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Introduction

The GAGA factor (GAF), produced by Trithorax-like gene, 
Trl, in Drosophila [1] operates by binding to its DNA recognition 
sequence, having a consensus sequence, GAGAG [2]. As a 
transcription factor, it has been found in the promoters and 
enhancers for the modulation of expression of various genes 
like the homeotic genes and developmental genes, like the 
Ultrabithorax (Ubx), engrailed (en), fushi-tarazu (ftz) even-skipped 
(eve), hsp70, hsp 26, H3/H4, Adh, E74, actin-5C, and 1-tubulin [1,3-
7]. Besides these roles, the factor is also involved in remodelling 
of the chromatin, in functions pertaining to the Polycomb 
responsive element (PRE), and insulator or boundary elements 
[5,9–14]. This factor shows a high proportion of pleiotropism 
owing to its localization on the promoter regions of a multitude 
of genes [8,9]. The gene, Trl is presumptively produced 
maternally [10] hence, a better understanding of its target 
genes is made by studying the phenotypes using combination 
of hypomorphic and hypomorphic or null Trl alleles. The 
expression of Trl is fundamental to all the stages and all tissues 
of the fl y, even if the levels of mRNA change signifi cantly in 
these stages [11]. Till date, the studies elucidating the roles 
of GAGA factor have been made in the embryonic stages. 
Studies on larval and imago stages have been very scantily 
made by knocking down or over-expressing different genes. 
Such experiments have clearly pointed that GAGA factor is an 
active player in the wing disc and salivary gland development. 

Immuno-fl uorescence studies of the salivary glands polytene 
chromosomes in Drosophila showed that this factor binds to a 
large number of euchromatic genes; hence it points out a role 
of GAGA factor in the maintenance of open, transcriptionally 
active chromatin regions.

The GAGA factor was for the fi rst time identifi ed [3], as an 
in vitro activator of the promoter of the gene, Ultrabithorax in 
Drosophila. Later on, it found to bind to GAGA elements (having 
stretches of GAGA or CTCT) over the hsp70 heat shock promoter 
and H3/H4 histone gene promoter regions [3,12-14]. Still 
further reports showed it to have crucial roles in the activation 
of genes and in regulating the chromatin structure [3,10,14-16]. 
The GAGA factor also show an interaction with the promoter 
sequence upstream of genes, E74 [17], his3, hid,hsp26, and hsp70 
[12] in Drosophila. However, the activation of transcription is 
found only for the genes, Kr and Ubx. Exceptionally, Kr gene 
is actively transcribed when the GAGA factor binds to the 
anchoring site located downstream to the target Kr gene.

Structure of the GAGA protein 

GAF bears a very unique structure having a single zinc 
fi nger DNA-binding domain, a BTB/POZ domain, a known 
protein–protein interaction motif [18], and a polyglutamine-
rich Q domain [16,19]. The gene encodes 2 alternatively spliced 
isoforms of the GAF-GAGA-519 and GAGA-581 of varying 
length and glutamine-rich C-terminal domain sequences. 
Each of the isoforms have 3 distinct structural domains: a zinc 
fi nger DNA-binding domain (DBD), a broad complex tramtrack 

Summary

The development in Drosophila is a concerted mechanism, occurring via the interplay of a 
constellation of genes and factors, operating in intricate synchrony. These factors, produced at precise 
points in their developmental cycle, operate via the activation, through binding to the various transcription 
factors. The GAGA factor (GAF) is such a product of the trithorax-like gene, Trl, which binds to a consensus 
DNA sequence for the modulation of the homeotic gene functions. Besides this, the factor has a role in 
chromatin remodelling; through binding with the Polycomb responsive element (PRE). The protein has 
a unique structural conformation with a zinc-fi nger DNA-binding, a BTB/POZ and a polyglutamine-rich Q 
domain. It has a unique role of acting as an anti-repressor of the gene, Kruppel, releasing the repression 
on it by the other DNA binding proteins. This report accomodates the interplay in which the GAGA factor 
is involved in the Drosophila embryonic development.
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bric-a-brac/ poxvirus domain (BTB/POZ), that involves in 
protein–protein interaction, and the C-terminal Q domain of 
a glutamine-rich C-terminus area involved in transcription 
activation [20-22] (Figure 1). Contrary to initial notion, of the 
Q domain acting as a transcriptional activator [18,23,24], GAF, 
in fact operates as an anti-repressor. It is constituted of the 
following components:

