
vv

001

Citation: Smaltschinski T, Müller M. Timber Transport – Reduction of Empty Runs by Back Haulage and Triangle Routes. Open J Bioinform Biostat. 2024;8(1):001-
008. Available from: https://dx.doi.org/10.17352/ojbb.000014

https://dx.doi.org/10.17352/ojbbDOI: 

L
IF

E
 S

C
IE

N
C

E
S

 G
R

O
U

P

2994-4163ISSN: 

Introduction

The routes used to transport timber generally consist of 
around 50% of trips without cargo. The study aims to reduce 
empty runs in timber transport through back haulage or 
triangle routes. A reduction in empty runs at this amount, in 
any case, has the following advantages:

• Reduced empty kilometers 

• Lower costs and emissions

• Increased revenue 

• Boost asset utilization

• Increasing transport capacity

• Optimized fuel consumption

These advantages leverage the effi ciency of a company. 
In the forestry sector, the fi rst studies on modeling back-

hauling routes were carried out by Carlsson and Rönnqvist 
[1]. Palander, et al. [2,3] developed a back haulage model, to 
minimize the transport costs for direct transport (one-way) 
and back haulage routes (two-way) for k assortments. Back 
haulage routes were combinations of two one-way routes. A 
similar model minimizing empty runs through back haulage 
was developed by Carlson and Rönnqvist [4]. Determining 
optimal allocations of timber were combined with all possible 
back haulage routes and solved together. The models cited 
above lead to an enormous number of decision variables; 
however, they are still referenced today [5]. Further studies 
embed back haulage models in the optimization of the supply 
chain [6] or are solved implicitly through the vehicle routing 
problem [7].  The complexity of the optimization models 
increases signifi cantly and they become NP-hard. Solutions 
are found by applying meta-heuristics, evolutionary or 
swarm algorithms [8], or hybrid genetic algorithms [9]. As an 
alternative, mixed-integer linear programming formulations 
and column generation algorithms can also be used [10].
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All of these models share the characteristics of high 
complexity, as they all rely on the ability of linear programming 
to expand the full combinatorics of all nodes well beyond the 
need to discover, in particular, back haulage routes or other 
cycles.

This study is limited exclusively to the methodology 
of reducing empty runs. The analysis of back haulage and 
triangular routes results in criteria that allow for routes whose 
decision variables lead to improving the result. This approach 
leads to a dramatic reduction in the complexity of the programs 
without affecting the optimization result.

Method

The methodological development is based on a region 
with forests in which the quantities of k assortments have to 
be transported from sources to sinks.  An available network of 
roads forms the basis for calculating the shortest distances 
(times, transport costs) from all available sources to all sinks. 
In general, the calculations are performed using the algorithm 
of Dijkstra [11], and the results are stored in a cost relation 
with the attributes (source, sink, km). The supply of sources 
or the demand for sinks may consist of a single or several as-
sortments. The reduction of empty runs shall be calculated by a 
linear program with z = cT x → max as objective function subject 
to A x ≤ b. The vector c refers to the reduction of empty runs, 
and the vector x of decision variables refers to back haulage or 
triangle routes. The matrix A contains the incidence values of 
these routes, whereas the vector b refers to the supply of the 
sources and the demand of the sinks defi ned by truckloads as 
transport units (tu). Then, the possible sets of various trans-
port routes strictly follow logical defi nitions and constraints 
in the model derived because of elementary combinatorics and 
arithmetics. The following defi nitions hold:

•  In general, an assortment is defi ned by tree species, 
length, mean diameter, and quality. On the other hand, 
pulpwood can consist of spruce and pine. The defi nition 
of an assortment depends on regional practices.

• A 1-cycle is the most common route while transporting 
timber. This cycle is defi ned by a source f, a sink t, and 
an assortment a. The triple (f, t, a) defi nes the route 
t→f→t. The edge f→t of the route is a cargo run, and the 
edge t→f is an empty run. The length of cargo and empty 
runs are assumed to be equal. (Figure 1).

• A 2-cycle (back haulage) is the combination of two 
1-cycles (f1, t1, a1) and (f2, t2, a2) both cargo runs are 
connected by empty runs in the form t1→f2→t2→f1→t1. 
The empty runs in a 2-cycle are t1→f2 and t2→f1 (Figure 
1).

