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Abbreviations

A: Acid, electron acceptor; AIM: Atoms-in-Molecules; B: Base, elec-

tron donor; BO: Born-Oppenheimer approximation; CG: Contragradi-

ence criterion; CT: Charge Transfer; DFT: Density Functional Theory; 

EE: Electronegativity Equalization; ELF: Electron Localization Func-

tion; EO: Equidensity Orbitals; FF: Fukui Function; HZM: Harriman-

Zumbach-Maschke construction; IT: Information Theory; MO: Mo-

lecular Orbitals; OCT: Orbital Communication Theory; QM: Quantum 

Mechanics; SE: Schrödinger Equation; SRL: Separated Reactant Limit

Introduction

In chemistry several intuitive concepts and rules still require more 

rigorous defi nitions within the molecular quantum mechanics (QM). 

Indeed, the semantics of chemical bonds, Atoms-in-Molecules (AIM), 

reactants or molecular fragments in general, the entangled quantum 

subsystems, still escapes the exact QM description, e.g. [1-4]. The in-

teracting molecular pieces are described by the mixed quantum states, 

which require an ensemble description [5-10]. Chemical concepts and 

principles can be approached using modern Density Functional Theory 

(DFT) [11-16] and Information Theory (IT) [17-24], e.g., [1-4,25-34]. 

For example, IT provides a solid theoretical basis [1-4,25-34] for the 

intuitive stockholder AIM of Hirshfeld [35]. The Orbital Communica-

tion Theory (OCT) of the chemical bond [1-4,36-47] has provided an 

alternative IT interpretation of the bond pattern in a molecule, and of its 

covalent (communication-noise) and ionic (information-fl ow) composi-

tion. This approach has also identifi ed the bridge chemical interactions 

between AIM [48-53], realized via cascade propagations in molecular 

information systems, through the orbital intermediates. The nonaddi-

tive gradient information of Fisher [17,18,34] has been linked [54] to 

the Electron Localization Function (ELF) [55-57] of DFT, and resulted 

in the Contragradience (CG) IT probe for localizing the chemical bonds 

[1-4,58].

The acquisition of information via the experimental removal 
of the position and velocity uncertainties in quantum states will be 
discussed and limitations for a simultaneous acquiring of the classical 
and nonclassical contributions to the resultant entropy/information 
descriptors, imposed by the Heisenberg indeterminacy principle, will be 
explored in some detail. A distinction between the classical (probability) 
and quantum (wavefunction) mappings will be examined and the 
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need for generalized (resultant) measures of the entropy/information 
content in electronic states will be reemphasized. Such IT descriptors 
combine the wavefunction modulus (probability) and phase (current) 
contributions, and relate the overall gradient information to the state 

average kinetic energy of electrons.  

It is the main purpose of the present analysis to reexamine 

the chemical potential (electronegativity) and phase equalizations 

in molecular an reactive systems. The classical (probability) and 

nonclassical (phase/current) origins of the quantum information 

content in molecular electronic states will be explored and relevant 

continuity relations will be summarized. These balance equations 

result from the fundamental Schrödinger equation (SE) of QM for the 

dynamics of quantum states. The eff ective velocity of the probability 

“fl uid”, measured by the current-per-particle, will be used to defi ne 

fl uxes of general physical and information properties, with the system 

electrons acting as carriers of the property densities. The probability 

acceleration and force concepts will be related to the phase-production, 

which identically vanishes in the stationary states. 

The electronegativity equalization will be described in the Equi-

density Orbital (EO) representation and local-energy concept will be 

used to explore the phase equalization and dynamics of wavefunction 

components. The equivalence of the energy and information criteria of 

chemical reactivity will be emphasized. The limitations for a simultane-

ous removal of uncertainties in the position probability density and in 

local velocity distribution, imposed by the Heisenberg indeterminacy 

principle, will be discussed, continuities of the wavefunction modulus 

and phase components will be examined, and the convection character 

of the net source of resultant gradient information will be stressed. 

Hypothetical stages of electronegativity equalization

The chemical concepts and principles can be approached using 

modern DFT and IT. The former constitutes the exact theory for 

determining reaction energetics, while the latter can be regarded as 

a supplementary interpretative tool for understanding the molecular 

structures and processes in chemical terms. Resultant entropy/

information concepts have been applied to describe the molecular 

equilibria, current-activation of reaction substrates, and the bonded 

(entangled) and nonbonded (disentangled) states of general molecular 

fragments. 

In chemical reactions one conventionally recognizes several 

hypothetical stages (Figures 1,2) of relaxing the electronic structure of 

the system constituent fragments [59-61]. The standard reference stage 

for the bond formation in the molecular system M(N, v), specifi ed by 

its canonical parameters of the average number of electrons (N) and 

external potential due to nuclei (v), is the promolecular system M0 = 

M0({ai
0(Zi, Ni

0)}, v), N = ∑i Ni
0, consisting of the “frozen” constituent 

atoms or ions, {ai
0(Zi, Ni

0)}, shifted to their molecular positions {Ri}: v 

= v({Zi, Ri}). The equilibrium states of the polarized AIM in M can be 

then viewed as electronically relaxed atoms of the promolecular system, 

after their mutual opening. The promolecular reference R
0

 of the reactive 

system R = R({α}) consisting of substrates {α} similarly represents 

the frozen (isolated) substrates {α0} shifted to their positions in the 

Figure 1: Hypothetical stages in relaxing the electronic structure of molecular fragments 

α  {a, b, …, c, d} from the isolated species {α0} in promolecule M
0 = (a0|b0|…|c0|d0) (Panel 

a), via the polarized subsystems {α+} in M+ = (a+|b+|…|c+|d+) (Panel b), into the equilibrium 

(bonded) fragments {α*(μ)} in M(μ) = [a
*(μ)¦b*(μ)¦…¦c*(μ)¦d*(μ)] (Panel c) for the specifi ed 

level of (molecular) chemical potential μ = μM. The latter can be equivalently viewed as 

molecular (internally open) composite molecular system M(μ) coupled to the macroscopic 

electron reservoir R(μ) in M(μ) = [M(μ)¦R(μ)].

Figure 2: Externally open reactants of donor-acceptor systems Ro(μA, μB) (Panel 
a) and R(μR) (Panel b) involving the separate and common electron reservoirs 
of subsystems, respectively. Panel b additionally illustrates that equalization of 
the chemical potentials of the separate reservoirs, μA = μB = μB, eff ectively opens 
both reactants mutually.
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ground-state densities {ρ[Nα
0, vα] = ρα

0
  Nα

0pα
0} of isolated fragments 

{α0} shifted to their “molecular” positions in R, for the specifi ed mutual 

separation and orientation of these geometrically rigid fragments in 

the reactive system; here pα
0(r) stands for the fragment probability 

distribution: ∫pα
0(r)dr = 1. This initial (reference) stage of a chemical 

reaction generates a nonstationary “molecular” distribution of electrons, 

nonequilibrium for the molecular external potential v = vA + vB, 

ρ0 = ρA
0 + ρB

0 ≠ ρ[N, v],                  (3)

Diff erent from the equilibrium (ground-state) density ρ[N, v] for 

the specifi ed overall electron number NR = NA + NB and the “molecular” 

external potential v. The promolecular state thus implies the 

nonequalized local chemical potentials in both subsystems, determined 

by functional derivatives {μα
0(r)  δE[{ργ}]/δρα(r)|0} of the density 

bifunctional E[ρA, ρB; v] for the electronic energy in R, calculated for the 

“frozen” densities {ρα
0} of isolated subsystems: 

μA
0[v; r] ≠ μA

0[v; r’] … and μB
0[v; r] ≠ μB

0[v; r’] …               (4)

The intermediate, polarized reactive system R+  (A+|B+) similarly 

combines densities {ρα
+

 = ρα[NA
0, NB

0; v]  Nα
+pα

+} of the mutually-

closed subsystems {α+} in their internal equilibria, separated in R+ by 

the solid vertical line symbolizing preservation of electron numbers 

in subsystems, {Nα
+ = Nα

0}, thus exhibiting diff erent levels of their 

(internally-equalized) chemical potentials: 

μA
+  μA[ρA

+, ρB
+; v] = μA

+[v; r] = μA
+[v; r’] = … 

< μB
+  μB[ρA

+, ρB
+; v] = μB

+[v; r] = μB
+[v; r’] = …                   (5)

The implicit barrier for the fl ow of electrons between polarized 

reactants is eventually lifted in the fi nal equilibrium stage of a 

“molecular” reactive system R  (A*¦B*), after the optimum B+A+ 

CT between the initially polarized reactants (Figure 2). This freedom 

to exchange electrons has been symbolized above by the broken line 

separating the bonded subsystems {α*}, which exhibit the ensemble-

average densities 

{ρα
*(r)  Nα

*pα
*(r) = ρα[NA

*, NB
*, v; r]  ρα

*[ρ; r]}, 

{Nα
* = ∫ρα

*(r) dr = Nα
*[N; v]}.                      (6)

For the lack of the separating boundary in R its mutually-open 

subsystems must explore the electron probability distribution of the 

whole reactive system: 

pA
*(r) = pB

*(r) = p(r) = ρ(r)/NR.                 (7)

Indeed, the density additivity implies 

ρ(r) = ρ[NR, v; r]  Np(r) = (NA
* + NB

*) p(r) 

 = ρA
*(r) + ρB

*(r) = NA
*pA

*(r) + NB
*pB

*(r)                   (8)

and hence:  

pα
*(r) = p(r) and ρα

*(r)/ρ(r) = Nα
*/N  Pα

*, ∑α Pα
* = 1.              (9)

The eff ective mutual-openess of both substrates signifi es the bonded 

molecular complex, while the equilibrium state in R as a whole, R = 

R({α*}) refl ects the bonded (open, entangled) reactants {α*} at this stage 

of their mutual approach. 