The DNA-binding domain or the DBD: The C-terminus of 
the GAF possesses a single classical C2-H2 zinc fi nger DNA-
binding domain of 82 amino acid residues from 310–391 after 
a basic helix fl anked of 3 short tracts of basic amino acid 
residues: BR1, BR2, and BR3 [20,21]. The consensus binding 
sequence bears a minimal penta-nucleotide, GAGAG [21] 
of which the tri-nucleotide sequence GAG is essential for 
recognition and binding [25]. Once that a zinc fi nger binds the 
major groove, identifying the GAG sequence, it gets stabilized 
through interactions with an extension of basic amino acids, 
at the N-terminal [20,21]. The tract BR1 also wraps around 
the minor groove with Adenine in the fourth position of the 
sequence GAGAG [20]. 

BTB/POZ domain: The BTB/POZ domain of the GAF occurs 
in all groups of organisms has 122 amino acids located in 
the N-terminal region of the GAF. This domain provides an 
interface for the occurrence of protein–protein interactions 
during transcriptional activation and transcriptional factor 
repression [18,26-32]. The protein oligomers are actually the 
result of 3 specifi c residues- D35, G93, and L112 and there 
are 3 -helices adjacent to these residues that help in capping, 
stabilizing the dimerizing at interface [33]. The GAF BTB/
POZ domain in GAF forms higher order functional multimeric 
complexes by virtue of self-association [22,33,34]. 

Q domain: The C-terminal bears a Q domain that have been 
involved in promoter distortion, single-strand binding and 
multi-merization [35]. Because of the single-stranded DNA 
binding affi nity, GAF is able to interact with triple-stranded 
DNA [36]. In Drosophila S2 cells, the Q domain was found to 
play a role of trans-activation domain. Combinatorial studies 

indicate that the Q domain is primarily involved in the larger 
GAF complex formation, but is not needed for heat shock 
response functions of the gene, hsp83 [19,35].

DNA–binding activity of the GAGA factor

When the GAGA factor binds to the major groove of DNA and 
the zinc fi nger of DBD, additionally interacting with the basic 
region BR1 at the minor groove [20], it results in a distorted 
DNA via the interactions of the Q domain at the promoter 
regions that melts the duplexes [35], especially when GAF binds 
to the single- and triple-stranded DNA over stretches of (GA)
n [35,36]. The DNA binding over multiple GA or CA stretches 
is due to the multimer formation caused by Q domain [35] and 
the BTB/POZ domain [34]. GAF binding sites are more frequent 
in the introns that suggest a possibility of regulatory role in 
transcriptional elongation [37]. The protein may to bind to long 
GA-rich repeats as evident in case of satellite DNA [38,39]. GAF 
can cause the maintenance of heterochromatic regions in the 
transcriptionally repressed state by recruiting arrays of GAF at 
the high density binding sites for GAF.

Interacting partners of GAGA factor 

Being a multi-functional protein, GAF, can interact with 
a signifi cant number of partners executing functions apart 
from binding single, double, and triple stranded DNA, such as 
providing multiple binding sites and support for the cofactors 
to form a feasible functional complex. GAF has depicted to 
possess the ability to show self-associate as well as associate 
with other BTB/POZ functional proteins like tramtrack (Ttk), 
Pipsqueak (Psq), and batman (ban) [6,40,41]. 

