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Abstract

High concentrations of heavy metal (loid)s (HMs) in farmland soils reduces crop yield and 
contaminates the food chain. Exposure to HMs in the diet results in several adverse health effects 
such as cancer, reproductive health problems and cardiovascular diseases. Understanding the origin 
and fractionation of these toxic substances will provide direction for reducing their bioavailability in 
contaminated farmland soils. HMs are added to farmland soils through activities such as irrigation, organic 
and inorganic fertilization, pest control, and mining. Weathering of parent material and atmospheric 
deposition can also increase the levels of HMs in the soil. Fractionation of HM contaminated soils 
provides information on availability of HMs such as Pb, Cd, As, Cr and Cu to soil biota and plants. Several 
studies have reported that Pb is mostly associated with Fe and manganese oxides (reducible fraction) 
while Cd is mostly associated with the most mobile fraction (exchangeable fraction). The application 
of organic and inorganic soil amendments such as vermiculite, zeolite, composts and crop residue to 
contaminated farmland soils converts HMs from the plant available fractions to the less mobile fractions. 
HM resistant microbes can change HMs to a less mobile fraction or less mobile oxidation state. The 
combination of HM resistant microbes, HM tolerant plants, and soil amendments can be used to reduce 
mobility of HMs in contaminated farmlands.

Capsule: The mobility of heavy metal (loid)s in polluted farmland soils depends strongly on its 
association with soil components.
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Introduction

Total soil concentrations of heavy metal (loid)s (HMs) are 
increasing in agricultural soils globally due to both natural and 
anthropogenic sources in the environment. Several studies 
have reported HM concentrations above acceptable limits in 
farmland soils [1-4]. However, total soil concentrations do not 
provide enough information about the availability or toxicity of 
HMs to soil biota and growing plants. 

HMs can be bound to solid constituents of the soil such 
as clay, organic matter, carbonates, sulfi des, iron (Fe) and 
manganese (Mn) oxides, which reduces its availability for 
plant uptake. The amount of HM available to soil biota and 
plants is referred to as bioavailability. Bioavailability is a better 
estimate of the environmental impact of contaminated soils. 
The bioavailability of HMs depends strongly on the sources of 
contamination, speciation and fractionation of HMs in the soil.

Plant uptake of HMs in contaminated soils is dependent 
on the fractionation and mobility of HMs in the soil. However, 
depending on tolerance levels, plant species may either exclude 
or accumulate toxic HMs from contaminated soils. Food crops 

growing on HM contaminated soils show a reduction in growth, 
performance, and yield [5]. Several studies have reported a 
decline in crop yield and quality in metal polluted farmland 
soils [6-8]. Declining crop yield due to metal pollution of 
agricultural soils is a threat to global food security. 

HM contamination of farmland soils may also contaminate 
the food chain and cause health problems in nearby 
communities [9]. HM contamination of farmland soils has 
led to high concentrations of HM in food crops such as rice 
grains, wheat and vegetables [10-12]. These food crops are 
staples in many countries worldwide indicating that food chain 
contamination exposes a large population of consumers to the 
adverse effects of HMs. 

HMs disrupts metabolic activities which affects virtually 
every organ and system in the body. Exposure to arsenic (As) 
has been associated with health problems such as cancer, 
cardiovascular and respiratory diseases, hearing impairment, 
reproductive health problems in pregnant women and it 
affects the unborn [13]. Lead (Pb) is especially dangerous 
to infants and young children because it can damage their 
developing brain while adults can suffer from reproductive 
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health problems, high blood pressure, digestive problems, 
neurological disorders, memory and concentration problems, 
muscle and joint pain, and kidney dysfunction [14]. Cadmium 
(Cd) is toxic to the kidney while chromium (Cr) exposure can 
lead to problems in the respiratory system, gastrointestinal 
system and skin [15,16].

It is important to reduce the bioavailability of HMs in 
contaminated agricultural soils in order to prevent the health 
hazards of HM and reduce economic losses to farmers due to 
reduction in crop yield. Sustaining high crop yields is very 
important to ensure adequate food supply for the increasing 
population in the world. There are a variety of strategies and 
techniques that can be used to control and reduce mobility and 
bioavailability of HMs in farmland soils. 

While some strategies can be used to remove contaminants 
permanently, some others can only be used to reduce the 
migration of contaminants in the soil. Physical methods that 
severely alter soil structure such as capping of soil with cement 
are not suitable for farmland soils. The selection of the right 
technique will depend on site characteristics, operation costs, 
source of contamination and contaminant chemistry.

In order to effectively remove, control and reduce mobility 
of HMs in contaminated soils, it is imperative to identify the 
sources of contamination, understand fractionation of HMs and 
the factors that enhance their mobility in contaminated soils. 
Hence this paper provides a review of sources of contamination, 
fractionation and mobility of HMs in farmland soils as well as 
strategies for reducing their bioavailability.

Heavy metal (loid)s in farmland soils

Sources

Anthropogenic sources: Anthropogenic sources (Figure 
1) of HMs include agricultural activities and industrial 
activities which contribute to elevated concentrations of 
HMs in the environment [17]. Sources depend on location, 
farm management practices and environmental conditions. 
Major sources of HMs reported for England and Wales include 
industrial activities, sewage sludge, animal manures and 
composts, inorganic fertilizers and lime, agrochemicals, and 
irrigation water [18].

The quality of water used for irrigation is important because 
it has been associated with metal pollution in farmland soils. 

Sewage irrigated soil contained much higher concentrations of 
Cd, copper (Cu), Pb, zinc (Zn), nickel (Ni), Cr, as and mercury 
(Hg) compared to clean water irrigated soil [19]. Scarcity of high 
quality water sources for irrigation has forced many farmers to 
use industrial wastewater or sewage water/sludge with high 
metal concentrations. Consequently, farmlands irrigated with 
industrial wastewater for 30 years became heavily polluted 
with HMs [2]. 

Wastewater irrigation of vegetable gardens in Zimbabwe 
also increased concentrations of HMs in the soil [1]. The use 
of wastewater also contaminates the crops growing on the 
irrigated farmland soils. Green vegetables irrigated with 
wastewater had higher concentrations of HMs than vegetables 
irrigated with well water in Pakistan [20]. However, in regions 
with arsenic contaminated groundwater, the use of well water 
for crop irrigation has also led to soil and crop contamination 
[10,12, 21].