This electronic relaxation of initial (non-equilibrium) promolecular 

electronic structure to fi nal (equilibrium) state of the system as a whole, 

for the fi xed overall external potential due to the system nuclei in their 

fi xed positions, goes through intermediate polarization (P) stage, 

M+ = M+({ai
+}) or R+ = R+({α+}), involving mutually-closed atomic or 

reactant fragments, which are fully relaxed internally in the presence of 

remaining subsystems. 

In electronic structure and reactivity theories one examines the 

infi nitesimal displacements {δN, δv} in the system canonical state 

parameters, and explores the system responses to such perturbations 

[59-61]. The continuous variable N implies its average character, of 

the electron population in the molecular system coupled to an external 

(macroscopic) electron reservoir R(μ) characterized by its chemical 

potential μ (Figures 1,2) or electronegativity χ = −μ. Such grand-

ensemble interpretation [9,10,14,62,63] applies to all reactivity criteria 

involving populational derivatives of energy or information, e.g., the 

chemical potential [14,62-66], hardness/softness [14,67] and Fukui-

Function (FF) [14,68] descriptors of molecular systems. The charge-

transfer (CT) then emerges as a spontaneous response to the chemical-

potential diff erence of the polarized subsystems. The mutually-closed 

subsystems of M+ or R+, defi ning the relevant in situ CT “gradient” and 

“Hessian” descriptors, then determine the optimum amount of this 

electronic fl ow [59-61].

To summarize, the Electronegativity Equalization (EE) eventually 

establishes the system equilibrium distribution of electrons among its 

structural units. The probability fl ows also carry densities of general 

electronic descriptors of molecular systems. Such property currents 

constitute essential part of the associated continuity relations expressing 

the local balance of the quantity in question, which determines its 

source (net production) [9,10,69-71]. 

Consider the substrates α = (A, B) in the specifi ed donor-acceptor 

reactive system R = A----B (Figure 2). The isolated (separated) 

subsystems exhibit diff erent global levels of the internally equalized 

chemical potentials, μA
0 < μB

0,

{μα
0(r)  δEα[ρα

0]/δρα
0(r) = μα[ρα

0, vα] = μα
0  ∂E(Nα, vα}/∂Nα|0},  

                           (1)

where Eα[ρα
0[vα]]  E[Nα

0, vα] denotes the ground-state energy of 

α0. Their nonbonded status, when they conserve the overall (integer) 

numbers of electrons {Nα = Nα
0} in separated reactants {α0}, implies 

the vanishing exchanges of electrons with the reaction partner, i.e., 

their mutual closeness symbolized by the solid vertical line separating 

the two subsystems, or with the hypothetical (macroscopic) reservoir 

(external closeness) in the ensemble representation. All reaction stages 

below are assumed to be globally isoelectronic:

N  NA
0 + NB

0  NR
0 = NA

+ + NB
+  N+ = NA

* + NB
*  N*.                 (2)

The initial, promolecular stage R0  (A0|B0) signifi es the “frozen” 
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character of these reaction partners and hence also the equalization of 

their chemical potentials at the “molecular” level characterizing R as a 

whole: 

μα
*  μ [ρA

*, ρB
*; v]  μα[N; v] = μ[N, v]  μ[ρ, v], α = A, B.           (10) 

These bonded fragments generally exhibit fractional values of the 

average numbers of electrons, due to a fi nite amount NCT > 0 of the 

B*A* CT: 

NA
* = ∫ρA

*dr = NA
0 + NCT > NA

0, NB
* = ∫ρB

*dr = NA
0 − NCT < NB

0.        (11)

Such mutually-open fragments call for an ensemble description 

of their average densities and electron populations. Their identity 

is properly defi ned only when they represent the mutually-closed 

fragments of the macroscopic subsystems composed a the reactant 

fragments coupled to their own (separate) electron reservoirs. The 

substrate identity indeed represents a meaningful concept only when 

both subsystems remain mutually closed. 

Indeed, the fragment properties in the fi nal, equilibrium reactive 

system R combining the bonded fragments can be inferred only 

indirectly, by externally opening the mutually closed subsystems of R+, 

with respect to their separate (macroscopic) electron reservoirs {R 
+} in 

the polarized composite system (Figure 2a): 

M+ = [RA
+(μA

+)¦A+(μA
+)|B+(μA

+)¦RB
+(μB

+)]  [MA
+(μA

+)|MB
+(μB

+)].  (12)

The independent chemical potentials of such mutually-closed 

composite subsystems can be subsequently equalized at the “molecular” 

level (Figure 2b), 

μA
+  μA

* = μB
+  μB

* = μR[NR, v],                  (13) 

of the chemical potential of R as a whole. Such a composite system 

M thus eff ectively involves a common electron reservoir RA
*(μR) = 

RB
*(μR) = R(μR)  R, 

M = [RA
*( R)¦A*(μR)|B*(μR)¦RB

*(μR)]  [MA
*(μR)|MB

*(μR)] 

 = [R*(μR)¦A*(μR)¦B*(μR)]  [R(μR)¦R(μR)],               (14)

and hence combines the formally bonded reactant subsystems. 

Indeed, the substrate chemical potentials equalized at the molecular 

level in both subsystems, when {Rα
+(μR)  Rα

* = R}, in fact describe a 

“molecular” reservoir coupled to the whole reactive system R: [R¦A*¦B*] 

= (R¦R). The open character of each subsystem also implies that each 

subsystem eff ectively exhausts the whole electron probability density p 

= ρ/N in R = R(μR) [Eq. (7)], so that the equilibrium electron densities of 

the mutually-open subsystems, 

ρα
*(r) = Nα

*
 p(r) = (Nα

*/N) ρ(r) = Pα
*ρ(r), α = A, B,               (15)

where Pα
*
 = Nα

*/N denotes the global probability of α* in R, 

reconstruct the equilibrium electron density in the whole system: 

∑α ρα
*(r) = ρ(r) (∑α Pα

*) = ρ(r).                    (16)

Similar external reservoirs are invoked, when one examines 

independent population displacements of the mutually-closed reactants, 

e.g., in defi ning the fragment chemical potentials and the hardness 

matrix of R+. In this chain of hypothetical reaction stages the polarized 

system appears as the launching stage for the subsequent CT and the 

accompanying induced polarization, after the hypothetical barrier for 

the fl ow of electrons between the two subsystems has been lifted. 

The  vector of fragment chemical potentials, μR
+

 = {μα
+}, and 

elements of the associated hardness matrix in reactant resolution, ηR
+ 

= {ηα,β}, represent the fi rst and second populational derivatives of the 

system average electronic energy in the grand-ensemble representation 

of M [59-61]: 

E(A, B)ens. = E[A(μA
+), B( B

+)]  E[{NA(μA
+), NB(μB

+)}, v] = E[{Nγ}, v].  

                  (17)

The polarized system R+ thus contains the externally-open 

substrates {α+(μ 
+)} coupled to their separate external reservoirs of 

electrons, in the mutually-closed composite subsystems, 

{Mα
+ = Mα

+(μ 
+) = [α+¦Rα

+(μα
+)]}               (18) 

of the composite reactive system 

M+ = [RA(μA
+)¦A+|B+¦RB(μB

+)]  [MA
+(μA

+)|MB
+(μB

+)].              (17) 

The populational derivatives are calculated for the fi xed external 

potential of the whole system, v = vA + vB, refl ecting the “frozen” 

molecular geometry in R: 

μα
+

  ∂E[{Nγ}, v]/∂Nα|
+, 

ηα,β
+ = ∂2E[{Nγ}, v]/∂Nα ∂Nβ|

+
 = ∂μα

+/∂Nβ.                (18)

The associated global descriptors of R = (A*¦B*) are similarly defi ned 

by derivatives of the ensemble average electronic energy 

E(R)ens. = E[N(μ), v]                    (19)

of the molecular fragment R in the combined system 

M = (R¦R) = (A*¦B*¦R) = (R¦A* B*¦R) = (MA
*¦MB

*) 

with respect to its average electron number N:

μ = ∂E[N, v]/∂N|*, η = ∂2E[N, v]/∂N2|* = ∂μ/∂N.                  (20)

This framework also determines the global and fragment response 

properties, e.g., the mixed second-derivative descriptors of FF

f(r) = ∂2E[N, v]/∂v(r) ∂N = ∂ρ(r)/∂N = ∂μ/∂v(r),               (21)

Fα(r) = ∂2E[{Nγ}, v]/∂Nα ∂v(r)|+
 = ∂ρ+(r)/∂Nα = ∂μα/∂v(r).             (22)

The optimum amount of the (fractional) equilibrium CT,

NCT = NA
* − NA

0  dNA = NB
0 − NB

*  −dNB
 > 0,                   (23)

defi nes the global (in situ) FF derivatives of both substrates in this 

process:

FA
CT = dNA/dNCT = 1 and FB

CT = dNB/dNCT = −1.                 (24) 
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The magnitude of equilibrium charge fl ow is determined by the 

diff erence in chemical potentials of the polarized reactants in R+, the 

CT “gradient”

μCT = ∂E(NCT)/∂NCT = ∑α Fα
CT

 μα
+ = μA

+ − μB
+ < 0,              (25)

and by eff ective (in situ) hardness (ηCT) or softness (SCT) for this 

process, 

ηCT = ∂2E(NCT)/∂NCT
2 = ∂μCT/∂NCT = ∑α ∑β Fα

CTηα,β
+ Fβ

CT 

= (ηA,A −ηA,B) + (ηB,B − ηB,A) = ηA
CT + ηB

CT  SCT
−1,                                      (26)

Representing eff ective CT “Hessian” and its inverse, respectively. 