Tramtrack

Tramtrack or ttk, is a gene regulating development, that 
codes for a protein important in oocyte development [A factor 
that regulates the class II major histocompatibility complex 
gene DPA is a member of a subfamily of zinc fi nger proteins 
that includes a Drosophila developmental control protein [42]. 
The protein, Ttk may be expressed as two proteins-p69 and 
p88, that bind to the regulatory regions of several segmentation 
genes [42], like ftz to show novel expression pattern in 
embryos. During the transition from the mitotic to endocycle 
in the follicle cells, ttk promotes the activity of JNK pathway by 
passing the notch signalling pathway [43]. The ttk also codes 
for proteins that represses the expression of engrailed with 
the help of runt [44]. The ttk, thus represses several Drosophila 
genes, the activity of such genes are counteracted by GAF in 
vivo, which functions as anti-repressor [6].

Pipsqueak (Psq)

Psq, essentially regulates development via recognition of 
the GAGA sequences. However, it needs the GA stretch to be 
longer than the GAF [2]. Psq has been found to co-localize 
with GAF for numerous loci in the polytene chromosomes [40], 
where it and GAF, being members of the polycomb group of 
complexes, bind to the polycomb response element of the bxd 
gene [45,46]. The interaction between them occurs through 
their BTB/POZ domains [40]. 

Figure 1: GAGA factor domains: The GAF or GAGA Factor is encoded by the gene 
which undergoes alternate splicing to form two isoforms- GAGA-519 and GAGA-
581having a zinc fi nger DNA-binding domain (DBD), a broad complex tramtrack 
bric-a-brac/ poxvirus domain (BTB/POZ), and the C-terminal Q domain of a 
glutamine-rich C-terminus.
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Batman or ban

The batman or ban co-localizes with GAF and causes the 
activation and repression of homeotic genes [41]. Besides 

ban, the proteins, Corto and the sin3-associated polypeptide 

SAP18, form complexes with GAF’s BTB/POZ domain [47,48] 

and causes histone deacetylation. GAF interacts with the large 

subunit, NURF 301 of the NURF [49,50], dSSRP1 subunit of 

FACT [51,52].

GAGA arrests the spreading of heterochromatin

Developmental activities of an organism are under the 

stringent epigenetic maintenance of the genomic expression. 

The complex called “facilitates chromatin transcription” or 

FACT in Drosophila, interact with GAGA factor to modulate the 
structure of the chromatin expression. The gene expression 
is epigenetically maintained through post-translational 
modifi cations of the four core histones on the nucleosome [53]. 
The expression of two such epigenetic genes- the Hox gene, 
whose expression is governed by Polycomb and Trithorax group 
genes [54,55] and the position effect variegation (PEV) [56,57], 
has been extensively studied. Both these phenomena involve 
silencing and counteracting the maintenance of the active 
state. The methylation of histone H3 at K27 and/or K9 cause 
silencing, which then leads to the binding of the Polycomb 
group or heterochromatin proteins that recognize these silent 
marks [55,57-60].

The GAF and FACT replace histone H3 into H3.3, by associating 
HIRA with d1, resulting in the maintenance of expression of 
the white gene in the heterochromatic environment. The active 
state is sustained through the replacement of Histone H3.3 by 
the removal of a nucleosome, replacing with H3.3 containing 
nucleosome with stepwise assembling and disassembling 
of a nucleosome at the DNase-hypersensitive site of d1. 
Heterochromatin formation is marked by K9-methylated 
histone H3 and its binding protein HP1, and has a tendency 
to spread into neighbouring regions [57,58]. The process of 
reassembling of the nucleosome, following the replacement of 
histone, keep on removing K9-methylated histone H3 at d1 and 
prevent the spreading of the heterochromatin (Figure 2). 