Surface waters are also another source of irrigation water 
in farmlands. However, these surface water sources may be 
polluted due to discharge of urban and industrial waste into 
rivers. Irrigation of alfalfa fi elds with river water has been 
reported to account for up to 31 % of HMs in surface soils of 
Texas and Mexico [22]. Long term irrigation with river water 
polluted by mining operations in Jiangxi Province of China 
resulted in heavy metal (loid)s pollution of the soil with the 
concentrations of the two primary pollutants in the soils 
varying from 0.52–2.55 mg kg−1 for Cd and 27.87–426.15 mg 
kg−1 for Cu [23]. Higher concentrations of HMs were found in 
the agricultural soils closer to mines and metal smelters than 
in other soils.

The mining of HMs often lead to contamination of nearby 
agricultural soils [24]. For example, mining activities in 
Tunisia has led to high concentrations of Pb (17,229 mg kg−1), 
Zn (4813 mg kg−1) and Cd (42 mg kg−1) in nearby agricultural 
soils [3]. Elevated concentrations of HMs were also reported 
in wheat grown in these contaminated soils. Pb concentrations 
were 1824 and 54 mg kg−1 and Zn concentrations were 1546 
and 636 mg kg−1 in the roots and shoot respectively. These 
concentrations are far above acceptable limits and indicate 
potential health risks for consumers. 

Even when concentrations of HMs in irrigation water were 
below permissible limits, high levels of HMs were found in 
vegetable cultivated in farmlands of Northern Ethiopia [25]. 

Figure 1: Sources of contamination in farmland soils.
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This suggests that the established acceptable limits were not 
effective to prevent contamination of the food chain. Similarly, 
the use of treated sewage water in Saudi Arabia led to an 
increase in HM levels in soils and test crop (okra) [4]. This 
suggests that pretreatment of sewage water was not able to 
remove a large portion of heavy metals contained therein.

The use of organic manures such as biogas slurry in vegetable 
farmlands of the Taihu Basin, China led to high concentrations 
of Ni, Zn, Cd and Pb in vegetables and soils above acceptable 
limits [11]. Livestock manures and sewage sludge were found to 
be responsible for 37–40 and 8–17% of total Zn and Cu inputs, 
respectively, in farmland soils of England and Wales [17]. 

Long term use of agrochemicals such as fertilizers and 
pesticides (insecticides, herbicides and fungicides) to increase 
crop yield often contribute to HM pollution because of their 
composition and soil characteristics. In a past study, the 
high concentrations of As, Pb, and Cd in agricultural soils 
were attributed to the application of agrochemicals [26]. A 
previous study has also shown that copper based fungicides 
have the potential to increase concentration of Cu in the soil 
to phytotoxic levels [27]. P fertilizer treatments increased the 
Zn solution concentration in 83% and 53% of treatments while 
it increased the concentration of Cd by 87% and 80% in fi eld 
and laboratory experiments respectively [28]. Agricultural 
activities that may increase HM concentration in the soil 
include use of contaminated irrigation water, mostly from 
industrial or domestic wastewater, sewage sludge or bio solids; 
use of farmyard manure with high HM concentration; use of 
agrochemicals such as fertilizers and pesticides.

Natural sources: Natural sources of heavy metal (loid)s 
(HMs) include parent material and atmospheric deposition 
from volcanic activity and forest fi res. Soils are formed as a 
result of a long period of physical and chemical weathering of 
the underlying parent rock. Physical weathering breaks the soil 
into smaller sizes while chemical weathering releases minerals 
present in the parent rocks which forms part of the soil. These 
minerals are sources of essential plant nutrients and heavy 
metal (loid)s. 

Parent material was associated with the high concentrations 
of Cu, Cr, Ni, Pb and As of farmland soils of the urban-
rural transition zone in [29]. The soil parent material and 
point sources of pollution signifi cantly contributed to Cr, 
Ni, Cu, Zn and Cd levels in agricultural soils [30]. The extent 
of contamination has been found to depend greatly on the 
mobility of the metal (loid)s.

It has been estimated that atmospheric deposition was 
responsible for about 25–85% of total inputs of HMs in 
agricultural soils in England and Wales [18]. HM contamination 
in topsoil from remote farmland in China was attributed to long 
range transport and atmospheric deposition of HMs since no 
pesticides or fertilizers have been used in the remote farmland 
stations studied and no industries were situated nearby [31]. 

Sometimes, human activities such as urbanization, 
industrialization and mining also contribute to atmospheric 

deposition. Increased levels of metals in the soil have been 
attributed partly to atmospheric fallout from a local ore smelter 
in alfalfa fi elds in Texas and Mexico. Metal concentrations in 
unwashed alfalfa forage tissue were at least fi ve times less than 
those in soil and showed no consistent association with soil 
concentrations [22].

Industries are responsible for atmospheric deposition of 
mercury (Hg) in agricultural soils of a rapidly industrializing 
area [30]. Ferroalloy industries in Brescia province, Italy 
produced particulate emissions enriched in Mn, Pb, Zn, Cu, Cd, 
Cr, Fe, and aluminum (Al). This was responsible for the HM 
(Al, Cd, Fe, Mn, Pb, and Zn) contamination of home gardens 
close to the industries. Unwashed spinach showed higher metal 
concentrations than washed spinach indicating atmospheric 
deposition [32].

Sometimes, the presence of HMs in the soil may be due to 
multiple sources. The results of a multivariate geostatistical 
method showed that Cd, Cr, and Cu in reclaimed farmland 
soils was associated with chemical fertilizers, Pb and Zn 
with atmospheric deposition and Ni was associated with 
the electroplating factories’ wastewater discharge [33]. 
Atmospheric deposition of Pb and Zn may be from vehicular 
emissions from nearby roads and highways and industrial 
emissions.

In a representative agricultural suburb in Beijing, China, 
multivariate and geostatistical analyses indicated that soil 
contamination of Cd, Cu and Zn was mainly derived from 
agricultural practices. As and Pb were due mainly to soil parent 
materials, while Hg was caused by the atmospheric deposition 
of particulate matter [34]. In Taiyuan City, China, HMs (Cd, 
Cu, Hg, Pb, Zn, and Cr) contamination of agricultural soils was 
attributed to farming practices while as and Ni were associated 
with parent material [35]. Contamination of soils with as is 
commonly associated with parent material because it can 
be mobilized naturally through evaporative concentration, 
leaching from sulfi des by carbonate, and microbial mobilization 
[36].