The amount of CT,

NCT = −μCT/ CT = −μCT SCT,                     (27)

generates the associated (2nd-order) stabilization energy due to this 

spontaneous transfer of electrons:

ECT = μCT NCT/2 = − μCT
2/(2ηCT) = − μCT

2 SCT/2 < 0.               (28)

Probability and phase/current distributions in reactive 
systems

The hypothetical stages of the preceding section involve either the 
mutually-closed [nonbonded (n), disentangled] or open [bonded (b), 
entangled] reactants, e.g., the electron acceptor (acidic, A) and donor 
(basic, B) substrates in the bimolecular reactive system of Figure 3: R 

= A + B. The initial stage of the bond rearrangement process marks 
the promolecular reference R0

  (A0|B0), consisting of the “frozen” 
free reactants {α

0} of the Separated Reactants Limit (SRL), A0
 + B

0, 

containing the integer numbers of electrons {Nα
0} and brought to their 

relative positions in the actual “molecular” complex R0. At this stage, 
before the bond-breaking−bond-forming process of the chemical 
reaction, both fragments are electronically and geometrically rigid, 
exhibiting the equilibrium electron densities {ρα

0
 = ρα

0[Nα
0, vα]} of the 

isolated species, which represent non-equilibrium distributions in 
presence of reaction partners: {ρα

0 ≠ ρα
0[{Nβ

0}, v]  ρα
+}. Here, v = vA + 

vB stands for “molecular” external potential in Born-Oppenheimer (BO) 
approximation, due to the rigid nuclear frame of the whole reactive 
complex at the current relative separation and orientation of both 
substrates. 

Each (isolated) subsystem of the promolecule or SRL can be described 
by its pure quantum state, i.e., a single wavefunction ψα

0[Nα
0, vα] of Nα

0 
(integer) electrons moving in the fragment external potential vα due to 
its own nuclei in their fi xed positions. This (complex) wavefunction is 
defi ned by its modulus (Rα

0) and phase (φα
0) components (Figure 3), 

which generate the fragment electron density ρα(r) = Nα
0pα

0(r) and 
distribution of the eff ective velocity of the probability distribution pα

0(r) 
in its current jα

0(r): Vα
0(r) = jα

0(r)/pα
0(r). The former is related to the 

squared wavefunction modulus, while the latter is determined by the 
gradient of its phase. The whole promolecular system R

0, of the two 

separated (noninteracting) substrates, is then described by the product 
function

Ψ 
0(N) = ψA

0[NA
0, vA] ψB

0[NB
0, vB] 

= {RA
0[NA

0, vA] RB
0[NB

0, vB]} exp{i(φA
0[NA

0, vA] + φB
0[NB

0, vB])}

 R0[N, v] exp{iΦ0[N, v]}.                  (29)

In the fi nal (equilibrium) state the “molecular” reactive complex R 

 (A*¦B*) is composed of the mutually-open reactants {α*}, symbolically 

separated by the broken vertical line. They contain fractional numbers 

{Nα
*} of electrons, modifi ed by the optimum B A CT. This isolated 

molecular system can be also characterized by the pure quantum state of 

the whole complex, i.e., a single wavefunction Ψ[N, v] = R[N, v] exp{iΦ[N, 

v]. It should be emphasized that the equilibrium reconstructions in 

electron distributions, already including the CT displacement and the 

associated CT-induced polarization, also infl uence the state phase 

descriptors, since electronic probability fl ows also carry the densities of 

other molecular properties. Therefore, the electronic fl uxes, governed by 

energetic variational principle, also determine the associated changes in 

the information phase/current descriptors of R. 

In other words the electronic currents triggered by the mutual 

opening (entangling) of the two substrates, after equalization of local 

electronegativity (chemical potential) in the whole reactive complex, 

is also responsible for the associated changes in the phase description 

of the chemical process in question. Indeed, the two disentangled 

promolecular (non-interacting) fragments are initially described by the 

separate wavefunctions ψA
0[NA

0, vA] and ψB
0[NB

0, vB], corresponding to 

diff erent probability (modulus) and current (or phase) descriptors of 

their internal equilibrium states in SRL, while entangled subsystems are 

related to the same “molecular” wavefunction 

Ψ(1, 2, …, N)  Ψ(N) = R[N, v] exp{iΦ[N, v]},                   (30)

and hence the common modulus/phase components of the mutually-

open subsystems. This transition of many-electron phases Φ0[N, 

v]Φ[N, v], i.e., 

φA
0[NA

0, vA]  Φ[N, v] and φB
0[NB

0, vB]  Φ[N, v],             (31)

can be thus regarded as a supplementary process of the phase-

equalization in the equilibrium state of the whole reactive system. 

It should be observed that for N-fermion state the Pauli 

antisymmetry principle for electronic wavefunctions,

Figure 3: The phase distinction of the mutually-closed subsystems in the promolecular 
donor-acceptor system R

0
 = (A

0|B0) composed of the acidic (A) and basic (B) subsystems, and 

the phase equalization in the mutually-open fragments of the equilibrium molecular system 
R = (A*¦B*), after the B→A transfer of NCT > 0 electrons.     
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Ψ(1, 2, …, i, …, j, …N) = − Ψ(1, 2, …, j, …, i, …N),                  (32)

calls for the antisymmetric modulus and symmetric phase 

components:

R(1, 2, …, i, …, j, …N) = − R(1, 2, …, j, …, i, …N) and 

Φ(1, 2, …, i, …, j, …N) = Φ(1, 2, …, j, …, i, …N).             (33)

As an illustrative example consider the molecular orbital (MO) 

representation, in terms of Slater determinants (confi gurations) defi ned 

by the given selection 

ψ(r) = {ψs(r) = Rs(r) exp[iφs(r)]}                   (34)

of N singly-occupied (orthonormal) molecular spin-orbitals, 

Ψ(N) = |ψ1 ψ2 … ψN| = det ψ  A [ψ1(1) ψ2(2) … ψN(N)]

= (N!)−1/2 ∑P (−1)n(P)
 ψ1(l1) ψ2(l2) … ψN(lN)  ∑PΨP(N),            (35)

where A stands for the antisymmetrization operator, P = (l1, l2, …, 

lN) is the current permutation of positions of N electrons, and n(P) 

denotes its multiplicity. One recalls that in this Slater determinant 

confi guration all electrons are eff ectively described by all occupied MO. 

Each permutation component of Slater determinant Ψ(N),

ΨP(N) = (N!)−1/2 {(−1)n(P) [R1(l1) R2(l2) … RN(lN)]} exp{i[φ1(l1) + φ2(l2) 

+ …+ φN(lN)]}

= RP[N, v] exp{iΦP[N, v]},                  (36) 

indeed exhibits the antisymmetric modulus component RP[N, v], of 

the permutation product of MO moduli, and the symmetric phase part 

ΦP[N, v], given by the sum of MO phases. 

One further recalls the Harriman-Zumbach-Maschke (HZM) 

construction in DFT [72,73], of electronic wave functions yielding the 

specifi ed electron density ρ(r) = Np(r), based upon earlier ideas by Macke 

[74] and Gilbert [75]. It uses the EO representation, of N occupied MO 

characterized by equal (molecular) moduli 

ψk(r) = p(r)1/2 exp[ikf(r)],                    (37)

and the density dependent vector function f(r) = f[p; r] common 

to all orbitals, which are orthogonal ψk|ψk’ = δ(k − k’) for diff erent 

(constant) MO wave vectors in the determinant [72-77]:

 k1 ≠ k2 ≠ … ≠ kN.                 (38) 

In this EO approximation the overall current due to N-electrons is 

the sum of orbital contributions: 

jN(r) = ∑s ψs|j(r)|ψs  ∑s js(r), 

js(r) = (ħ/m) p(r) φs(r) = (ħ/m) p(r) ks f(r)  p(r) Vs(r),             (39) 

where Vs(r) denotes local probability velocity in ψs. Therefore, 

the resultant current in EO representation is characterized by the 

confi guration average wave vector KΨ = (∑s ks)/N: 

jN(r) = (ħ/m) ρ(r) KΨ f(r)  ρ(r) VΨ (r),               (40)

with VΨ(r) standing for the confi guration average descriptor of the 

local probability velocity.

Since molecular wavefunctions and their components are in 

general many-electron in character, for the visualization/interpretation 

purposes one introduces the eff ective one-electron distributions. For 

example, the electron density ρ(r) = Np(r) or its shape factor (probability)

distribution p(r) both refer to the combined event of fi nding any of 

the system N electrons at position r, for all allowed spin orientations 

and admissible positions of remaining electrons. Taking into account 

the electron indistinguishability in QM, with all electrons generating 

equal contributions to the overall descriptor and each MO being 

characterized by the same occupation-probability in confi guration’s 

Slater determinant, Ps = 1/N, gives the following expression for p(r):

p(r) = ρ(r)/N  [∑s ps(r)]/N = ∑s Ps
 ps(r)

= ∫R[N, v]2 δ(r1 − r) dτ
N  ∫P[N, v] δ(r1 − r) dτ

N  (r)2,                  (41)

where P[N, v] is the N-electron probability density, ∫dτN stands 

for integrations over the position-coordinates and summation over 

spin-orientations of all N electrons, and (r) denotes the eff ective one-

electron probability amplitude. 