GAGA in primordial germ cell migration and gonad de-
velopment

The development of gonad is possible through the 
migration of primordial germ cells (PGCs). The germ cell 
progenitors are formed at the posterior pole of the embryo 
in the region where the maternal germplasm reside. Once 
specifi ed, after several mitotic divisions, these cells separate 
from the embryonic syncitium and move inside the embryo 
[61,62]. The migration of PGC has two stages- passive and 
active. While passive migration occurs during morphogenetic 
events of gastrulation, leading to the shifting of germ cells to 
the midgut pocket by cellular invagination of the prospective 
endoderm, active migration takes place within the embryo 
via the autonomous movement of the PGCs. PGCs cross the 
primary gut wall forming pseudopodia like structures and then 

join the mesodermal cells to form the somatic progenitor cells 
of the gonads, localized to either sides of the ventral groove in 
the fi fth abdominal embryonic segment [61-63].

The GAGA factor encoding gene, Trl is expressed in various 
stages of Drosophila are found to regulate several developmental 
processes like embryogenesis, oogenesis, eye and wing 
development, and formation of dorsal processes [2,10,64-
67]. In developing male germ cells in Drosophila, a loss-of-
function in Trl has been found to lead to partial germ cell loss 
[68]. A recent study pointed that a mutant for Trl shows an 
early activation of migration and movement to the inward of 
the embryo. Such a premature drift lead to loss of orientation 
and an absence of a normal gonad formation. The migrations 
of the cells are under the JAK-STAT signalling pathway 
factors that activate the GPCR coded by gene tre1 or trapped 
in endoderm 1 [69-71], whose product is normally limited to 
the germ cells. In some cases, the somatic environment can 
modulate spatiotemporal regulation of germ cell migration 
as in mutants of the hopscotch gene, encoding a Janus kinase, 
causing a premature migration of primordial cells [72]. This 
suggests that the GAGA factor does infl uence the migration of 
primordial cells via their contact with the somatic cells.

GAGA in wing development 

The over-expression of GAF has been found to alter the 
gene expression of many genes in the wing disc. Depletion in 
GAGA, caused by the deletion at 69B was found to consistently 
reduce the size of the wing by about 10 %. Using NubbGAL4 
with Dicer2 reduction was by 55% and in case of ptcGAL4 by 
35%. Presumptively the wing size diminished was due to the 
defect in the proliferation of the cell. The abdominal segment 
A6 showed a transformation to A5, in males having a depleted 
GAGA factor. It is well known fact that a defective Abd-B is 
responsible for homeotic transformation of the abdominal 
segments. The above fi ndings thus correlate that GAGA 
factor was capable of initiating a defective transformation of 
segmentation of the embryo. A heterozygous null Trl male was 

Figure 2: Silencing and counteracting of silencing sites: The replacement of the 
histone H3.3 by Histone H3 by the GAGA factor (GAF) binding to its consensus 
binding site, in association with HIRA, leads to the maintenance of silent state of 
the gene, white . For the active state, the H3.3 nucleosome is replaced by the H3 to 
cause the eviction of that very nucleosome.
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found to have a similar transformation owing to the defi ciency 
(Trl67/Df(3R)Sbd26) [48]. A phenotype of loss-of-function due 
to usage of pannier GAL4 (pnrGAL4) showed a cleft with loss of 
bristle at the dorsal of the notum while over-expression was 
found to completely affect the dorsal closure with embryonic 
death before the fi rst instar stage is reached. 

GAGA factor as anti-repressor of Kruppel

Kruppel is the Drosophila gap gene that plays a crucial role 
in the early embryonic development by forming the antero-
posterior boundaries. The syncitial blastoderm stage shows 
the expression of the Kr in the form of a circular band girdling 
around 45 to 55% of the egg [73]. The Kruppel transcripts 
are formed at around 2 to 5 hr later from hatching [74] and 
protein coded thereafter bears zinc fi ngers [75-77] that in turn 
regulate the expression of the other genes, both spatially and 
temporally. 

