Pa (xi)). 

How the SEM framework allows to move from observa-
tional to experimental worlds?

Given the previous, an intervention at some variable Xi 

is simply equivalent to changing the generating mechanism 

of Xi that is to change the corresponding structural equation 

relative to Xi without changing the others. More clearly, setting 

the variable Xi to some value x’i (expressed as do (Xi=x’i) in 

the language of the do-calculus is interpreted as an outside 

intervention [2]. For example if Xi and Xj denote the expression 

level of genes i and j then the expectation of Xj given that Xi is 

fi xed to some value x’i (E(Xj/do(Xi=x’i)) represents the average 

expression level of gene j after setting the expression level of 

gene i to the value x’i by an outside intervention. 

So a do-intervention on Xi means that Xi no longer depends 

on its former parents in the DAG, so that incoming edges into 

Xi can be removed and we get what is called a truncated DAG, 

leading to a truncated factorization of the post-intervention 

distribution:

F (x1,.. xp/do(Xi=x’i))=∏j≠i fj(xj/pa(xj)) if xi=x’i and 0 otherwise
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How can we defi ne a causal effect? 

If we have discrete variables, like an expression status of a 
gene (over expressed versus under expressed), we can defi ne 
the causal effect of gene i on gene j by P (Xj= 1/do (Xi=1)) – P 
(Xj= 1/do (Xi=0)). If the variables are measured on a quantitative 
scale then the total causal effect of Xi on Xj can be defi ned as:

'( / ( ) |
ij i x xE X do X x

x 





Based on the factorization formula and assuming that 

the joint distribution of all variables is Gaussian means that 
E (Xj/x’i,pa(Xi)) is linear in x’i and pa(Xi) and thus the causal 
effect of Xi on Xj is the regression coeffi cient of Xi in the linear 
regression of Xj on Xi and pa(Xi) when Xj is not a parent of Xi 
and 0 otherwise. Note that the causal effect computed by the 
formula above does not depend on x’i and can be interpreted (as 
any linear regression coeffi cient) as the average increase of the 
variable Xj when Xi increases by one unit: E (Xj/do (Xi= x’i+1)) - P 
(Xj/do (Xi= x’i)).

How can we compute practically the causal effect when 
the causal DAG is not known? 

In the previous developments we assumed that the DAG 
was known. However in most applications this is not the case, 
so that we need to learn the DAG from the observational data. 
This can be done by several structure learning methods [6, 7]. 
Since the causal DAG cannot be uniquely determined, what we 
can learn is in fact what is called a completed partially DAG or 
a CPDAG. A CPDAG is in fact a single representation of a family 
of many possible and equally likely (we call these Markov 
equivalent) DAGs; if an edge between two nodes is always 
directed in the same direction in all DAGs then it is directed 
in the CPDAG, and if not it is undirected in the CPDAG. One of 
the most used and fast algorithms to fi nd the CPDAG is the PC 
algorithm [8].

Given a CPDAG one can perform simple linear regression 
analysis of each response node of interest over any other node 
and its parents to estimate its causal effect on the response 
node for all DAGs contained in the CPDAG. This gives a set 
of causal effect estimates, so by taking the minimal absolute 
value of those estimates we obtain a consistent estimate of 
the lower bound of the causal effect. This approach, developed 
by Maathuis et al. [3], was named IDA (Intervention–calculus 
when de DAG is absent). 

Thus IDA proceeds in four step to estimate the causal effect 
of every node X on a response node of interest, Y:

(1) First estimate the CPDAG of the underlying causal DAG 
using the PC algorithm [8].

(2) List all the DAGs in the family depicted by the CPDAG

(3) Estimate the causal effect of X on Y for each DAG as 
previously explained

(4) Collect all the values of the causal effect and obtain a 
lower bound of the causal effect as the minimal absolute value 
of effects estimated over all possible DAGs.

Since step (2) is computationally intensive and that the 
estimation of the effect of X on Y only needs to know the 
parents of X in each DAG, we can only extract this information 
quite easily from the CPDAG. 

The IDA method assumes, besides the two previously stated 
assumptions (no feedback loops in the causal model and that 
the variables have a joint multivariate Gaussian distribution), 
that there is no hidden variables. 

Is there any computer program to use IDA?

IDA has been implemented in an R package named pcalg 
[9]. 

Can we use IDA to estimate joint causal effects of many 
variables at a time? 

A generalization of the IDA method to estimate the effect 
of multiple simultaneous interventions (such as knocking out 
many genes in expression analyses) has been developed and 
named JointIDA [10]. There are also some other methods based 
on Gaussian Bayesian networks that can jointly estimate causal 
effect from observational and interventional data [11]. 

Is there any extensions to IDA? 

Stekhoven et al. [12], presented an extension of IDA that 
they called Causal Stability Ranking (CStaR), where they 
estimate the stability of estimates of causal effects using 
resampling from the data and ranking of the variables 
according to their effects. They showed that their method 
improves the true positive rate as compared to IDA and 
largely outperforms classical high-dimensional regression 
methods. Teramoto et al. [13], proposed an extension of IDA 
to deal with non-Gaussian distribution of the data that they 
call the non-paranormal method (NPN-IDA). In this method 
a non-paranormal correlation coeffi cient is used within the 
PC algorithm (instead of the Pearson correlation coeffi cient) 
to learn the CPDAG. They showed, based on application to real 
data, that this improves learning of the DAG, thus leading to 
more accurate estimation of causal effects.