Similar reduction can be envisaged for the phase descriptors. 

The average local phase φ(r) of the molecular confi guration in EO 

representation can be defi ned as follows:

φ(r) = ∑s Ps
 φs(r) = N−1

 (∑s ks)  f(r) = KΨ  f(r).               (42)

Therefore, the overall current in the N electronic system [Eq. (40)] 

can be also interpreted in terms of the eff ective one-electron densities: 

jN(r) = (ħ/m) ρ(r) KΨ f(r) = (ħ/m) ρ(r) φ(r)  ρ(r) VΨ (r).          (43)

These representative one-electron distributions of the probability 

and phase/current in N-electron systems describe the complementary 

facets of the electronic organization: the classical (probability) 

“structure of being” and the nonclassical (phase/current) “structure of 

becoming” [78]. 

Phase equalization

Therefore, the opening of both substrates brings about simultaneous 

equalizations of their chemical potential (electronegativity) and phase 

descriptors in the equilibrium (bonded) state of the donor-acceptor 

reaction complex [10]:

μA
* = μB

* = μ      and     Φ A
*(r) = ΦB

*(r) = Φ(r).                  (44)

The phase-adjustment thus accompanies the charge reconstruction 

in the whole reactive system. This equilibrium amount of CT between 

mutually-open reactants and the accompanying density reconstruction 

in both substrates thus bring about the equalization of the subsystem 

phases in the reactive system at the molecular distribution. The 

probability-velocity descriptor VΨ(r) also determines the currents of 

other physical properties, e.g., the phase-current jφ(r) = φ(r) VΨ(r), since 



010

https://www.peertechz.com/journals/open-journal-of-chemistry

Citation: Nalewajski RF (2021) Equalization principles in open subsystems, origins of information descriptors and state-continuity relations. Open Journal of 
Chemistry 7(1): 004-021. DOI: https://dx.doi.org/10.17352/ojc.000023

their densities are also carried by electrons. Therefore, the molecular” 

FF descriptors of Section 2, which refl ect the equilibrium density/

population responses of the mutually-open fragments to the global 

population displacements, can be also applied in the phase-equalization 

considerations. 

Consider the EO description of this process (Figure 4). In the 

polarized system R+ (Panel a of the fi gure) both reactants preserve 

their promolecular (integer) numbers of electrons {Nα
+ = Nα

0}. The EO 

description of their electron distributions {ρα
+} can be eff ected in terms 

of Slater determinants describing polarized reactants, {Ψα[Nα
+, v] = det 

ψα
+}, where the fragment EO 

ψα
+ = {ψi,α(r) = [pα

+(r)]1/2 exp{iki,α  f[pα; r]}, k1,α ≠ k2,α ≠ … ≠ ki,α ≠ …,  

                (45a) 

reconstruct its polarized electron density ρα
+(r) = Nα

+ pα
+(r). Such 

internal equilibria in the mutually-closed subsystems correspond to the 

fragment average wave-vectors {Kα = [∑s(α) ks(α)]/Nα
+} and the associated 

phases  α(r) = Kα  fα(r), where fα(r) = f[pα; r]. The global equilibrium (of 

Panel b in Figure 4) similarly describes the whole “molecular” system R 

with its own set of EO 

ψ = {ψs(r) = [p(r)]1/2 exp{iks  f[p; r]}, k1 ≠ k2 ≠ … ≠ ks ≠ …,             (45b)

reconstructing ρ(r) = Np(r). This global equilibrium in the whole 

reactive system corresponds to molecular wave-vector KΨ [Eq. (40)] and 

phase φ(r) [Eq. (42)].

To summarize, in EO representation the electron distributions of 

distinguishable (interacting) fragments {α+} of R+
 are characterized 

by the set of (polarized) subsystem densities {ρα
+} and the associated 

(localized) orbitals {ψα
+}, while the equilibrium substrates {α *} in R 

are described by the molecular density ρ and (delocalized) orbitals ψ. 

Therefore, the corresponding phase descriptors of such internal and 

global equilibria are unique functionals of the “argument” distributions 

and the associated populations: 

{φα
+(r) = φα

+[{ρβ
+}; r]} = φα

+[{ρβ
+[Nβ

0, v]}; r]} = φα
+[{Nβ

0}, v; r] and  

                (46)

φα
*(r) = φα

*[{ρβ
*[ρ]}; r] = φα

*[ρ; r] = φ(r) = φ[ρ[N, v]; r] = φ[N, v; 

r].                  (47)

Moreover, since BA CT is ultimately responsible for establishing 

the molecular density ρ(r) and its equilibrium pieces { β
*[ρ]}, all these 

distributions and the associated equilibrium populations {Nβ
* =∫ρβ

*dr} 

are functions of the current amount NCT of this electronic fl ow descriptor: 

{ρβ
*(r) = ρβ

*(NCT; r)  Nβ
* = Nβ

*(NCT)} and ρ(r) = ρ(NCT; r).           (48)

A reference to Eq. (44) indicates that the eff ective phases-per-

electron in the mutually-open subsystems equalize at the global 

equilibrium, after the optimum amount of CT [Eq. (27)], so that their 

local diff erence identically vanishes:

φCT(r)  φA
*(r) − φB

*(r) = 0.                   (49) 

This (in situ) phase “gradient” can indeed be regarded as 

populational CT-derivative of the eff ective phase density of N electrons, 

in the reactive complex as a whole [see Eq. (24)], 

Φ(r) = Nφ(r) = (NA
* + NB

*) φ(r) = NA
*φA

*(r) + NB
*φB

*(r)  ΦA
*(r) + 

ΦB
*(r),                      (50) 

dΦ(r)/dNCT = [dNA
*/dNCT][∂ΦA

*(r)/∂NA
*] + [dNB

*/dNCT]

[ ΦB
*(r)/∂NB

*]

 = FA
CT φA

*(r) + FB
CT φB

*(r) = φA
*(r) − φB

*(r).                   (51) 

In R
+

 the nonequalized phases of both reactants generate the (in 

situ) phase “force” 

φCT
+(r)  φA

+(r) − φB
+(r) ≠ 0,                  (52)

which also vanishes after the optimum CT of Eq. (27): 

φCT
+(r) + NCT [dφCT(r)/dNCT]  φCT

+(r) + NCT ξCT(r) = 0.               (53)

The above descriptor of the (in situ) phase “hardness” represents 

the CT Hessian

ξCT(r) = dφCT(r)/dNCT = d2Φ(r)/dNCT
2,                (54)

which also determines the equilibrium amount of CT [compare Eq. 

(27)]:

NCT = −φCT
+(r)/ξCT(r).                 (55)

Local energy concept

Consider, for simplicity reasons, the quantum state |ψ(t) of a single 

electron at time t, and the associated (complex) wavefunction in the 

position representation, 

ψ(r, t) = r|ψ(t) = R(r, t) exp[iφ(r, t)],                (56)

Figure 4: Schematic profi les of two “delocalized” (molecular) EO {ψk(α
*)}, in the whole 

reactive system (Panel a), and “localized” (reactant) MO {ψk(α
+)}, in the polarized reactive 

system (Panel b), for the entangled R* = (A*¦B*) and disentangled R+ = (A+|B+) fragments of 
the donor-acceptor system, respectively. The subsystem EO { k(α

+)} reconstruct the electron 
density ρα

+ in the polarized fragment, while the “molecular” functions yield the electron 
distribution ρ in R as a whole.   
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defi ned by its modulus R(r, t) and phase φ(r, t) ≥ 0 parts. The state 

logarithm then additively separates these two independent components: 

2lnψ(r, t) = 2lnR(r, t) + 2iφ(r, t) = lnp(r, t) + 2iφ(r, t),                (57)

where p(r, t) = R(r, t)
2 denotes the spatial probability density. The 

real part of the wavefunction is thus seen to determine the logarithm 

of the state classical (probability) component, while the imaginary part 

accounts for the nonclassical (phase) distribution: 

Re[2lnψ(r, t)] = 2lnR(r, t) = lnp(r, t) and Im[lnψ(r, t)] = φ(r, t).  (58) 

In molecular scenario an electron is moving in the external potential 
v(r) due to the fi xed positions of the system constituent nuclei. In this 
BO approximation the (Hermitian) electronic Hamiltonian 

H(r) = − [ħ2/(2m)] ∆ + v(r)  T(r) + v(r)                   (59) 

determines the quantum dynamics of molecular electronic state, in 
accordance with the time-dependent SE: 

iħ [∂ψ(r, t)/∂t] = H(r)ψ(r, t).              (60)

This fundamental equation and its complex conjugate ultimately 
imply the associated dynamic equations for the wavefunction components 

or temporal evolutions of the associated physical distributions of the 
spatial probability and current densities (see also Section 9).

Consider the stationary state corresponding to the sharply specifi ed 
energy Est., 

ψst.(r, t) = Rst.(r) exp[−i(Est./ħ)t] = Rst.(r) exp(−iωst.t),              (61)

when φst.(r, t) = φst.(t) = − st.t. In such “equilibrium”, zero-current 
state 

jst.(r, t) = (ħ/m) pst.(r) φst.(t) = 0,                 (62)

the probability distribution is time-independent: 

pst.(r, t) = |ψst.(r, t)|2 = Rst.(r)2  pst.(r).                (63)

These eigenstates of electronic Hamiltonian,

H(r)ψst.(r, t) = Est.ψst.(r, t) or H(r) Rst.(r) = Est. Rst.(r),              (64)

thus correspond to the spatially equalized local energy 

E(r, t)  ψ(r, t)
−1

 H(r)ψ(r, t),              (65)

Est.(r)  Rst.(r)−1
 H(r)Rst.(r) = Est..                  (66)

This principle of the local-energy equalization can be also 

interpreted as the related equalization rule or the spatial phase. Indeed, 

the local wave-number/phase concepts, 

ω(r, t)  E(r, t)/ħ and φ(r, t) = − ω(r, t) t,              (67)

directly imply their spatial equalization in the stationary electronic 

state: 

ωst.(r, t) = Est./ħ = ωst.= const. and Φst.(r, t) = − (Est./ħ) t = −ωst.t = Φst.