Bioavailability of heavy metal(loid)s in farmland soils

Bioavailability provides information on the amount of 
contaminants available for chemical reactions or plant uptake. 
Total HM concentrations are insuffi cient to determine its 
environmental impact in contaminated soils because HMs 
are often bound by different soil constituents such as organic 
matter, Fe/Mn oxides and clay minerals [37]. Sequential 
extractions with different extractants are often used to partition 
metals into operationally defi ned chemical associations in the 
soil.

Though there are several methods of sequential extractions 
for HMs, the most common one is the fi ve stage extraction 
method (Figure 2) which separates HMs into fi ve different 
fractions; water soluble and exchangeable fraction; bound to 
carbonate; bound to iron and manganese oxides (reducible 
oxides/oxidic fraction); bound to organic compounds and 
sulfi des; and residual fraction [38]. 
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Another method was developed by the European Community 
Bureau of Reference, called the BCR method [39,40]. The BCR 
method is a three step procedure that extracts the exchangeable 
and carbonate-bound fractions in a single step versus the 
two steps used in the Tessier procedure [41]. The fractions 
extracted by the BCR method are; exchangeable (extraction 
step 1), reducible-iron/manganese oxides (extraction step 2), 
oxidizable-organic matter and sulfi des (extraction step 3) [42].

The fractionation method for metals may not be appropriate 
for metalloids such as vanadium (V), as, and Se. The method for 
phosphorus (P) fractionation is used for As contaminated soils 
because of similarities between us and P. Sequential extraction 
of As is a four step procedure separating into four fractions; 
water-soluble and exchangeable fraction, Al-bound fraction, 
Fe-bound fraction and the Ca-bound fraction [43].

Fractionation of heavy metal (loid)s in Agricultural soils; 
Fractionation of HMs into operationally defi ned fractions is 
important because it shows the distribution between different 
soil components and provides information on potential 
mobility of HMs in the soil. Fractionation of HMs in farmland 
soils depends on the soil properties, sources, cropping systems, 
farm management practices and plant species. 

Pb was mainly associated with the reducible fraction (bound 
to Fe and Mn oxides) while Cu, Zn and Cd were dominated by 
the residual fraction in agricultural and nonagricultural soils 
[44]. Similarly, V and Pb were associated with the reducible 
fraction, Hg and Cd with the exchangeable fraction, Co with the 
carbonate fraction, while Cr, Cu, Zn, Ni were mostly associated 
with the oxidizable fraction in agricultural soils contaminated 
by wastewater irrigation in Ethiopia. There was a higher 
concentration of HMs in the non-residual fractions than the 
residual fraction suggesting high mobility of HMs in the soil 
[45]. 

Some other studies have also shown that Pb was strongly 
associated with the reducible fraction. Fractionation of 
agricultural soils close to mines and smelters showed that 
Pb was in the reducible fraction; Cd in the exchangeable and 
carbonate fraction while Cu and Zn were mainly in the residual 
fraction [23]. The reducible fraction was the largest fraction for 
Cu and Pb in agricultural soils contaminated from improper 
disposal of tailings [24].

On the contrary, Pb and Cu seemed to be more tightly bound 
to the organic fraction while cadmium was mostly bound to 
the Fe/Mn oxides fraction in contaminated soils from Sicily; 
though a signifi cant amount of all HMs (Cd, Pb, Cu, Co, Cr, Fe, 
Mn, Ni, Zn) were bound to the organic fraction [46]. The oxidic 
fraction usually has more affi nity for Pb than Cd, so this may 
be due to high concentration and strong negative charges on 
organic fraction of the soil.

The partitioning of agricultural soils contaminated with 
wastewater or smelter dust demonstrates how organic matter 
content may infl uence fractionation of HMs. HMs in the 
wastewater polluted soil (with high organic matter) were 
mostly bound to the organic fraction in the wastewater while 
they were mainly associated with Fe/Mn oxides in the smelter 
dust polluted soil. Cadmium was mostly in the exchangeable 
fraction in both soils while lead in the smelter dust polluted 
soil was dominated by the reducible fraction [47]. 

Cd in soil profi les was predominantly associated with the 
exchangeable fraction while Pb was closely associated with 
reducible fraction in a BCR extraction of contaminated vegetable 
soils from the Pb/Zn mining and smelting areas of China [48]. 
The mobile fractions (exchangeable, reducible, and oxidisable) 
of Mn, Cd and Pb were higher than the immobile fractions 
(residual) in a modifi ed BCR extraction of contaminated 
agricultural fi elds of Çanakkale, Turkey [49]. 

There was also a strong correlation between concentrations 
of HMs in corn grain and the more available fractions 
(exchangeable and reducible) [49]. Cu Cr, Ni and Zn were 
mostly in the residual fraction; Cd was mainly associated with 
the exchangeable/carbonate and reducible fractions, while Pb 
was mainly associated with the reducible fraction in a BCR 
extraction of compost amended and unamended fi eld plots 
[50]. 

Several studies have reported that Pb is mostly associated 
with the reducible fraction (bound to Fe/Mn oxides) while Cd is 
mostly associated with the most mobile fraction (exchangeable 
fraction) [24,44,45,48]. This may be due to higher affi nity of 
oxidic surfaces in the soil for Pb than for Cd. This may explain 
why Cd had the highest transfer factor in vegetables grown in 
farmlands amended with biogas slurry [11]. Cd was probably 
very mobile in the amendment and treated soil.

Guillén et al. [17], reported that Cd poses a serious threat to 
human health and the environment due to the high percentage 
of mobility. The high mobility of Cd might be responsible for 
the high accumulation of Cd in wheat grains reported in China 
[51]. Additionally, a study on metal accumulation in farmland 

Figure 2: Fractionation of heavy metal (loid)s in the soil.
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soils across China reported that Cd had the highest pollution 
index [52]. Furthermore, Cd has been reported as a major 
contaminant in rice fi elds of East and South Asian countries 
[53]. All these suggest that Cd is a threat to food security in 
Asian countries due to its high mobility.