The analysis of the proximal promoter of the Drosophila 
Kruppel (Kr) gene shows a 44-base pair length fragment bearing 
the RNA start sites having prominent promoter activity. This 
promoter has both upstream and downstream fl anked by 
sites binding with the GAGA factor. The GAF interacts with 
the Kr promoter region downstream in a sequence-specifi c 
fashion, and the purifi ed protein is found to activate the in 
vitro transcription of Kr and Ubx. The GAF is acting as an anti-
repressor acting in the presence of the binding site to repress 
the inactivation of the Kr by undoing the repression by the DNA 
binding factor. The transcriptional anti-repression model of 
the gene describes that DNA binding factors may bind with the 
gene’s promoter and enhancer sequence repressing the gene 
function. GAGA factor is able to nullify the repressive effect of 
such factors resulting in allowing transcription of Kr. 

GAGA factor relieves the repression of tailless

The development of both the anterior and posterior poles, 
which are the terminal domains of Drosophila embryos, is 
specifi ed by the maternal terminal system [78]. One of such 
gene is tailless, which is crucial for the development of 
terminal structure like telson and the posterior gut as well as 
head portions as head structures and the brain development 
[79-82]. The syncitial blastoderm stage of the embryo 
expression this transcript at the poles occur after the indirect 
activation by the maternally produced Torso receptor tyrosine 
kinase pathway at the embryonic termini. It partly relieves the 
repression caused by the HMG transcription repressor, Capicua 
and the co-repressor, Groucho [83,84]. The other repressor that 
it negates is the BTB domain zinc fi nger protein, Tramtrack69 
[85]. A successful functional tailless ensures the normal 
expression of of other gap genes such as Kruppel and Knirps, and 
later on genes like hunchback , brachyenteron , and forkhead [79-
82]. The reduction of concentration of the repressor causes a 
loss in a well-defi ned edge of expression domains [86,87]. It is 
seen that if the binding affi nity of GAGA factor to the tor-RE is 
low, and multiple tor-REs are present in the tll cis-regulatory 
region [85,88] the boundary of tll expression gets poorly-
defi ned.

Zelda as a candidate for GAGA

The DNA-binding protein Zelda or Vielfaltig in Drosophila 
is an active transcriptional activator of the zygotic genome and 
produces an open chromatin state. Once that, the chromatin 
open, it facilitates the recruitment of the transcriptional factor. 
This leads to the remodelling of the genome, causing the target 
gene to express. But sometimes absence of the Zelda can also 
lead to transcriptional activation in case of factors like the 
GAGA factor binding motif and the GAGA factor in embryo. The 
14th nuclear cycle is the testimony to the initiation of zygotic 
transcription, where Zelda is key activator of the zygotic 
genome in the maternal to zygotic transition [89,90]. Zelda 
binding sites have been found to be critical for regulation of DNA 
binding by transcriptional factors Dorsal (Dl), Twist (Twi), and 
Bicoid (Bcd) [91-93]. The Zelda also potentiates transcription 
factor binding sites by determining sites of open chromatin 
[94,95]. The density of histone H3 increases when the Zelda 
decreases in wild-type embryos [96], the Zelda thus, dictate 
the expression of the initial set of zygotic genes, transcribed 
post fertilization and also binds to the locus for genes that 
need to be activated later such that a precise sequence of gene 
activation ensues during gastrulation. 