(t).                     (68)

The quantum stationary-equilibrium is thus marked by the local 

phase equalization throughout the whole physical space. It should be 

realized that due to complex nature of wavefunctions the local energy 

of Eq. (65) is also complex in character: E(r, t) ≠ E(r, t)
*. This further 

implies the complex concepts of local phase/wave-number, e.g.,

ω(r, t) = c(r, t) + i b(r, t), 

c(r, t) = Re[ω(r, t)] = [ω(r, t) + ω(r, t)
*]/2, 

b(r, t) = Im[ω(r, t)] = [ω(r, t) − ω(r, t)
*]/(2i),              (69) 

which determine dynamic equations for the additive components 

of the state wavefunction [Eq. (57)]. Rewriting local SE in terms of 

complex wave-number components gives:

ψ(r, t)
−1

 [∂ψ(r, t)/∂t] = ∂lnψ(r, t)/∂t = ∂lnR(r, t)/∂t + i ∂φ(r, t)/∂t 

 = − iω(r, t) = − ic(r, t) + b(r, t).                 (70) 

The real terms in this complex equation determine the modulus-

dynamics, 

∂lnR(r, t)/∂t = b(r, t),                   (71)

while its imaginary terms determine time-evolution of the 

wavefunction phase:

∂φ(r, t)/∂t = − c(r, t).                  (72)

To summarize, the (complex) local energy generates a transparent 

description of the non-equilibrium time evolution of wave-function 

components: its real contribution shapes the phase-dynamics, while the 

modulus-dynamics is governed by the imaginary components of E(r, t) 

and ω(r, t). The spatial equalization of these complex wave-number or 

local-phase concepts marks the stationary equilibrium in QM. 

Independent origins of information content in electronic 
states 

The independent (real) parts of the electronic wavefunction in 

Eq. (56) ultimately defi ne the state physical descriptors of the spatial 

probability density p(r, t) = R(r, t)
2 and its current

j(r, t)  ψ|j(r)|ψ = [ħ/(2mi)] [ψ(r, t)
* ψ(r, t) − ψ(r, t)

 ψ(r, t)
*] 

 = (ħ/m) p(r, t) φ(r, t)  p(r, t) V(r, t).                 (73)

The eff ective probability velocity introduced in the preceding 

equation,

V(r, t)  P(r, t)/m = (ħ/m) φ(r, t)  j(r, t)/p(r, t),                   (74) 

thus measures a density of the current-per-particle. It refl ects the 

local momentum density P(r, t)  ħ k(r, t), with k(r, t) = φ(r, t) standing 

for its wave-vector factor. 

To summarize, the real and imaginary components of electronic 

wavefunction determine the independent probability and velocity 

densities, respectively. They account for the “static” and “dynamic” 

(convection) aspects of the state probability distribution, which we call 
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the stuctures of “being” and “becoming” [78], and determine the overall 

(resultant) descriptors of the state uncertainty (entropy) content S[ψ] 

or the overall gradient information I[ψ] [4,79-83]: 

S[ψ] = S[p] + S[φ] = S[p, φ] and I[ψ] = I[p] + I[φ] = I[p, φ].           (75)

Their probability terms S[p] and I[p], due to the logarithm of the 

state probability density, constitute the classical information-theoretic 

(IT) concepts of Shannon’s global entropy [19],

S[p] = − ∫p(r, t) lnp(r, t) dr,                  (76) 

and Fisher’s information functional for locality events [17]: 

I[p] = ∫p(r, t) [lnp(r, t)]2
 dr = ∫p(r, t)

−1
 [p(r, t)]2

 dr.                   (77) 

These generalized IT measures have been used to describe the 

equilibria in the substrate subsystems and to monitor electronic 

reconstructions in chemical reactions [8-10,84-87]. 

In resultant measures these classical functionals are supplemented 

by the corresponding nonclassical complements S[φ] and I[φ] = I[j], 

due to wavefunction phase or the associated electronic current. For 

example, in the overall (“scalar”) entropy [4,79] the (positive) classical 

descriptor is combined with the (negative) average phase contribution, 

S[ψ] = S[p] − 2∫p(r, t) φ(r, t) dr  S[p] + S[φ] 

 = − ∫p(r, t)[lnp(r, t) + 2φ(r, t)] dr  ∫p(r, t) S(r, t) dr,                  (78)

while the complex (“vector”) uncertainty measure [4,81] represents 

the expectation value of the (non-Hermitian) entropy operator S = 

−2lnψ:

S[ψ]  ψ| 2lnψ|ψ = S[p] − 2i∫p(r, t) φ(r, t) dr  S[p] + i S[φ] = S[p, 

φ]

 = − ∫p(r, t)[lnp(r, t) + 2iφ(r, t)] dr  ∫p(r, t) S(r, t) dr.                (79) 

The negative nonclassical entropy eff ectively lowers the state 

classical uncertainty measure S[p]. Indeed, any presence of fi nite 

currents implies more state spatial “order” (less “uncertainty”). 

The resultant measure of the state average gradient information 

[4,79-83]. 

I[ψ]  −4 ψ|∆|ψ = 4ψ|ψ = (8m/ħ2) ψ|T|ψ  κ T[ψ] 

 = I[p] + 4∫p(r, t) [φ(r, t)]2
 dr  I[p] + I[φ]

 = I[p] + (2m/ħ)2 ∫p(r, t)
−1 j(r, t)

2
 dr  I[p] + I[j] 

 =  p(r, t){[lnp(r, t)]2 + 4[φ(r, t)]2} dr  ∫p(r, t) I(r, t) dr,           (80)

refl ects the (dimensionless) kinetic energy of electrons: T[ψ] = 

ψ|T|ψ = κ−1
 I[ψ]. One also introduces the resultant measure of the 

gradient entropy, again with the negative nonclassical contribution [4],

M[ψ] = M[p] + M[φ]  I[p] − I[φ],               (81)

which recognizes the fact that a nonvanishing current pattern 

introduces extra “order”, less “uncertainty”, compared to the classical 

descriptor M[p] = I[p].

Information reactivity criteria 

The (externally) open microscopic systems require the mixed-

state description, in terms of the ensemble-average physical 

quantities accounting for the imposed thermodynamic conditions. 

In reactivity problems the specifi ed temperature T of the “heat bath”, 

and of electronic chemical potential μ (or electronegativity χ = − ) of a 

macroscopic “electron reservoir”, call for the grand-ensemble approach 
[14,62,63]. The system equilibrium (mixed) quantum state is then 
represented by the statistical mixture of the system pure states, defi ned 
by their (externally-imposed) equilibrium probabilities. Indeed, only 
the ensemble-average value of the overall number of electrons N  Nens. 

in the externally-open molecule M(v), identifi ed by its external potential 
v(r), exhibits a continuous (fractional) spectrum of values in the 
ensemble composed system M = [M(v)¦R] consisting of the molecular 
fragment M(v) open with respect to an external (macroscopic) electron 

reservoir R. This justifi es the very concept of populational derivatives of 
the system ensemble-average energy. 

Such N-derivatives of electronic energy are involved in defi nitions of 
several reactivity criteria, e.g., the chemical potential or electronegativity 

[14,62-66] and the hardness (softness) [14,67] and FF [14,68] 
descriptors of molecular and reactive systems. In IT treatments one 
introduces analogous concepts of the populational derivatives of the 
ensemble average (resultant) gradient information [9,85-88]. Since 
reactivity phenomena involve electron fl ows between the mutually-
open substrates, only in such generalized, ensemble framework can 
one precisely defi ne the relevant reactivity criteria, determine the 
hypothetical states of the promoted subsystems and eventually measure 
eff ects of their chemical coordination. In this ensemble approach the 
energetic and information principles are exactly equivalent, giving 
rise to identical predictions of thermodynamic equilibria, charge 
rearrangements and average descriptors of molecular systems and their 
fragments. 

The populational derivatives of the average energy and resultant 
information in reactive systems thus invoke the grand-ensemble 
composite representation M(v)ens. of a given molecular system M(v). 
Thermodynamic conditions in the (microscopic) molecular system in 
question are then imposed by the hypothetical (macroscopic) heat bath 
B(T) and external electron reservoir R(μ). The eff ective mixed-state then 

corresponds to the equilibrium probabilities P(μ, T; v)  {Pj
i(μ, T; v)} 

of the molecular (pure) stationary states {|Ψj
i  |Ψj(Ni)}, where |Ψj

i 
denotes j-th state of Ni (integer) electrons, which defi ne the equilibrium 
density operator: 

D(μ, T; v) = ∑i∑j | j
i Pj

i(μ, T; v) Ψj
i|, ∑i∑j Pj

i(μ, T; v)  ∑i P
i(μ, T; v) = 1.  