It has been shown that metals with anthropogenic sources 
were mainly associated with residual, oxidizable and reducible 
phases which are relatively immobile and only potentially 
bioavailable to plants. However, micronutrients such as Zn 
and Cu showed a tendency to become more readily mobile and 
bioavailable as their total content in soil increased and were 
more easily transported to the edible parts of lettuce than other 
pollutants [54].

Fractionation of HMs in contaminated agricultural soils 
also varies with soil classifi cation. A greenhouse experiment 
with rice grown in two paddy soils showed that Pb was more 
mobile in the Ultisol (Plinthudic Aquults) than in the Inceptisol 
(Fluventic Umbrepts) because Pb in Ultisol was mostly 
associated with the residual and exchangeable fractions, while 
Pb was mainly associated with the residual and Fe/Mn oxides 
fractions in the Inceptisol [55]. This suggests that Pb will be 
more available to plants in the inceptisol while it will be less 
available in the ultisol. 

Phytoavailability of heavy metal (loid)s in agricultural soils: 
Phytoavailability is a measure of the amount of HMs available 
in the soil solution for plant uptake. Phytoavailability of trace 
elements especially HMs depends on their speciation rather 
than on total soil concentrations [56]. Speciation of HMs 
determines their fractionation in the soil and availability 
for plant uptake. Phytoavailability of HMs can be measured 
either by single extractions or directly by plant uptake in 
contaminated soils. 

Four single extractants commonly used include; calcium 
chloride (CaCl2), diethylene triamine pentaacetic acid (DTPA), 
ethanoic acid (CH3COOH), and water [57]. Some other single 
extractants include Mehlich 3, ammonium nitrate (NH4NO3), 
sodium nitrate (NaNO3), ethylene diamine tetraacetic acid 
(EDTA) and nitric acid (HNO3) [58]. 

Some studies have reported signifi cant correlation between 
concentrations of HMs in single extractants and plant uptake 
[57-60]. Lavado et al. [59], reported signifi cant correlations 
between EDTA extractable copper in soils and maize grown in 
biosolids amended soils. Wang et al. [57], also reported that the 
phytoavailability of HMs to Chinese cabbage was signifi cantly 
correlated with concentrations of metal extracted by CaCl2. 
However, phytoavailability was infl uenced by soil properties 
such as soil pH, organic matter and cation exchange capacity 
(CEC).

Fractions of HMs in sequential extractions have also 
been correlated with plant uptake. The Cr concentration of 
rice grain had the highest correlation with water soluble and 
exchangeable Cr while the straw Cr best correlated with the Fe 
and Mn oxide fraction [61]. The sum of the metal percentages 
extracted from the fi rst two fractions of Tessier’s procedure 

was found to be suitable in predicting the phytoavailability (to 
Lactuca sativa and Spinacia oleracea) of most of the HMs present 
in the soil of a contaminated site in Piedmont, Italy [62].

On the contrary, NH4NO3 extractant was ineffective in 
determining the availability of HMs (Cd, Cr, Cu, Ni, Pb and Zn) 
for sugarcane [63]. Even though DTPA extraction indicated 
higher metal availability in sludge amended soils, it did not 
increase HM concentration in plant leaves, suggesting that 
determination of HM availability by extraction may not 
accurately predict phytoavailability [64]. 

A series of empirical equations involving extractable metals, 
solid-phase fractions and soil properties have been used to 
signifi cantly predict the phytoavailability of Mn and Zn for 
barley [65]. The importance of solid-phase Cd fractions, EDTA 
fraction and/or HNO3 fraction, in predicting phytoavailability 
of Cd in soils amended with manure compost have also been 
demonstrated [66]. 

Leafy vegetable Amaranthus hybridus had 1.2–8.2 folds 
enrichment of Cr, Co, Ni, Cd, Cu, and Pb than Abelmoschus 
esculentus in amended soils irrigated with wastewater 
suggesting that phyto-accumulation of HMs is plant-
specifi c and dependent on physiological set-up [67]. Metal 
accumulation in vegetables grown in urban gardens varied by 
crop type further confi rming that phytoavailability may vary 
with crop type [68]. 

This may explain why phytoavailability of Cd to rice grain 
was strongly correlated with Mehlich-3-extractable Cd while 
the same Mehlich-3 extractant was not effi cient to evaluate 
Ni phytoavailability to maize plants [69,70]. This suggests 
that soil extractions may not be the best method to determine 
phytoavailability of Cd. It has been shown that the soil type, 
Cd source, loading rate, soil pH, and plant tissue are important 
factors in evaluation of Cd phytoavailability [66,70]. 

Factors infl uencing the mobility of heavy metal(loid)s in 
agricultural soils

Soil properties: Soil properties such as pH, soil texture, 
organic matter content, Fe/Al oxides and moisture content 
control metal mobility (Figure 3) in soils [71]. Amongst all, pH is 
a major factor controlling the mobility of HMs in contaminated 
soils. Soils with low pH have higher concentrations of HMs in 
the most mobile/soluble phase (exchangeable fraction) [72]. 
HM concentrations signifi cantly increased while pH decreased 
down the soil profi le to a depth of 30cm [73]. HMs are more 
available at a low pH probably because there is a higher 
concentration of protons displacing the metals from exchange 
sites on the solid phase of the soil. 

Recently, it was shown that increasing the soil pH to 10 can 
decrease the zinc content of Valeriana offi  cinalis signifi cantly 
[74]. Decrease in heavy metal mobility with increasing soil pH 
has been attributed to precipitation of hydroxides, carbonates 
or formation of insoluble organic complexes [75]. On the 
contrary, increasing pH increased Cu and Mn in plant tissue of 
V. offi  cinalis probably due to formation of soluble organo-metal 
complexes at high pH [74].
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A past study showed that Zn concentrations in the soil 
increased with increasing soil acidity while it decreased with 
increasing clay content of the soil [76]. This indicates that 
soil texture also plays an important role in metal mobility 
and retention in the soil. Generally, there is a higher mobility 
of HMs in sandy soils than clayey soils [77]. Adsorption of 
the HMs on clay surfaces retards the movement of HMs and 
reduces leaching and run off. 

Soil organic matter (SOM) is also an important adsorbent 
for HMs in agricultural soils because of the presence of charges 
which reduces their mobility and availability in the soil. The 
presence of SOM decreased Zn binding energy, increased 
immobilization of Zn and decreased the proportion of 
nonspecifi c adsorbed Zn [78]. Metal release due to solubilisation 
of organic matter and formation of organo metallic complexes 
has also been reported in agricultural soils [79,80].