Several other extensions of the IDA method have been 
proposed to deal with the presence of hidden variables and 
feedback loops using appropriate algorithms for the learning 
of the causal graphical [14-16]. Some of these algorithms are 
available in the pcalg R package. There are also extensions of 
IDA to deal with time series data [17], heteregeous data, like 
when one is using a mix of observational and experimental data 
sets [18], different datasets with overlapping sets of variables 
[19] or a combination of both [20]. 

Selected Applications

Gene expression

In their seminal paper Maathuis et al. [3], gave an application 
of IDA on evaluating the causal effect of the expression level of 
4088 genes (continuous variables) on ribofl avin production by 
Bacillus subtilis. Since the number of observations (71 strains) 
is very small compared to the number of variables (what is 



013

Citation: Rebai A (2017) Causality in Genomics Studies: Time is ripe for a new Paradigm. Open J Bioinform Biostat 1(1): 010-014. 

called small n, big p problem), the basic IDA method for causal 
DAG learning cannot be applied so a local variant of IDA was 
proposed [3], based on many bootstrapping rounds from the 
original dataset. They showed that within the top ten most 
causal genes identifi ed by IDA only one was identifi ed by 
standard regression techniques in high-dimensional problems, 
like Lasso [21], which are not able to estimate causal effect but 
only statistical association effects. In their second paper [4] 
applied IDA to the classical dataset of Hughes et al. [22], on 
gene expression in yeast which contain both observational 
and interventional data (observational: 5361 genes for 63 
wild-type cultures; interventional: 5361 genes for 234 single 
gene deletion mutant strains). They showed that IDA largely 
outperformed high-dimensional regression techniques (like 
Lasso and Elastic-net [23], and identifi ed causal effects of 
knock-out genes that are consistent with the predictions of 
interventional experiments. Stekhoven et al. [12], described 
two applications of the modifi ed IDA method (CStaR); the fi rst 
is the yeast dataset of Hughes et al. [22], where they showed 
improvement of CStaR over standard IDA. The second dataset is 
to estimate the causal effect of the expression profi les of genes 
measured in 47 natural accessions from diverse geographic 
origins on time to fl owering in the model plant Arabidopsis 
thaliana [24]. They showed that the gene identifi ed as having 
the highest causal effect (SOC1) was one of the major genes 
that have been shown by interventional experiment to regulate 
fl owering time and two other major fl owering time regulator 
genes were in the top 20 causal genes (FRI and FLC). 

Le TD et al. [25], applied IDA to the epithelial-to-
mesenchymal transition (EMT) datasets in order to estimate 
causal effects of 43 microRNA on RNA expression of 1635 genes 
in 60 cancer cell lines [26]. The causal effects were calculated 
for each pair of miRNA and mRNA and genes regulated by 
each miRNA (with non-zero causal effect of this miRNA) 
were ranked based on their absolute value. The authors 
then validated, by further experiments, the genes that were 
predicted based on causal effects to be regulated by miR-200 
family (miR-200a and miR200-b). They found a signifi cant 
overlap of the top genes regulated by miR-200 and those 
predicted by IDA. The target genes predicted by causal analyses 
were found to be enriched in the fi ve functional classes known 
to be critical to EMT: cellular movement, cell-to-cell signaling 
and interaction, cellular assembly and organization, cellular 
growth and proliferation and cell morphology. 

Microbiome data

Recent studies have suggested the role of some bacterial 
species in the gut microbiota in colon cancer. Two recent 
studies have reported a highly signifi cant association between 
the rate of some bacterial species (evaluated by 16sRNA next 
generation sequencing) and colon cancer risk [27,28]. In a 
recent work (submitted), we used IDA to calculate causal 
effects of the bacterial species rate on cancer risk. Since, the 
response variable here is the patients status (cancer versus 
control), which is a binary variable, we used linear regression 
as an approximation considering the response as a dummy 
variable. Another solution (currently under consideration) is to 

use binary logistic regression (a generalized linear regression 
model) but we need to demonstrate that, in this case, the good 
properties of IDA estimate still hold. 

We found that Fusobacterium nucleatum species have the 
highest causal effect on cancer risk, which is in good agreement 
with several reports that described the possible mechanisms by 
which these species can enhance cancer. However, differently 
from gene expression studies where knockout experiments can 
allow to validate causal effects, experiments with microbiota, 
even in model organisms, are very diffi cult since the microbiota 
itself is an extremely complex and dynamic system and its 
enrichment with some specifi c species might not be possible to 
validate their effect on some response variable.

Conclusion

Estimating causal effects is a very important issue in 
modern genomics since it will allow us to move from the 
current paradigm of associational studies to a new paradigm, 
where we can predict with high accuracy and confi dence, 
without the need for interventional studies (which are not 
ethically possible in Humans and very expensive in models 
organism) the function of genes and proteins and their effect 
on phenotypes. 

The IDA method (or family of methods) , based on the do-
calculus and causal graphs, offer a fi rst step on this long road 
that will allow us to infer, with high precision and signifi cant, 
biological meaning, causal effects from observational 
data. Further efforts are needed to develop new conceptual 
frameworks and effi cient algorithms for causality inference 
from genomics data because without this the clinical translation 
of the fi ndings will still remain far from reach.
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