                 (82)

This statistical mixture of molecular stationary states gives rise to 
the corresponding ensemble-average values of the system electronic 
energy and its resultant gradient information. The former is defi ned by 

quantum expectations of electronic Hamiltonians {Hi = H(Ni, v)}, 

Eens. = ∑i∑j Pj
i(μ, T; v) Ψj

i| Hi| j
i  ∑i∑j Pj

i(μ, T; v) Ej
i  E(μ, T; v)  

E(D),                      (83)

while the latter corresponds to expectations of the (Hermitian) 
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operators {Ii = I(Ni)} for the resultant gradient information of Ni 

electrons, related to the system kinetic-energy operators {T(Ni)}, 

Ii = (8m/ħ2) T(Ni)  κ Ti,                   (84)

Iens. = ∑i∑j Pj
i(μ, T; v)  j

i|Ii| j
i  ∑i∑j Pj

i(μ, T; v) Ij
i
  I(μ, T; v)  I(D),  (85) 

Thus the average gradient information I(D) refl ects the 

(dimensionless) average kinetic energy Tens.  T(μ, T; v)  T(D), 

T(D) = ∑i ∑j Pj
i(μ, T; v)  j

i|Ti|Ψj
i  ∑i∑j Pj

i(μ, T; v) Tj
i = κ

−1I(D), 

Tj
i = Ψj

i|Ti| j
i = κ−1

 Ij
i.                (86)

The equilibrium probabilities P(μ, T; v) result from the minimum 

principle of the grand-potential 

Ω(D) = E(D) − μ N(D) − TS(D),                (87) 

δΩ(D)|P(μ,T; v) = 0.                   (88)

Here, the average number of electrons

Nens. = N(D) = ∑i Ni [∑j Pj
i(μ, T; v)]  ∑i Ni P

i(μ, T; v)              (89) 

and the average entropy    

Sens. = tr(DS) = S(D)  −kB  i∑j Pj
i(μ, T; v) lnPj

i(μ, T; v)            (90)

with kB denoting the Boltzmann constant. 

The entropy constrained energy principle of Eq. (88) can be also 

interpreted as equivalent potential-energy constrained information rule, 

for the minimum of resultant gradient-information: 

δ[I(D) − λ W(D) − ζ N(D) − τ S(D)]P(μ,T; v) = 0.               (91)

It contains an additional constraint of the fi xed overall potential 

energy, Wens. = W(D), multiplied by the Lagrange multiplier λ = −κ, and 

includes “scaled” intensities associated with the remaining constraints: 

the information potential ζ = κ μ enforcing the prescribed electron 

number, N(D) = N, and the information temperature τ  κ T for the 

subsidiary entropy condition: S(D) = S. The complementary principles 

of Eqs. (88) and (91) determine the same set of the equilibrium state 

probabilities. 

Several N-derivatives of the ensemble averages of electronic energy 

or resultant gradient-information defi ne useful reactivity criteria. 

The physical equivalence of the energy and information principles 

indicates that such reactivity concepts are mutually related, being both 

capable of describing CT phenomena in donor-acceptor systems. The 

ensemble interpretation applies to both the “diagonal” and “mixed” 

second derivatives of the average electronic energy, which involve the 

diff erentiation with respect to electron-population variable. For example, 

in energy representation the global chemical hardness [67] refl ects the 

N-derivative of the chemical potential, 

η = ∂2E/∂N 
2 = ∂μ/∂N > 0,                  (92)

while the information hardness measures the N-derivative of the 

information potential: 

ω = ∂2I/∂N 
2 = ∂ζ/∂N = κ η > 0.                  (93)

The positive signs of these “diagonal” (hardness) derivatives assure 

the external stability of M(v)ens., with respect to charge fl ows between 

the molecular system and its electron reservoir, in accordance with the 

Le Châtelier and Le Châtelier-Braun principles of thermodynamics [89]. 

The global FF [68] is defi ned by the “mixed” second derivative of 

the average energy: 

f(r) = ∂/∂N [δE/δv(r)] = ∂ρ(r)/∂N = δ/δv(r) (∂E/∂N ) = δμ/δv(r),  

                 (94) 

where we have applied the Maxwell cross-diff erentiation identity. 

It can be thus interpreted as either the density response per unit 

populational displacement, or as the response in global chemical 

potential to unit displacement in the local external potential. The 

analogous derivative of the average gradient information similarly 

reads:

(r) = ∂/∂N [δI/δv(r)] = δ/δv(r) (∂I/∂N ) = κ f(r) = δζ/δv(r).        (95) 

The in situ CT-derivatives of the average resultant gradient-

information in the reactive system R = A----B follow the corresponding 

energy criteria of Eqs. (25)-(28). They include the in situ information 

potential related to μCT,

ζCT = ∂I(NCT)/∂NCT = κ μCT,                   (96)

and the CT information hardness related to ηCT = SCT
−1, 

ωCT = ∂2I(NCT)/∂NCT
2 = ∂ζ(NCT)/∂NCT = κ ηCT  θCT

−1,              (97)

inverse of the CT information-softness θCT = ∂NCT/∂ζ. In terms of 

these in situ descriptors the optimum amount of the BA CT in the 

acid-base reactive system thus reads:

NCT = − μCT/ηCT = −μCT SCT = − ζCT/ωCT = −ζCT θCT.               (98)

Therefore, the in situ derivatives {ζCT, ωCT = θCT
−1} of the average 

measure of the resultant gradient-information content provide 

alternative reactivity descriptors, analogous to the energetic criteria of 

the chemical potential and hardness or softness indices {μCT, ηCT = SCT
−1} 

of a classical, energy-centered theory of chemical reactivity. This again 

demonstrates the physical equivalence of the energy and information 

principles in describing the CT phenomena in molecular systems. One 

thus concludes that the resultant gradient information, the quantum 

generalization of the classical Fisher measure, constitutes a reliable 

basis for an “entropic” description of reactivity phenomena. 

Gaining information by eliminating uncertainties 

In both the classical probability theory and in position representation 

of QM the admissible locations {r} of an electron exhaust the whole 

physical space and constitute the complete set of elementary (exclusive) 

position events. The classical probability scheme {rp(r)} of Figure 5, 

infi nite and continuous, describes a state of the position indeterminacy 

(uncertainty). It is best refl ected by Shannon’s entropy S[p], since we 

know only probabilities p(r) = |ψ(r)|2 of possible defi nite outcomes in 
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the underlying particle-localization experiment. This average entropy 

descriptor measures a “spread” (width) of the probability distribution. 

Another suitable classical IT probe of the average information 

content in p(r) is provided by Fisher’s probability functional I[p]. 

This gradient measure of the position determinacy (localization) 

refl ects a “compactness” (hight) of the probability distribution, thus 

complementing the Shannon descriptor. 

The information given us by carrying out the given experiment 

consists in removing the uncertainty existing before the experiment 

[90]. If we carry out the particle-localization trial we obtain some 

information, since its outcome means that we then know exactly, 

which particle position has actually been detected. This implies that 

after repeated probes performed for the specifi ed quantum state the 

initial uncertainty contained in the position probability scheme has 

been completely eliminated. The average information gained by the 

repeated localization tests thus amounts to the removed position 

uncertainty. The larger the uncertainty in ρ(r), the larger the amount 

of information obtained when we fi nd out which electron position has 

actually been detected after the experiment. In other words, the amount 

of information given us by the realization of the classical, probability 

scheme alone equals to the global entropy in the classical scheme of 

Figure 5.

In QM, however, one deals with the wavefunction scheme 

{rψ(r)} of Figure 5, in which the classical map {rp(r)} constitutes 

only a part of the overall (complex) mapping. In fact, the wavefunction 

mapping implies a simultaneous ascribing to an electron position the 

local modulus and phase arguments of the state wavefunction, or the 

related local probability and current/velocity quantities. This two-

level scheme in QM ultimately calls for the resultant measures of the 

entropy/information content in quantum states, combining the classical 

(probability) and nonclassical (phase/current) contributions. The 

diff erence between the resultant and classical information contents can 

be best compared to that between the (phase-dependent) hologram and 

(phase-independent) ordinary photograph. 

It is interesting to note that in QM the localization experiments 

cannot remove all the uncertainty contained in general electronic states, 

exhibiting nonvanishing local phase component, φ(r, t) > 0, and hence 

also a fi nite current density j(r, t) ≠ 0, which identically vanishes only 

in the stationary state of Eq. (61): jst.(r, t) = Vst.(r, t) = 0. For such 

equilibrium wavefunctions an experimental determination of electronic 

position completely removes all the uncertainty contained in the spatial 

wavefunction Rst.(r). Indeed, the quantum scheme of Figure 5 then 

reduces to classical mapping. 

Since the current operator includes the momentum operator of an 

electron, 

j(r) = (2m)−1[P p(r) + p(r) P], 

P(r) = −iħ, p(r) = |r r , {r |r’ = r’ |r’},  (99)

which does not commute with the position operator r = r, [r, P] 

= iħ, the incompatible observables r and j(r) do not have common 

eigenstates. In other words, in QM these quantities cannot be sharply 

defi ned simultaneously, in accordance with the familiar Heisenberg’s 

uncertainty principle. Therefore, the position dispersion σr cannot be 

simultaneously eliminated with the current dispersion σj(r) in a single 

type of experiment, e.g., of the particle-localization, since a removal of 

 j(r) calls for the momentum experimental setup, which is incompatible 

with that required for determining the electron position. Therefore, only 

the independent (separate) localization and momentum experiments 

can fully eliminate the position and current uncertainties contained in 

a general electronic state. 