• A 3-cycle (triangle route) is the combination of three 
1-cycles (f1, t1, a1), (f2, t2, a2) and (f3, t3, a3). The three 
cargo runs are connected by empty runs in the form 
t1→f2→t2→f3→t3→f1→t1. The empty runs in a 3-cycle are 
t1→f2, t2→f3 and t3→f1 (Figure 1).

• A cost table with the attributes (f, t, km) is available to 
determine the distances of cargo and empty runs. The 
sum of cargo runs of a 2- or 3-cycle is called ckm and the 
sum of empty runs is ekm. The reduction of empty runs 
is defi ned by rer = ckm – ekm, which is a measure of the 
effi ciency of a 2- or 3-cycle. The objective function cT x 
contains rer for the costs. 

• Other impedances include the costs of transport or 
emissions. In Central Europe, the transport costs 
refer to the cargo runs and are a linear relationship of 
the form c = a + b km. The emissions as costs relate 
to the consumption of a truck. In Central Europe, the 
consumption of a truck is 42 liters of fuel for cargo 
runs and 34 liters for empty runs. A constant factor 
for loading and unloading should be added. Both 
impedances depend linearly on the variable distance in 
km.

Figure 1 initially shows a standard 1-cycle with an empty 
run share of 50%. Next to the right follows a 2-cycle, where two 
cargo runs are connected by shortened empty runs. It doesn’t 
matter whether the truck starts at the black or white sink; 
always the same cycle is performed. Only one of the two options 
shall be included in a linear program to avoid redundancies. In 
the 2-cycle shown, the assortments are different. 

If the assortments are the same, then by exchanging 
the assignments of sources to sinks (Figure 1, exchange of 
sources), two 1-cycles with the shortest possible lengths of 
empty and cargo runs are formed. The two 1-cycles then have 
an optimal distribution. Back freight with a reduction in empty 
runs therefore is no longer possible. This situation changes 
if a white assortment is added to the two black assortments 
(Figure 1, 3-cycles). The three cargo runs can be connected by 
empty runs, whereby the sum of the empty runs is signifi cantly 
shorter than the sum of the cargo runs. In any case, 2- and 
3-cycles are only valid options if the sum of the cargo runs is 
greater than the sum of the empty runs.

These obvious preconditions need to be considered when 
forming 2- or 3-cycles. Otherwise, if not, their number and the 
number of related decision variables will increase extremely 
and may lead to runtime excess and possibly numerical 
problems when solving such a linear program. However, the 
increase in decision variables can be drastically reduced if 

Figure 1: The different types of cycles. Circles ● sources, squares ■ sinks, black and 
white □■○● indicate different assortments. Dotted lines … follow empty runs, solid 
lines _ are cargo runs. 
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a-priori information derived from the cycle rules is used, as 
shown above, which excludes redundant decision variables or 
those variables that do not contribute to improving the result 
of the linear program. The feasible region of the linear program 
is not touched nor restricted by this approach. This can be 
shown for 2-cycles that meet the following criteria to reduce 
the number of decision variables:

1. An optimal distribution of the quantities of wood for each 
of the k assortments corresponds to the solution of the 
well-known Transportation Problem [12]. The solutions 
of the k Transportation Problems form a relation C1 with 
the attributes (f, t, a, tu), where f and t denote the nodes 
of sources and sinks for a certain assortment a, with the 
transport units fl owing from f to t. C1 has signifi cantly 
fewer allocations for an assortment, as was the case 
before the linear program was solved. The 1-cycles of 
C1 form the material to construct 2-cycles. This leads to 
a fi rst fundamental reduction of possible 2-cycles and 
results in a minimum transport distance with 1-cycles.

2. 2-cycles are the combination of two 1-cycles (f1, t1, 
a1) and (f2, t2, a2) from C1. The equation a1 = a2 then 
applies to a single assortment. As a solution set for 
the Transportation Problems, C1 contains a minimum 
distance, which refers to the empty as well as the cargo 
runs. This minimum cannot be further reduced (Figure 
1, exchange of sources). Consequently, 2-cycles cannot 
be created for a single assortment, which could lead to a 
reduction of empty runs. This holds for all combinations 
of 1-cycles a1 ≠ a2. Furthermore, the 2-cycles (f1, t1, a1, 
f2, t2, a2) and (f2, t2, a2, f1, t1, a1) describe the same 
cycle. The condition for a valid 2-cycle can be tightened 
to a1 < a2. The possible combinations decrease by a little 
more than half because there are only k(k-1)/2 ways to 
combine two of k assortments.