Fe and Mn-oxides and hydroxides also play an important 
role in heavy metal sorption due to their high specifi c surface 
area and reactivity [81]. The strong affi nity between oxidic 
surfaces (of Fe, Al and Mn) in the soil and HMs makes them 
effective adsorbents of HMs. Hence, increasing concentrations 
of Fe/Al/Mn oxides in the soil reduces the mobility and 
phytoavailability of HMs in the soil [77]. 

The mobility of HMs is determined by their concentration 
in the soil solution which depends on amount of soil moisture. 
It was found that soil moisture regime signifi cantly affected 
the transformation rate from the more mobile fractions 
(exchangeable) to the less labile ones (Fe-Mn oxide and 
organic matter-bound fractions). In general, the paddy soil 
under fl ooding regime had higher metal reactivity compared 
with 75% fi eld capacity and wetting-drying cycle regimes, 
resulting in the more complete movement of metals toward 
stable fractions [82]. 

It is well known that metal availability decreases as the soil 

ages [83-87]. During aging, as moved from the more available 
(non-specifi cally and specifi cally sorbed) to less available 
(amorphous and crystallized Fe/Al) fractions while Pb moved 
from the fi rst three fractions (exchangeable, carbonate and Fe/
Mn hydroxide) to organic fraction [88]).

Environmental conditions: Environmental conditions such 
as rainfall, temperature and wind greatly impact the fate 
and transport of metals [89]. Rainfall events increase soil 
and water runoff which also increases the mobility of HMs in 
agricultural soils [90]. Less than 4% of Cu and more than 58.3% 
of Zn were transferred from composts to groundwater under 
simulated rainfall conditions in a soil column experiment [91]. 
This suggests that the effect of rainfall may depend on the 
chemistry of HM being investigated and their interaction with 
the soil. Rainfall can also increase the area impacted by metal 
contamination by increasing the distance travelled by HMs 
applied in composts, sewage sludge, farmyard manure and bio 
solids.

Chemical composition of rainwater is responsible for its 
effect on the mobility of HMs. It is well known that gaseous air 
is a mixture of gases such as oxygen, nitrogen, carbon dioxide 
and sulfur dioxide. Normal rain is slightly acidic because 
the carbon dioxide in the air dissolves in rainwater to form 
carbonic acid, a weak acid. Acid rain occurs when there are high 
concentrations of sulfur dioxide and nitrogen oxides in the air. 
Dissolution of sulfur dioxide in rainwater may produce sulfuric 
acid while nitrogen oxides may form nitric acid. These are both 
strong acids and their presence in rainwater acidifi es the soil. 

Acid rain lowers the soil pH and increase metal mobility 
in the soil [92]. Acid rain is caused by volcanic activity, fossil 
fuel emissions, wildfi res and lightning and has been reported 
in several countries including USA and South Korea [93]. This 
acidic input may further exacerbate metal pollution and cause 
leaching in agricultural soils. A study on the effect of simulated 
acid rain on metal mobility found that Cu and Zn were released 
by the soil in larger amounts than Pb and Cd [94]. 

Temperature is also another environmental condition that 
may impact metal mobility. High temperature will increase rate 
of organic matter decomposition (Figure 3) which may lead to 
formation of organic acids that acidifi es the soil and increase 
metal dissolution and mobility. High temperature may also 
lead to higher microbial activity which may either decrease or 
increase metal mobility. A past study has shown that microbes 
reduced as and metal concentrations in the absence of organic 
matter but increased metal concentrations in the presence of 
organic matter [95]. 

Higher microbial activity may lead to lower metal mobility 
due to microbial reduction of metals to a lower redox state 
that is less mobile [96]. Bacteria reduced metal mobility 
(reduced water-soluble Pb) due to adsorption by bacterial cell 
walls and possible sedimentation reactions with phosphate 
or other anions produced through bacterial metabolism [97]. 
Metal mobilization by soil microorganisms can arise from 
complication and methylation while immobilization can 
result from sorption to biomass or exopolymers, transport 

Figure 3: Factors enhancing mobility of metal (loid)s in farmland soils.
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and intracellular sequestration or precipitation as organic and 
inorganic compounds [98]. 

Plant characteristics: The presence of plants in the soil can 
increase metal mobility by increasing acidity via processes 
like root exudation, acidifying effects of CO2 produced in root 
respiration and H+ released due to cationic nutrient intake 
[99]. Plant roots produce low molecular weight organic acids 
(LMWOA) which have the potential to enhance metal mobility 
in the soil by reducing soil pH and forming complexes with 
HMs [100]. 

On the other hand, some studies have reported that root 
exudates reduced metal mobility due to their strong metal 
binding ability [101,102]. The immobilization of metals by root 
exudates may be a coping mechanism for exclusion (reduced 
uptake) of toxic HMs in nonmetal hyperaccumulators [103,104]. 
Metals present in the rhizosphere of hyperaccumulators 
are more bioavailable than those in the rhizosphere of non 
hyperaccumulators [105-107]. However, root exudates produced 
by the Cd and Zn hyperaccumulator Thlaspi caerulescens did not 
signifi cantly increase metal mobility [101,108]. 

Root exudates are an abundant source of energy and 
nutrients for microorganisms which exists in associations with 
plant roots in the soil [109]. Plants usually form symbiotic 
associations with microorganisms such as rhizobacteria and 
arbuscular mycorrhizal (AM) fungi. AM fungi in symbiotic 
associations with a range of plant species are able to enhance 
uptake of nutrient elements and water by host plants through 
their extraradical mycelial networks [6].

Some of these microorganisms are able to tolerate high 
concentrations of HMs and have evolved resistance strategies 
[110]. Arsenic resistant bacteria have been isolated in the 
rhizosphere and plant tissues of an as hyper accumulator 
[111,112]. Arsenic resistant rhizobacteria and AM fungi have 
been shown to increase as uptake and translocation in the as 
hyperaccumulator Pteris vittata [113-115]. Similarly, a heavy 
metal resistant bacteria strain, isolated from the rhizosphere 
of Elsholtzia splendens increased the uptake and translocation of 
copper (Cu) in E. splendens [116]. 