It follows from Heisenberg’s uncertainty principle of QM that the 

limiting, lowest value of the product of squared dispersions σj(r) and σr, 

σX = ψ|(X − Xψ)2|ψ1/2 and Xψ = ψ|X|ψ, X  {r, j(r)},          (100)

is determined by the state squared expectation of the commutator of 

the two operators involved:

[σj(r)(t)]2 [σr(t)]2
 > − ψ(t)|[j(r), r]|ψ (t)2/4 = {i ψ(t)|[j(r), 

r]|ψ(t)/2}2,                  (101)

where 

[j(r), r] = (2m)−1{[P, r] p(r) + p(r) [P, r]} = ħp(r)/(mi).                      (102)

Hence, the lowest value of the product of the simultaneous 

dispersions satisfi es the inequality:

σj(r)(t) σr(t) > ψ(t)|p(r)|ψ(t) ħ/(2m) = [ħ/(2m)] p(r, t).            (103)

This lower-bound is thus proportional to local probability density 

p(r, t) > 0. 

Consequently, in the quantum (wavefunction) mapping to the state 

probability and current distributions, ψ(r, t)[p(r, t), j(r, t)], the overall 

quantum uncertainty cannot be completely eliminated by a single type 

of experiment, due to the known determinacy limitations imposed by 

the Heisenberg principle. However, these two sources of the information 

(removed uncertainty) are in principle accessible experimentally by 

performing separate position and momentum probes of the specifi ed 

quantum state ψ(r, t). 

Therefore, accounting for the position and current indeterminacies 

requires carrying out the incompatible experiments for determining 

the particle position and its momentum. Although a simultaneous 

elimination of these uncertainties is impossible, the independent position 

and current (momentum) experiments can provide measures of the 

entropy or information contained in such incompatible distributions. 

Eliminating the (static) uncertainty in the spatial probability 

distribution, by performing the position probe, still leaves the (dynamic) 

current uncertainty, which can be accounted for in the overall (resultant) 

descriptor only by carrying out an additional momentum experiment. 

Figure 5: Classical (probability) and quantum (wavefunction) information schemes in 
molecular quantum mechanics. The quantum mapping {r→ψ(r)} implies both the classical 
{r→p(r)} and nonclassical attributions {r→[φ(r), j(r) or V(r)]}.   
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Thus, a single-type experiment, e.g., that for determining 

particle’s location, which underlies the position representation of the 

state wavefunction ψ(r, t), accounts for the position entropy S[p] or 

information I[p], leaving the phase uncertainty S[φ] and information 

I[φ] unaccounted for. The nonclassical entropy contribution, inaccessible 

in the position-only experiments, marks the diff erence between the 

resultant and classical information functionals. It is refl ected by the 

(negative) nonclassical contribution S[φ] < 0 in the state overall scalar 

entropy [Eq. (78)] and the corresponding (imaginary) component of the 

vector measure [Eq. (79)]. 

In the position-representation of QM the nonclassical uncertainty 

thus eff ectively lowers the information received from the localization-

only experiment. The removable uncertainty in ψ(r) is then less than its 

classical content S[ρ] or M[ρ] = I[ρ]. In other words, the nonvanishing 

current pattern introduces an extra determinacy in the overall electronic 

structure, which diminishes its resultant uncertainty (indeterminacy) 

descriptors. These diff erences can be thus considered as the associated 

amounts of information contained in the phase/current/velocity 

distributions, which require the momentum (dynamical) experimental 

setup. 

Continuity relations

It is of crucial importance in continuity laws of QM to distinguish 

between the reference frame moving with the particle (Lagrangian 

frame) and the reference frame fi xed to the prescribed coordinate 

system (Eulerian frame). The total derivative d/dt is the time change 

appearing to an observer who moves with the probability fl ux, while 

the partial derivative ∂/ t is the local time rate of change observed from 

a fi xed point in the Eulerian reference frame. These derivatives are 

related to each other by the chain-rule transformation, 

d/dt = ∂/∂t + V(r, t) ,                 (104)

where the velocity-dependent part V(r, t)  generates the 

“convection” term. 

In Schrödinger’s dynamical picture the state vector |ψ(t) introduces 

an explicit time-dependence of the system wavefunction, while the 

dynamics of the basis vector |r(t) of the position representation is 

the source of an additional, implicit time-dependence of electronic 

wavefunction ψ(r, t) = ψ[r(t), t], due to the moving reference (monitoring) 

point. This separation applies to wavefunctions, their components, 

and expectation values of physical observables. In Table 1 we have 

summarized the dynamic equations for the wavefunction modulus and 

phase components together with the continuity relations for the state 

probability, current and information densities, which directly follow 

from the wavefunction dynamics of SE. 

It directly follows from SE that the probability fi eld is sourceless:

∂p(r, t)/∂t = 2R(r, t) [∂R(r, t)/∂t] = −  j(r, t) = − V(r, t) p(r, t) or 

σp(r, t)  dp(r, t)/dt = ∂p(r, t)/∂t +  j(r, t) = ∂ρ(r, t)/∂t + p(r, t)  
V(r, t) = 0.                 (105)

Indeed, separating the explicit time dependence of p(r, t) from the 

implicit dependence originating from r(t), p(r, t) = p[r(t), t], gives: 

σp(r, t) = ∂p[r(t), t]/∂t + (dr/dt)  ∂p(r, t)/∂r 

 = ∂p(r, t)/∂t + V(r, t) p(r, t) 

 = ∂p(r, t)/∂t +  j(r, t).               (106) 

Above, the total time-derivative dp(r, t)/dt determines the vanishing 
local probability “source”: σp(r, t) = 0. It measures the time rate of change 
in an infi nitesimal volume element of probability fl uid moving with 
velocity V(r, t) = dr(t)/dt, while the partial derivative ∂p[r(t), t]/∂t refers 
to volume element around the fi xed point in space. The divergence of 

probability fl ux in the preceding equation, 

 j(r, t) = p(r, t)  V(r, t) + p(r, t) V(r, t) = p(r, t) V(r, t),        (107) 

thus implies the vanishing divergence of the velocity fi eld V(r, t), 

related to the phase Laplacian 2φ(r, t) = ∆φ(r, t),

V(r, t) = (ħ/m) ∆φ(r, t) = 0 or ∆φ(r, t) = 0.              (108)

As in fl uid dynamics, in these transport equations the operators 
(V ) and 2 = ∆ represent the “convection” and “diff usion”, respectively. 
Thus, the local evolution of the particle probability is governed by the 
density “convection” [Eq. (105)], while the preceding equation implies 
the vanishing “diff usion” of the phase distribution. It also follows from 
the expression for a local information source in the table, that it is 
determined by the “convection” term of the phase source. 

When expressed in terms of the modulus and phase components of 

the state wavefunction SE reads:

iħ [∂ψ(r, t)/∂t] = iħ {[∂R(r, t)/∂t] + iR(r, t) [∂φ(r, t)/∂t]} exp[iφ(r, 

t)] = H(r)ψ(r, t)

= [−ħ
2(2m)−1{∆R(r, t) + 2i R(r, t)  φ (r, t)   R(r, t) [ φ(r, t)]2} 

 + v(r) R(r, t)] exp[iφ(r, t)],               (109) 

where we have used Eq. (108). Dividing both sides of this equation 
by ħR(r, t) and multiplying by exp[−iφ(r, t)] gives the following complex 
relation:

 i [∂lnR(r, t)/∂t] − ∂φ(r, t)/∂t = −[ħ/(2m)]{R(r, t)−1∆R(r, t) + 
2i[lnR(r, t)]φ(r, t) − [ φ(r, t)]2} + v(r)/ħ.             (110)

Comparing the imaginary parts of the preceding equation generates 
the dynamic equation for the time evolution of the modulus part of 
electronic state,

∂lnR(r, t)/∂t = − [(ħ/m) φ(r, t)] lnR(r, t) = − V(r, t)  lnR(r, t),  
                 (111)

which can be directly transformed into the probability-continuity 
relation

∂p(r, t)/∂t = − j(r, t) or σp(r, t) = dp(r, t)/dt = 0.               (112)

Equating the real parts of Eq. (110) similarly determines the phase-

dynamics 
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∂φ(r, t)/∂t = [ħ/(2m)] [R(r, t)
−1∆R(r, t) − [ φ(r, t)]2] − v(r)/ħ.     (113)

The preceding equation ultimately determines the production term 

σφ(r, t) = dφ(r, t)/dt in the phase continuity relation

∂φ(r, t)/∂t = − J(r, t) + σφ(r, t),                (114)

since the eff ective velocity V(r, t) of the probability-current j(r, t) = 

p(r, t) V(r, t) also determines the phase-fl ux and its divergence: 

J(r, t) = φ(r, t) V(r, t) and 

 J(r, t) = V(r, t) φ(r, t) = (ħ/m) [φ(r, t)]2.               (115)

The latter represents the convection term in the phase-continuity 

equation. This complementary fl ow descriptor ultimately generates a 

fi nite phase-source: 

σφ(r, t)  dφ(r, t)/dt = ∂φ(r, t)/∂t + V(r, t)  φ(r, t) ≠ 0.            (116)

Hence, using Eq. (113) fi nally gives: 

σφ(r, t) = [ħ/(2m)]{R(r, t)
−1∆R(r, t) + [φ(r, t)]2} − v(r)/ħ.             (117)

This phase production is seen to group the probability-diff usion 

and phase-convection terms supplemented by the external potential 

contribution.