3. The 2-cycle (f1, t1, a1, f2, t2, a2) also contains the 
edges f1→t1 and f2→t2, which initially only differ in 
the assortments a1 and a2. However, if the edges are 
collinear or overlap at sources or sinks, then no reduction 
of empty runs is possible. This gives the conditions f1 ≠ 
f2 and t1 ≠ t2. In practice, these conditions correspond 
to a zero dot product of the two vectors f1→t1 and f2→t2. 
As a result, the number of 2-cycles shrinks by about 
another third.

4. A reduction in the length of empty runs is only possible, 
if for instance in a 2-cycle the sum of the cargo runs is 
greater than the sum of the empty runs: rer > 0. This 
last requirement further reduces the number of valid 
2-cycles down to a very small fraction.

All 2-cycles that meet these four criteria form a relation 
C2 with the following attributes (f1, t1, a1, f2, t2, a2), and it is 
possible to create a linear program with a reduced number of 
decision variables. The rows of C2 align with the columns of 
matrix A in a compact form. The row numbers of C2 return the 
index values of the tuples of the vector x and the associated cost 
vector c yields a reduction of empty runs (rer). The objective 

function z = cT x → max can be fi lled directly with these values 
of C2.

Not all 1-cycles of C1 result in valid 2-cycles. This reduced 
set of allocations forms the supply of the sources from which the 
demand for the sinks is determined as the sum of the transport 
units grouped by sinks and assortments. The information for 
supply and demand determined in this way depends on the 
assortment and is used to derive the incidence values of the 
matrix A and to determine the constants of the vector b. This 
procedure reduces the rows of A by about a tenth.

The whole linear program with the objective function z = cT 
x → max subject to A x ≤ b is now defi ned and a solver can do 
its work. The solution set xi > 0 indicates which 2 cycles are run 
through and how often. An update for xi > 0 of the 1-cycles of 
C1 in the form tuC1 = tuC1 – tuC2 results in the remaining 1-cycles.

3-cycles are all combinations of three 1-cycles from C1. 
Criteria 1 and 4 also apply to 3-cycles. The following criteria 5 
and 6 are modifi cations of criteria 2 and 3:

5. For the assortments of 3-cycles in the form (f1, t1, a1, 
f2, t2, a2, f3, t3, a3) the inequalities a1 < a2 and a1 ≤ 
a3 apply. At least one assortment must be different to 
form a valid 3-cycle (Figure 1, right). The number of 
possible combinations of 3 from k assortments, taking 
into account the cyclicity and the inequalities, is  (k 
– i) (k+1 – i), i = 1 … (k-1). For k  [3, 15] the possible 
combinations are reduced by two-thirds.

6. All sources and sinks of a 3-cycle have to be different. 
Therefore, these inequalities hold: f1 ≠ f2, f1 ≠ f3, f2 ≠ f3, 
t1 ≠ t2, t1 ≠ t3 and t2 ≠ t3. The combinations decrease by 
another third.

Valid 3-cycles form a relation C3. C2 and C3 or back 
haulage and triangle routes may be combined in a single linear 
program. Analogous to 2-cycles, the matrix A is fi lled with the 
new incidence values of 2- and 3-cycles. The linear program is 
readily prepared for a solver. After solving the linear program, 
C1 should be updated analogously to 2-cycles to fi nd the 
remaining 1-cycles.

The method just presented is two-stage by its intended 
construction. The fi rst stage consists of solving the 
Transportation Problem for k assortments. 

The second stage refers to the construction of the linear 
program Ax ≤ b with the objective function z = cT x to be 
maximized to calculate the reduction of empty runs. The 
dec ision variables are x1 … xm for 2 cycles with four incidence 
values in the matrix A and xm+1 … xm+n for 3 cycles with six 
incidence values. All 2-cycles have to satisfy conditions 1 to 
4 and all 3-cycles have to satisfy conditions 1, 2, 5, and 6. The 
costs ci (i = 1 … m or 1 … m+ n) of the objective function relate 
to the reduction of the empty runs. For each column of the 
matrix A, its value is (sum of cargo runs) – (sum of empty 
runs) > 0 (conditions 4 and 6). The objective function z = cT 
x should be maximized. The vector b contains the truckloads 
to be transported for sources and sinks that correspond to 
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the solutions of the Transportation Problem. The relational 
operator is ‘≤’ since not all transport units can be integrated 
into 2- or 3-cycles.