The presence of a bacterium and fungus in agricultural 
soil increased plant biomass and HM uptake in corn (Zea 
mays) [117]. However, it is also possible for AM fungi and 
rhizobacteria to decrease metal uptake of the host plant and 
protect them against heavy metal toxicity. Copper resistant 
bacteria increased root and shoot length, plant dry weight 
and leaf area, reduced plant uptake and protected lentil plants 
from copper toxicity. The plant growth promoting bacteria was 
also able to improve anti-oxidative defense mechanism of the 
plants by increasing activities of anti-oxidant enzymes such as 
catalase and superoxide dismutase [118]. 

Farm management practices: Management practices such 
as cropping systems, land management, tillage methods, 
fertilization and water management infl uence HM mobility 
in agricultural soils. A study has shown that cultivation can 
decrease the humifi ed carbon content and metals bound to 

the humic acid fraction of organic matter suggesting that 
cultivation may potentially increase the mobility of heavy 
metals [119]. Cropping systems (Table 1) such as crop-legume 
rotation cropping, continuous alfalfa cropping and application 
of manure, have been shown to increase Mn availability in 
rainfed farmland soils [120].

A study investigated the metal contents in open fi eld 
cultured soils versus soils cultured under shelters. Results 
showed that the respective average concentrations of Al, Fe 
and Pb in the soils were 2.66, 1.41 and 2.46 times higher in 
open fi elds than soils under shelters, whereas the respective 
average soil concentrations of Cu and Zn were 1.48 and 1.41 
times lower [121]. This was attributed to exposure of open 
fi elds to soil erosion from runoff and leaching of Cu and Zn 
within soil profi le [121].

Change in land use or conversions also affect metal mobility. 
The conversion of farmland from wetland resulted in an 
increase in the concentration of Pb and Cr in the soil while the 
concentrations of Zn, Cu, Ni, and Cd decreased when wetland 
was converted into farmland. The levels of Pb increased by 
approximately 28.6 % when dry land was converted to wetland 
and by 24.7 % when paddy land was converted [122].

Land application of organic manure may lead to HM 
contamination of the soil at the surface layer. Tillage practices 
in farmland soils may affect mobility of HMs by redistributing 
HMs. In a previous study, no-tillage simulations showed 
consistent HM accumulations in the surface soil. Even though 
soil tillage reduced HM concentrations over the top 20 cm of 
the soil profi le, it increased their transfer to deeper layers [123]. 

The effect of tillage methods, crop rotation and fertilization 
on Cd availability in tuber and cereal grains was determined 
in a study in Europe. Results show a higher plant uptake of 
Cd in wheat grain in continuous wheat under direct drilling 
than under reduced till or conventional cultivation [124]. Cd 
concentration in grain was highest in wheat grown after a 
legume and lowest in wheat grown after a cereal. Cd in wheat 
grain and potato tubers can increase with increasing rates of 
nitrogen regardless of the crop rotation [124].

Table 1: Effect of cropping systems and tillage practices on mobility of heavy metal 
(loid)s.

Cropping systems Results References

Crop-legume rotation Increased Mn availability Wang et al., 2016 [125]

Continuous alfalfa Increased Mn availability Wang et al., 2016[125]

Wheat-cereal cropping Low Cd in grains Mench, 1998 [124]

Wheat-legume cropping High Cd in grains Mench, 1998  [124]

Tillage methods

No tillage
Consistent HM accumulation 

in top soil
Mallmann et al., 2014 

[123]

Tillage
Reduced HM in top soil but 
increased their transfer to 

deeper layers

Mallmann et al., 2014 
[123]

Continuous wheat 
under direct drilling

Higher plant uptake of Cd Mench, 1998 [124]

Continuous wheat 
under reduced tillage 

Lower plant uptake of Cd Mench, 1998 [124]
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A recent study has reported that fertilization generally 
increased more available fractions (exchangeable and 
carbonate-bound Mn) in the soil [125]. Similarly, mineral 
fertilizers increased the mobility of Ni and Cu in a study in 
Poland [126]. Long-term fertilizer use has been reported 
to increase soil metal content, soil organic carbon, cation 
exchange capacity, and decrease soil pH [127]. The acidifi cation 
of the soil by inorganic fertilizers may be responsible for the 
increase in metal mobility. 

Strategies for reducing bioavailability of metal(loid)s in 
contaminated farmlands

Stabilization: This method involves the use of soil 
amendments to limit contaminant migration in contaminated 
soils. Highly solid materials like cement that changes soil 
structure cannot be used on farmlands. Organic amendments 
such as crop residues, farmyard manure, composts, and biochar 
have been used to reduce mobility of HMs in agricultural soils. 
Similarly, inorganic amendments such as lime, vermiculite and 
phosphates have been used to immobilize HMs in contaminated 
farmland soils.

The incorporation of crop residue into the soil may be an 
economical method of reducing metal mobility because they 
are readily available on the farm (Table 2). It also takes care of 
waste disposal on the farm. The addition of rapeseed residue 
decreased the mobile fraction of Cd by 5–14% and Pb by 30–
39% through their transformation into less available fractions, 
and reduced metal availability to rice plant in a contaminated 
paddy soil [128]. 

Addition of rice straw ash (RSA) to rice paddy soils has 
been shown to retard the movement of Cu by suppressing 
the release of Cu into the soil solution and transforming Cu 
into less soluble forms [129]. Rice straw (69.5% reduction) 
was more effective at reducing Cd uptake in shoots of maize 
compared with biochar (50.9% reduction) and wheat straw 
(66.9% reduction) [130].

Biochar, produced from carbonization of organic wastes, 
has been shown to reduce exchangeable fractions of metals 
in the soil and decrease plant uptake of HMs in crops such 
as maize, rice and lettuce [131-133]. Even though biochar 
has demonstrated potentials of reducing metal mobility in 
contaminated soils, identifying heavy metal contamination in 
biochar is crucial before it is used as a soil amendment [134]. 
Addition of metal rich biochar to lightly contaminated soils 
may increase metal accumulation in the soil [134]. 

Even though organic manure may also be a source of HMs, 
farmyard manure (36-45% reduction) was more effi cient than 
rice husk (23% reduction) and straw dust (14% reduction) 
in reducing phytoavailability of Cd to Amaranthus caudatus 
[135]. Past study has also shown that increasing rates of Cd 
applied through chicken or pig manure compost increased its 
precipitated and residual fractions [66].