Finally, by comparing Eqs. (71) and (72) with Eqs. (111) and (113), 

respectively, one arrives at the following expressions for the real and 

imaginary parts of the local wave-number of Eq. (69) in terms of 

additive components of the wavefunction logarithm [Eq. (57)]:

c(r, t) = −∂φ(r, t)/∂t = −[ħ/(2m)] {R(r, t)
−1∆R(r, t) − [φ(r, t)]2} + 

v(r)/ħ 

 = −[ħ/(2m)] {∆lnR(r, t) + [lnR(r, t)]2 − [φ(r, t)]2} + v(r)/ħ  

                  (118)

and    

b(r, t) = ∂lnR(r, t)/∂t = − (ħ/m) φ(r, t) lnR(r, t) = − V(r, t) 

lnR(r, t).                (119)

It also follows from dynamic equations for the wavefunction 
components that the phase-gradient enters the time evolutions of both 
the modulus and phase components of the wavefunction. Thus the 
presence of the local phase [Eq. (67)] in the nonstationary quantum 
state aff ects both the electron probability and current evolutions in 
molecular systems. 

To summarize, the eff ective velocity of the probability-current also 
determines the phase-fl ux in molecules. The source (net production) 
of the classical probability-variable of electronic states identically 
vanishes, while that of their nonclassical, phase-part remains fi nite. 
In overall descriptors of the state information or entropy contents 
they ultimately generate fi nite production terms due to the phase-
contributions in resultant IT measures [4,9,83,88,91]. 

The nonclassical information I[φ] generates a nonvanishing 

(integral) source of the average resultant gradient information I[ψ]:

σI = dI[φ]/dt  ∫p(r, t)σI(r, t) dr = (8m/ħ) ∫ j(r, t) σφ(r, t) dr.    (120) 

Its density σI(r, t) is seen to be determined by the product of local 

probability “fl ux” j(r, t) and the „affi  nity“ factor proportional to gradient 
of phase source of Eq. (117), 

σφ(r, t) = dφ(r, t)/dt = ∂φ(r, t)/∂t + J(r, t) = ∂φ(r, t)/∂t + V(r, t)  
φ(r, t) 

= [ħ/(2m)] {R(r, t)
−1∆R(r, t) + [φ(r, t)]2} − v(r)/ħ ≠ 0,             (121)

following from SE for wavefunction components (Table 1).

Probability acceleration and current sources 

Of interest also is the local production of probability current j(r, t),

σj(r, t)  dj(r, t)/dt = σp(r, t) V(r, t) + p(r, t) [dV(r, t)/dt] = p(r, t) σV(r, 

t) 

 = (ħ/m) p(r, t) d/dt[φ(r, t)] = (ħ/m) p(r, t)[dφ(r, t)/dt] 

 = (ħ/m) p(r, t)σφ(r, t).                (122) 

Hence, using Eq. (121) gives:

σj(r, t) = [ħ2/(2m2)] [R(r, t) 
3R(r, t) − ∆R(r, t) R(r, t)] − [ρ(r, t)/m] 

v(r).                  (123)

The total time-derivative of V(r, t) provides a natural measure of the 
local “acceleration” of probability fl uid [69]:

a(r, t)  dV(r, t)/dt  σV(r, t) = (ħ/m) d/dt [φ(r, t)] = (ħ/m) σφ(r, 

t),                 (124)

since diff erentiations with respect to diff erent variables “r” and “t” 
commute. This descriptor thus refl ects the gradient of the phase-source 
[see also Eq. (122)]. It also generates the associated local probability 
“force”, 

F(r, t) = m a(r, t)  −W(r, t),                (125)

the negative gradient of the underlying probability “potential” 

W(r, t) = − ħσφ(r, t) + C(t).               (126)

Therefore, the phase-source also refl ects the probability potential, 
which generates forces acting on the electron distribution in molecular 

systems. In Table 1 we have summarized the dynamic equations for the 

wavefunction modulus and phase components, as well as continuity 

relations of the state probability, current and information densities, 

which directly follow from the molecular SE. 

The phase source of Eq. (121) generates the following probability 

“acceleration”:

a(r, t) = (ħ/m) {[ħ/(2m)] R(r, t)
−1∆R(r, t) − v(r)/ħ} 

 = [ħ2/(2m2)] R(r, t)
−1

 {
3R(r, t) − [lnR(r, t)] ∆R(r, t)} − v(r)/m.  

                  (127)

A reference to Eq. (126) gives the corresponding probability 

potential: 
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W(r, t) = − [ħ
2/(2m)] {R(r, t)

−1∆R(r, t) + [φ(r, t)]2} + v(r).            (128)

As an illustration let us again consider the stationary state of Eq. 

(61), corresponding to the sharply specifi ed energy Est. determining 

the time-dependent phase φ st.(t) = −ωst.t, and exhibiting the time-

independent probability distribution pst.(r). It satisfi es the stationary SE 

for the time-independent probability amplitude Rst.(r), 

− [ħ2/(2m)] Rst.(r)−1∆Rst.(r) = Est. − v(r).             (129)

thus generating a constant phase source σφ
st.(r) = −ωst. and equalized 

probability potential Wst.(r) = Est. refl ecting the state local energy: 

Rst.(r)−1H(r) Rst.(r) = Est..                                     (130)

Therefore, the stationary probability distribution is indeed 

characterized by the vanishing acceleration and force descriptors: 

Fst.(r, t) = ast.(r, t) = 0.                   (131)

This confi rms the equilibrium character of pst.(r), since the 

vanishing probability force does not create perturbations for a change 

in this stationary distribution. 

Due to a common velocity component in the current density for the 

Table 1: Summary of wavefunction components of the quantum state |ψ(t) of an electron, their dynamics, physical descriptors and 
local sources.
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distribution f(r, t) of a general (scalar) physical or information property 

f, Jf(r, t) = f(r, t) V(r, t), the probability acceleration also enters into 

expressions for local sources of such property currents [69]:

σJ
f(r, t)  dJf(r, t)/dt = σf(r, t) V(r, t) + f(r, t) a(r, t).               (132) 

For example, this probability acceleration determines local sources 

of probability- and phase-currents:

σJ
p(r, t) = dj(r, t)/dt = p(r, t) a(r, t) = σj(r, t) ,                                   (133)

σJ
φ(r, t) = dJ(r, t)/dt = σφ(r, t) V(r, t) + φ(r, t) a(r, t),                       (134) 

where we have recognized the vanishing local probability-

production, σp(r, t) = 0, and a fi nite phase-source: σφ(r, t) ≠ 0. 

The net production of the resultant measure of the state gradient 

information has been also shown to have a purely nonclassical origin. 

Its local density per electron also involves the probability acceleration 

distribution:

σI(r, t) = dI(r, t)/dt = ∂I(r, t)/∂t +  JI(r, t)

 = 8Φ(r, t)  σΦ(r, t) = (8m/ħ) Φ(r, t)  a(r, t),                               (135) 

where resultant-information current JI(r, t)=I(r, t)V(r,t) determines 

its divergence: 

 JI(r, t) = (ħ/m) I(r, t) Φ(r, t).                (136)

Conclusion

The classical and nonclassical information contributions can be 

regarded as refl ecting the complementary structures of “being” and 

“becoming” [78] in molecular electronic states. The electron density 

alone refl ects only the “static”, (“photographic”) structure of “being”, 

missing the “dynamic” structure of “becoming” contained in the 

state (“hologramic”) distributions of phase or its gradient generating 

the probability velocity. Both these manifestations of the electronic 

“organization” in molecular states ultimately contribute to the overall 

“hologramic” pattern of the structural entropy/information content of 

generally complex electronic wavefunctions. In quantum IT treatment 

the classical terms probe the entropic content of the incoherent 

(disentangled) local electronic “events”, while their nonclassical 

supplements provide the information complement due to coherence 

(entanglement) of such elementary electronic events. The nonclassical, 

phase/current contribution of the combined IT measure allows one 

to distinguish the information content of states generating the same 

electron density but diff ering in their probability velocity distributions. 

Entropic theories of molecular electronic structure thus call for 

the resultant generalization of classical (probability) measures of the 

information/entropy content in molecular systems. They combine 

contributions due to the wavefunction modulus and phase components in 

a holistic IT treatment of the position representation. This constitutes an 

alternative approach to classical exploration of the separate probability 

distributions in the complementary position and momentum spaces, 

e.g., [92-94]. The resultant IT concepts unite the classical (probability) 

and nonclassical (current) contributions in a single representation, 

thus off ering tools for examining the interplay between the molecular 

structures of “being” and “becoming”. The association of the resultant 

gradient information with the (dimensionless) electronic kinetic-energy 

additionally allows one to use the molecular virial theorem [95] in general 

reactivity considerations, e.g., [9,85,86]. The information distinction 

between the bonded (entangled) and nonbonded (disentangled) states 

of molecular subsystems, e.g., substrates in reaction complex, also 

calls for such a generalized IT description [83,96-98]. The classical 

terms probe the incoherent (disentangled) local “events”, while their 

nonclassical supplements explore the information supplement due to 

their mutual coherence (entanglement) in the “hologramic” electronic 

structure. 

In the present analysis we have summarized the relevant dynamical 

equations and continuity relations for the basic modulus (probability) 

and phase (current) degrees-of-freedom of electronic states, and 

examined their contributions to the resultant entropy/information 

descriptors. The local-energy interpretation of time-evolutions of the 

wavefunction modulus and phase components has also been given. We 

have also argued, using the intuitive relation between the “uncertainty”-

removed and the “information”-gained in an experiment, that the 

classical and nonclassical information contributions are not accessible 

in the simultaneous position and current (momentum) experiments. 

Nonetheless, they are available from separate position and momentum 

probes, which require the incompatible experimental setups. 
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