The resulting assignments of the solution set form the 
basis to generate 2- and 3-cycles. Criteria 2 to 6 act as fi lters 
that eliminate redundant cycles or those that do not lead to any 
improvement in the solution.

Example 

The results of the method will be shown using an example. 
In a study area, transport units of timber (tu) are stored at 
sources 701 to 704, consisting of the assortments of pulpwood 
and sawlogs which are required by sinks 101 to 103. Table 1 
contains the necessary data on supply, demand, and costs.

Without prior knowledge of the properties of 2-cycles, all 
possible assignments of sources to sinks are examined. The 
assortment sawlogs has 3 assignments and the assortment 
pulpwood has 4 × 2 = 8 possible assignments. The combination 
of these 11 assignments then results in all conceivable 2-cycles, 
which form 121 decision variables in a linear program.

The fi rst stage of the method refers to solving the 
Transportation Problem for each assortment. The result is an 
optimal distribution for each assortment with a minimum sum 
of transport routes from sources to sinks. These assignments 
are 1-cycles (Table 2). 

From another perspective, solving the Transportation 
Problem for an assortment corresponds to a systematic 
exchange of source-to-sink assignments to achieve minimum 
impedance (Figure 1, exchange of sources). For example, the 
assignments have a minimum distance of 36,300 km and a 
total distance of 72,600 km.

The second stage of the method relates to the generation 
of 2-cycles and the elimination of unsuitable cycles. The 
optimal assignments after solving the Transportation Problem 
deliver the material to generate 2-cycles. These assignments 
are optimal and may no longer be touched. The number of 
these assignments drops from 11 to 7 in the example. The 
combination of C1×C1 only results in 49 2-cycles.

Further analysis of these 49 2-cycles leads to the following 
insights:

• 2-cycles for a single assortment do not lead to a 
reduction in empty runs.

• 2-cycles for different assortments are available twice in 
C1×C1. One is redundant and needs to be eliminated. 

These cycles can be excluded using a fi lter for assortments: 
a1 < a2 (criterion 2, Ch. 2). Applying this fi lter to the example, 
2-cycles are only generated from the optimal assignments of 
sawlogs and pulpwood. The number of 2-cycles drops down to 
3 × 4 = 12 decision variables. 

Using the optimal distribution, 2-cycles can occur like 
(101, 703, 102, 703, 101) (Figure 2). Source 703 contains both 
assortments and the dot product of the 1-cycles involved is 

greater than zero. Such cycles without a reduction in empty 
runs can be excluded by the fi lter: f1 ≠ f2 and t1 ≠ t2 (criterion 3, 
Ch. 2). In the example, the number of valid 2-cycles or decision 
variables again shrinks from 12 to 9.

For these nine 2-cycles, the reduction of empty runs (rer) 
is calculated. As a result, only three 2-cycles remain where rer 
> 0 (Table 3, C2). 

The relations C2 (Table 3) contain all the information 
necessary to determine the linear program to maximize the 

Figure 2: Reduction of empty runs by 2 cycles and the solution of the Transportation 
Problem (Dotted lines are empty runs and solid lines cargo runs, white circles are 
sources and squares sinks. The colors gray and black indicate the assortments 
sawlogs and pulpwood).

Table 1: Data of the example.

Supply Cost

Type a tu f t km

701 sawlogs 100 701 101 95

701 pulpwood 100 702 101 70

702 sawlogs 100 703 101 32

702 pulpwood 100 704 101 64

703 sawlogs 100 701 102 123

703 pulpwood 100 702 102 92

704 pulpwood 100 703 102 40

Demand 704 102 50

t  a  tu 701 103 32

101 sawlogs 300 702 103 30

102 pulpwood 100 703 103 95

103 pulpwood 300 704 103 64

Table 2: Solution of the Transportation Problem for the example.