Farmyard manure such as pig slurry has been shown 
to reduce the mobility of Cu in contaminated soils [136]. 
Although, the application of cow manure and compost to a 
calcareous contaminated soil increased the solubility of Cu in 
an incubation experiment, it reduced the mobility of Zn and Pb 
in the same soil [137]. This suggests that factors such as type of 
organic amendment, soil type and metal chemistry may affect 
metal mobility.

Addition of municipal solid waste and manure composts to 
soil reduced bioavailability and plant translocation of Cu and 
Zn [138]. It has also been shown that animal manure compost 
had lower Cd plant uptake (spinach) than soils treated with 
chemical fertilizers [139]. Furthermore, the addition of 2.5% 
(dry w/w) municipal compost reduced the Cd concentration in 
onions, spinach and lettuce by up to 60% in garden soils [140].

Use of fl y ash to stabilize sewage sludge has been shown to 
reduce metal availability to corn by converting metals to less 
available fractions in the soil [141]. Decontaminated sludge 
has also been used to reduce bioaccumulation of metals in 
maize cultivated farmland soils [142]. However, lime was more 
effective in reducing metal extractability than sewage sludge 
mixed with green waste compost [143].

A combined application of limestone and red mud reduced 
Ca(NO3)2 extractable As, Cd, Pb, and Zn by 58%, 98%, 98%, and 
99%, respectively which led to reduction in plant uptake along 
with an increase in microbial activity [144]. Combined soil 
amendments limestone+sepiolite and hydroxyhistidine+zeolite 
reduced exchangeable fraction of metals (Pb, Cd, Cu, and Zn) 
and inhibited uptake and accumulation of Pb, Cd, Cu, and Zn 
in rice plants [145]. Inorganic amendments such as vermiculite 
have also been shown to reduce plant uptake of HMs from 
contaminated soils [62]. 

Lime based materials increase pH which reduces metal 
mobility while other inorganic amendments such as vermiculite 
and zeolite provide surfaces for adsorption of HMs. A recent 
study has shown that pH change-induced soil immobilization 
(dolomite, steel slag, and lime) was more effective than sorption 
agents (zeolite and compost) in reducing plant uptake of Cd 

Table 2: Techniques for reducing bioavailability of heavy metal (loid)s in farmland 
soils.

Method Advantages Limitations References

Organic 
amendments

Readily available 
Sustainable 

Increases soil 
organic matter

May increase 
pollution

Xu et al., 2016 [130]

Inorganic 
amendments

Faster 
immobilization 

process 

High cost of 
operation

Zhou et al., 2014 
[145]

Crop-
hyperaccumulating 

plant rotation

Cheap 
Environmentally 

friendly
Sustainable

Disposal 
of HM rich 

hyperaccumulating 
plants 

Ye et al., 2011 [162]

HM resistant 
microbes

Limits contaminant 
migration

Relatively cheap

Not suitable 
for highly 

contaminated 
soils.

Li et al., 2016 [147]

Soil washing
Removes 

contaminant 
permanently

May reduce 
soil fertility and 

microbial activity.

Yi and Sung, 2015 
[181]
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and Pb in rice grains grown in a contaminated paddy soil [146]. 
Another study confi rmed that pH control was the management 
option most likely to reduce phytoavailable Cd and Pb, since 
organic matter content and oxalate extractable sesquioxides 
only partially infl uenced HM retardation (Kd) [147].

Although, phosphates have been identifi ed as a source of 
HMs in agricultural soils, they are widely used to immobilize 
metals due to their strong affi nity for metals [148-150]. 
Phosphate was able to reduce plant uptake of metals by maize 
and reduce plant uptake of Pb, Cd and Zn by vegetables [151-
153]. Recently, it has been shown that the application of 
phosphate fertilizer and lime was more effective than sawdust 
in reducing metal uptake by lettuce, especially for Cu and Pb 
[8].

Crop-Hyper accumulating plant rotation: Hyper accumulating 
plants are plants that are able to tolerate and accumulate HMs 
above standard concentrations in their above ground biomass. 
They can be used to reduce contaminant levels in contaminated 
farmlands by planting them ahead of crops to be grown on the 
farm. Hyper accumulating plants may be planted for about 
one or two years before the land is cultivated with food crops 
again. Selection of hyper accumulating plant to be used in 
phytoextraction will depend on the primary contaminant in 
the soil. Plants that are tolerant to multiple metal (loid)s will 
be particularly useful in soils contaminated with more than one 
contaminant.

About 500 plant species have been reported to accumulate 
HMs [154]. One of them, the arsenic hyper accumulator, Pteris 
vittata, has been used to reduce contaminant levels in arsenic 
contaminated soils [155-157]. The fern can also be used in 
multi-metal contaminated soils because it is tolerant to a wide 
variety of metals such as Pb, Cd, Zn, Se, Si, Sb, B and Hg [158-
161]. 

There was a 3.5–11.4% reduction in the total soil as when 
the fern was grown in fi ve contaminated paddy soils over a nine 
month period [162]. Results showed that As concentrations in 
the straw and grain of rice grown following P. vittata decreased 
by 17–82% and 22–58% respectively, suggesting that the fern 
reduced bioavailable As in contaminated paddy soils probably 
due to high uptake of As by the fern [162]. 

The Cd/Zn hyper accumulator Thlaspi caerulescens can be 
used in Cd/Zn contaminated soils though it’s sensitive to Cu 
[163]. Hence, it cannot be used in soils with high levels of Cu. 
Multi-metal hyper accumulating plant such as Ipomea spp can 
accumulate Cd, Cu, Mn and Zn showing potentials to be used 
in multi-metal contaminated soils [163]. Helianthus annuus 
and Hemidesmus indicus have both been shown to be Pb hyper 
accumulating plant species and can be used in Pb contaminated 
soils [164]. 

Plants that are tolerant but accumulate HMs only in the 
roots can also be used for stabilization of HMs in contaminated 
soils. Eight plant species, Alternanthera philoxeroides, Artemisia 
princeps, Bidens frondosa, Bidens pilosa, Cynodon dactylon, Digitaria 
sanguinalis, Erigeron canadensis, and Setaria plicata were recently 

identifi ed as good candidates for stabilization of Mn, Cd, Pb and 
Zn contaminated sites [165]. Plants suitable for stabilization 
should have an extensive root system and keep the translocation 
of metal (loid)s from roots to shoots as low as possible in soils 
with high HM concentrations [166].