The Vertebrate homologue of GAGA factor

Although the essential and conserved role of PcG/trxG 
homolog was clearly proven in the Drosophila melanogaster, 
the vertebrate homologue for the Drosophila GAGA factor 
was unknown until the recent studies [55]. The recognition 
sites for the GAGA factor called the GAGA boxes were found 
in many genes in the vertebrates including the hox complexes 
but a putative GAGA factor was yet to be discovered [16,97-
101].Very recently, the vertebrate GAG factor homologue having 
properties similar to the Drosophila in terms of domain structure 
and capacity for DNA recognition and binding. Various analysis 
including the structural modelling, phylogenetic analysis and 
cross-reactivity studies have exposed that GAGA factor can 
bind to DNA sequences rich in GAGA in the hox complex. In 
mouse and human, cKrox (Kruppel-related zinc fi nger protein 
cKrox) or Th-POK (T-helper inducing POZ/Kruppel-like factor) 
was deemed as the homolog of the Drosophila GAGA factor. It 
is found to be encoded by the zbtb7b or Zfp67 gene. Th-POK 
mainly regulates the commitment towards the lineages CD4 
and CD8. It is found that the mice having a mutated ArgineY 
Glycine in the X position of the second zinc fi nger are of Th-POK 
show immune-compromisation.This means that the Arginine 
is responsible for the recognition of the invariant G of the 
target and any mutation in the third position of the consensus 
sequence, GAGAG alters the target binding specifi city [20]. 
This highlights the role of G in binding and arginine in specifi c 
DNA binding, both in fl y as well as in mammals. The binding 
sites of c-Krox/Th-POK are found to be rich in purine with the 
pentamer sequence GAGA in the target. Some studies have also 
shown that Th-POK/c-Krox binds to the collagen promoter 
region to cause transcriptional activation [102-104] and the 
deletion of the C-terminal region, the transcriptional activity 
is reduced in mice [105]. 
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The Evx2 and Hoxd13 genes have tracts rich in GA in mouse, 

human, and zebrafi sh and functions in blocking the enhancer in 

both transgenic fl ies and cultured human cells [106]. Mutating 

the GAGA binding sequence prevents it from functioning as 

an insulator [106]. The murine Hox clusters with Histone free 

regions associate with the GAF recognition sites and regulate 

the binding of Th-POK. Thus, the mammalian GAGA factor act 

in nucleosome reorganization at the Hox clusters providing a 

platform for binding regulatory proteins, organizing chromatin 

regulatory activities of the chromatin, including the formation 

of boundaries.

Conclusion

The evidence cited in this report, clearly indicates that the 

GAGA factor is involved at several levels in gene expression 

regulation. Hence, it would be improper to consider it as a simple 

transcription factor or anti-repressor. Its role as a structural 

protein on the chromatin conformation, from its primary to its 

tertiary structure, depicts a potential role as a transcriptional 

activator and repressor. The actual role of GAF in maintaining 

the secondary and tertiary structure still remains more 

speculative than quantitative; even the functional signifi cance 

of GAF multimers still remains cryptic. The multimers may 

affect the topology of the regulatory region where they bind, 

changing the rotational phase of the nucleosomes to enable the 

proteins to co-interact. The purifi cation of GAF and the fully 

characterized chromatin system may reveal the full structural 

analysis data. The chromatin folding and cis-trans interaction 

of the regulatory sequences may also give additionally unique 

information about the effect of the GAGA factor in the folding 

of the chromatin.

The diversifi ed role of the GAGA factor in binding 

sequence-specifi cally to chromatin, DNA, transcriptional 

factors, metal ions and leading to protein homo-dimerization 

as well as hetero-dimerization has very critical roles in the 

normal execution of biological processes like the cell division, 

chromatin assembly, chromatin modifi cation, chromatin 

organization, dosage compensation, imaginal disc-derived wing 

morphogenesis, mitotic nuclear division, negative regulation of 

transcription, nuclear division, oogenesis, positive regulation 

of chromatin silencing, positive regulation of transcription, 

positive regulation of transcription from RNA polymerase II 

promoter, protein oligomerization, sensory perception of pain, 

spermatogenesis and syncytial blastoderm mitotic cell cycle. 

Such a multi-faceted protein does require further detailed 

analysis for still some functions not yet discerned completely. 

The numerous avenues that this factor enlightens its role in, 

clearly pinpoint the possibility of exploiting this factor in 

abating some diseases that are caused by an aberrant cell cycle 

progression, like the various cancers, cell proliferation, tumor 

development and pattern formation, during embryogenesis. 

Thus, it still requires focussed and multi-disciplinary efforts to 

dissect the yet unknown transcriptional regulatory mechanisms 

that regulate Drosophila development.
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