C1

f t a tu

701 103 pulpwood 100

702 103 pulpwood 100

704 103 pulpwood 100

703 102 pulpwood 100

701 101 sawlogs 100

702 101 sawlogs 100

703 101 sawlogs 100
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reduction in empty runs. The objective function z = cTx = 23 x1 
+ 63 x2 + 40 x3 can be generated immediately from C2. Using 
the relation C1 (Table 2), the incidence values of the matrix A 
and the constants of the vector b for sources and sinks can be 
evaluated.

The linear program with the objective function z = cTx 
subject to Ax ≤ b is complete and can be solved. Its solution 
is x2 =100 and the objective function has a value of 6,300 km. 
Compared to the reference distance of 36,300 km this means a 
substantial advance. We have a saving of 17.6% and the entire 
transport route is reduced by 8.8%.

The remaining 1-cycles are determined by the solution 
vector x2 = 100 (701, 101, sawlogs) and (704, 103, pulpwood). 
The relation C1 (Table 2) is updated in these rows by tu = tu – 
100 to determine the remaining 1-cycles. Figure 2 shows the 
2-cycle of the solution (t1, f2, t2, f1, t1) = (101, 704, 103, 701, 
101). The empty runs of the 2-cycle are drawn as dotted lines.

An an alogous procedure as with 2-cycles takes place for a 
combination of 2- and 3-cycles. The solution results in one 
2-cycle (t1, f2, t2, f1, t1) = (101, 702, 103, 701, 101) and one 
3-cycle (t1, f2, t2, f3, t3, f1, t1) = (101, 703, 102, 704, 103, 702, 
101) (Figure 3). The objective function has a value of 8,500 km. 
Compared to the reference distance of 36,300 km. This is a 
saving of 23.4%. The entire transport route is reduced by 11.7%.

Resul ts

For the fi scal year 2015 (7/1/2014, 6/30/2015) the 
Bavarian State Forest Enterprise provided all harvest data of 
7 assortments to test the method for the reduction of empty 
runs. The annual transport volume is 2.12 million m³. The 
transported assortments are compiled in Table 4. Timber 
transport is managed by Bavarian State Forest Enterprise due 
to the customer contracts and delivered at a place unloaded 
(DPU). 

All assortments can be transported by a standard truck with 
a crane and trailer. According to legal regulations, a transport 
unit (tu) corresponds to 22.5 t (metric tons). The centroids of 
371 administrative units each around 2,000 ha are taken as 
the locations of the sources, and 38 enterprises of the wood 
industry are the spatially located sinks.

First, the optimal distribution was calculated monthly 
for this data set acting as a base for the calculation of 2- and 
combined 2- and 3-cycles. The reduction of empty runs by 
2- and combined 2- and 3-cycles could then be calculated per 
month. The results for 2-cycles are summarized in Table 5 and 
for combined 2- and 3-cycles in Table 6. For better comparison, 
the results of Tables 5,6 are shown as a diagram in Figure 4.

The results lead to a reduction in empty runs of about 1.29 
million km or 17.2% for 2-cycles. With 2- and 3-cycles, the 
reduction in empty runs is around 200,000 km less with a 
value of 1.52 million km or 20.2%. These results lead to the 
following benefi ts:

• The existing transport capacity is increased. For the 
entire fi scal year of the Bavarian State Forest Enterprise, 
81,852 tu (Table 4) are to be transported. Dividing the 

Table 3: Valid 2-cycles for the example.

C2

id f1 t1 a1 f2 t2 a2 rer dv

1 701 101 sawlogs 702 103 pulpwood 23  1

2 701 101 sawlogs 704 103 pulpwood 63 ×2

3 702 101 sawlogs 704 103 pulpwood 40 ×3

Figure 3: The solution of the example for 2 and 3 cycles. Signatures correspond to 
Figure 2.

Table 4: Timber harvest by assortments of Bavarian State Forest Enterprise, fi scal 
year 2015.

Assortment m3 tu

Beech industrial wood long 187,777 9,883

Oak industrial wood long 19,095 1,005

Spruce industrial wood long 119,205 4,415

Spruce industrial wood short 69,525 2,575

Spruce sawlogs 1,356,021 50,223

Pine industrial wood long 71,199 2,637

Pine sawlogs 300,078 11,114

Sum 2,122,900 81,852

Table 5: Reduction of empty runs for 2-cycles.

Year month no of dv rer(km) ekm red(%)

2014 7 7,746 103,962 694,663 15.0%

2014 8 9,384 117,904 719,897 16.4%

2014 9 7,907 83,921 625,267 13.4%

2014 10 10,776 108,609 636,846 17.1%

2014 11 10,120 116,112 711,251 16.3%

2014 12 7,285 79,740 432,574 18.4%

2015 1 7,285 56,679 437,878 12.9%

2015 2 10,139 102,434 540,282 19.0%

2015 3 17,146 200,800 876,387 22.9%

2015 4 12,319 122,954 651,706 18.9%

2015 5 11,020 131,279 643,485 20.4%

2015 6 7,055 65,874 538,724 12.2%

1,290,268 7,508,960 17.2%
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total reduction in empty runs in Tables 5,6 by the average 
length of a 1-cycle of 183.5 km results in an additional 
freight capacity of 7,032 and 8,269 1-cycles. On the 
one hand, the transport capacity increases by 8.6% or 
10.1% and is available for other timber transports; on 
the other hand, the utilization of the trucks is improved.

• Transport costs are reduced. Monetary units MU were 
used to calculate the transport costs, regardless of the 
national currency. A truck driver has an hourly wage of 
30 MU. A liter of diesel costs 1.5 MU and a truck in Central 
Europe consumes 42 l and 34 l per 100 km for cargo 
and empty runs. Converting these numbers results in 
a cost per km of 1.13 MU for cargo runs and 1.01 MU for 
empty runs. The average empty route length using back 
haulage or triangle routes is 76.0 and 73.2 km. Under 
these simplifi ed assumptions, the costs relative to pure 
1-cycles decrease by 8.1% (back haulage) and by 9.5% 
(2- and 3-cycles).

• Emissions are reduced. One liter of fuel corresponds to 
2.94 kg of emissions [13]. The average cargo distance 
is 91.7 km. For the consumption values of the trucks 
and reduced empty runs just described, the emissions 
are reduced by 7.7% (back haulage) and 9.0% (2- and 
3-cycles).

Finally, 2-cycles and 2- and 3-cycles were calculated for 
the entire year. The reference distance for empty or cargo 
runs after solving the Transportation Problem was 7,384,651 
km, about 124,000 km less, as more favorable assignments 
could be made for the entire data set. For 2-cycles, there was 
a reduction in empty runs of 1,406,003 km (19%) for 79,815 
decision variables. For 2- and 3-cycles there was a reduction 
in empty runs of 1,581,877 km (21.4%) for 5,610,560 decision 
variables. These results serve as a comparison model to 
monthly calculations.

All combinatorics and simplex tableaus were created with 
SQL in the PostgreSQL database on a standard notebook. The 
computing times of the combinatorics for a month were on 
average 2 minutes for 2- and 3-cycles and a few seconds for 
2 cycles. The optimization was carried out using the solver 
lpsolve developed by Berkelaar, et al. [14]. Regarding 2-cycles, 
the number of decision variables was always less than 20,000 
and the solver took less than a second to calculate the solution. 
The number of 2- and 3-cycles increased to over 5 million 
decision variables and the associated computing times of the 
solver grew quadratically (Figure 5).

Discussion

The studies as examined here relate to the methodology 
of how an identifi cation of 2- or 3-cycles, and the usage of 
this information may lead to a reduction in empty runs thereof 
when transporting wood. The data basis is a region in which 
k assortments are to be transported from sources to sinks as 
places of supply and demand.

Existing methods for calculating back haulage routes 
have shown to be very complex. Epstein, et al. [15] refer to 

programs using over 100,000,000 decision variables. The cause 
of the complexity often lies in the construction of the back 
haulage routes, which are formed from the assignments of 
the unsolved Transportation Problem. The objective function 
is aimed at minimizing empty runs, whereby the matrix A of 
the linear program consists of the network incidences of the 
Transportation Problem for all possible assortments and all 

Table 6: Reduction of empty runs for 2- and 3-cycles.

Year Month No of DV rer (km) ekm red (%)

2014 7 995,754 127,353 694,663 18.3%

2014 8 1,365,468 138,343 719,897 19.2%

2014 9 1,197,583 105,095 625,267 16.8%

2014 10 1,647,860 123,793 636,846 19.4%

2014 11 1,679,894 135,564 711,251 19.1%

2014 12 1,057,089 95,230 432,574 22.0%

2015 1 436,325 70,259 437,878 16.0%

2015 2 1,568,334 122,639 540,282 22.7%

2015 3 3,365,086 221,343 876,387 25.3%

2015 4 2,289,057 143,410 651,706 22.0%

2015 5 1,969,313 152,981 643,485 23.8%

2015 6 948,382 81,175 538,724 15.1%

1,517,185 7,508,960 20.2%
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combinations of back haulage routes. The high complexity of 
the resulting programs leads to either numerical problems 
in the solution as well as to a suboptimal distribution of 
assortments [4]. 

The key procedural step in this study is to identify 
back haulage cycles before the fi nal optimization process 
is started. Back haulage cycles hereby are constructed in a 
systematical way to assure the reduction of this complexity to 
improve computability as well as a better optimization result. 
Furthermore, the optimal distribution of the assortments will 
be maintained. 

In the fi rst stage, the transportation problem is solved for 
the k assortments of a region and the result remains unaffected 
in the further procedure. The number of optimal assignments 
is smaller than the number of assignments for an unsolved 
Transportation Problem. This also reduces the number of 
possible 2-cycles signifi cantly. On the other hand, the solution 
to the transportation problem leads to a signifi cant reduction 
of the total transport distance by about 12% compared to 
allocation by dispatchers [16].

The complexity is further reduced in the second stage by 
taking into account the properties of the different cycles (Figure 
1). 2-cycles for identical assortments and double 2-cycles for 
unequal assortments are to be excluded. 2-cycles, in which 
only one source or one sink is involved, do not result in any 
improvement over the optimal distribution. Therefore, only 
2-cycles are permitted whose 1-cycles involved have a scalar 
product of zero.

Ultimately, only 2-cycles whose reduction in empty runs 
is greater than zero are taken and fed into a linear program. 
The reduction in empty runs as the difference between the 
sum of cargo runs and the empty runs of cycles is a measure 
of their effi ciency. Maximizing the effi ciency of 2- or 3-cycles 
corresponds to minimizing empty runs. The sum of the empty 
runs of a 2- or 3-cycle does not contain any information about 
its effi ciency. Overall, the second stage corresponds to a logical 
‘resolve’ of the generated linear program.

Calculating an optimal distribution is part of the tactical 
planning of a forest enterprise and applies on a rolling basis 
over an entire year. This plan needs to be revised monthly 
in the event of unexpected weather conditions (heavy rain, 
storms, snow), damage caused by drought or beetles, or for 
nature conservation reasons (Carlsson and Rönnqvist 2005). 
The results in Chapter 4 are therefore calculated monthly and 
for the entire year to be able to estimate the losses of a monthly 
calculation concerning the optimum for the entire year.

The construction of 2- and 3-cycles is based on an optimal 
distribution of the assortments from sources to sinks. It is a 
standalone addition to reduce overall routes. The optimal 
distribution can be determined differently, if, in addition to 
normal sources and sinks, there are also intermediate storage 
facilities and longer cargo runs are transported intermodally 
by train. The minimum cost fl ow problem is the appropriate 
model under these conditions [17,18]. It can be used to solve 

several problems together: The transportation problem 
(normal sources and sinks), the transshipment problem with 
additional storage areas for wood (are both sources and sinks), 
and intermodal transport (truck and train). The solution to the 
minimum cost fl ow problem provides optimal distribution of 
the assortments for trucks and trains. Separately for trucks 
and trains, the total transport distance can then be minimized 
using 2- or 3-cycles.

Conclusion

By trying to reduce empty runs through 2-cycles (back 
haulage) or 3-cycles (triangle routes) the complexity of linear 
programs could be dramatically reduced without affecting the 
solution. The reduction in complexity occurs by eliminating all 
decision variables that do not lead to an improvement in the 
solution. Reducing empty runs when transporting timber is 
possible using 2-cycles alone, or a mixture of 2- and 3-cycles 
by computable linear programs. The combination of 2- and 
3-cycles results in an approximately 3% higher reduction in 
empty runs with higher computing effort. It depends on the 
user’s intentions which option is to be preferred.
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