Plant varieties with low translocation of HMs from root to 
shoot can also be selected for cultivation in metal contaminated 
soils. Leafy vegetables namely, spinach, amaranthus and 
mustard seem to be unsafe and not suitable for cultivation on 
heavy metal contaminated soil while fruit type vegetables could 
be suggested for cultivation on Cd contained soil [167]. Alfalfa, 
fi eld pumpkin, and barley had the highest Cu concentration 
in their roots suggesting they could be good candidates for 
stabilization of copper contaminated soils. But alfalfa and fi eld 
pumpkin also accumulated Zn in the leaves indicating they may 
not be good for stabilization of Zn contaminated soils [168]. 

The effi ciency of hyper accumulating plants can be 
increased by the addition or stimulation of soil microorganisms 
in metal contaminated soil. Soil microorganisms support the 
establishment and growth of plants on HM contaminated soils 
by producing plant growth hormones, inducing siderophores, 
solubilizing phosphorus; they increase the bioavailability of 
metals for plant uptake by hyper accumulating plants and 
reduce the level of growth inhibiting stress hormone in plants 
growing in metal contaminated soils [169].

Heavy metal (loid) resistant microbes: HM resistant soil 
microorganisms can be used to convert both organic and 
inorganic contaminants to less toxic forms. The method is more 
widely used to break down toxic complex organic compounds 
to nontoxic simpler forms. HMs cannot be broken down, so 
the method has its limitations. HM resistant microbes reduce 
the toxicity of HMs by converting them from a toxic oxidation 
state to nontoxic oxidation state or converting them from the 
more plant available fractions to the less available fractions. 
These transformations involve redox reactions, precipitation, 
and sorption and desorption reactions.

The reduction of Cr (VI) to Cr (III) is a detoxifi cation pathway 
because Cr (VI) is more toxic than Cr (III). In addition, Cr (VI) is 
more bioavailable than Cr (III) at high pH; hence, the reduction 
of Cr (VI) to Cr (III) reduces its mobility in contaminated 
soils [170]. An indigenous actinomycete, Streptomyces sp. MC1 
was able to reduce up to 94% of the Cr (VI) after 7 days of 
incubation showing almost complete Cr (VI) removal from soil 
without any previous treatment [171]. 

The addition of bacteria to chromium contaminated 
soils led to a drastic decrease in water soluble, exchangeable 
and carbonate bound Cr (VI) while there was an increase in 
carbonate-bonded Cr(III), Fe and Mn oxides-bonded Cr(III) 
and organic matter-bonded Cr(III) (Li et al., 2013) [172]. This 
shows that the more available fractions of the more mobile 
Cr (VI) were converted to the less mobile fractions by soil 
microorganisms. 

Sulfate reducing bacteria reduced the concentrations of the 
exchangeable fraction of Cd by 70% while the Fe-Mn oxides 
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and carbonate fractions increased in Cd contaminated soils 
[173]. Rhodobacter sphaeroides reduced Pb phytoavailability to 
wheat seedlings by decreasing the exchangeable fraction and 
increasing the residual fraction. The plant available fractions 
were converted to less mobile fractions [174]. The bioavailability 
of Pb in contaminated soil was reduced by incubating with 
Phanerochaete chrysosporium and straw. The concentration of 
exchangeable Pb in the soil was reduced thereby reducing its 
toxicity [175].

Indigenous soil microfl ora was used for in-situ 
immobilization of HMs in a heavily contaminated soil in two 
stages. The fi rst stage involved the solubilization and leaching 
of metals from the top horizon to the sub horizon due to the 
joint action of the soil microorganisms and leach solutions used 
to irrigate the soils. The dissolved contaminants were then 
precipitated as the insoluble forms as a result of the activity of 
the sulfate-reducing bacteria inhabiting the sub horizon [176]. 

Microbes are also used to enhance removal of HMs from the 
soil by leaching. Iron reducing microorganism Desulfuromonas 
palmitatis was used to induce the reductive dissolution of iron 
oxides and release of retained As. EDTA was also used to remove 
metal contaminants, such as Pb and Zn, through the formation 
of soluble metal chelates. Bacterial activity was found to have 
accelerated the removal of arsenic, which increased from the 
value of 35% obtained during the pure chemical treatment up 
to 90% in the presence of D. palmitatis [177]. 

A mercury resistant bacteria strain, SA2, was able to 
volatilize mercury by producing mercuric reductase enzyme. 
About 79% mercury in a mercury supplemented culture 
suspension was volatilized in 6 h showing its potential to 
be used in mercury contaminated soils [178]. This process 
reduces contaminant levels in the soil while other methods 
involving redox and fraction transformations limit mobility of 
contaminants. 

Soil washing: The process of removing soil particles enriched 
with contaminants or using aqueous solutions to mobilize 
and leach the contaminants out is called soil washing [179]. 
Soil washing is able to permanently remove contaminants 
from contaminated soil and contaminants can be recycled 
from washing solution [180]. However, the physicochemical 
properties of soil may change after physical separation and 
chemical extraction processes, which may eventually lead to a 
decline in soil fertility [181].

Chemical washing of Cd contaminated paddy soils with 
calcium chloride solution removed 55% of Cd from the 
exchangeable fraction and 15% of Cd from the acid-soluble 
fraction. Even though soil washing changed the soil fertility, 
it could be corrected and had no effect on rice growth, but 
reduced the average Cd concentration in rice grains by about 
two-thirds compared to a control plot [182]. 

Ferric chloride solution has also been used for soil washing 
of Cd contaminated paddy soils [183,184]. Washing with FeCl3 
led to the formation of Cd–chloride complexes which enhances 
Cd extraction from the soils. Although, soil fertility was affected 

by soil washing with 45 mM FeCl3, it had no negative effect on 
rice yield and lowered the Cd concentration of rice grain and 
rice straw [183]. In a similar study, soil washing with calcium 
chloride solution had no effect on growth of soybean but the 
seed Cd concentration decreased signifi cantly [185]). 

Soil washing has been used to effectively reduce toxicity 
of metal polluted garden soils by removing the plant available 
fractions. HM contaminated garden soil was washed with 
EDTA solution in a pilot-scale remediation plant. Soil washing 
with EDTA removed 75%, 26% and 66% of Pb, Zn and Cd, 
respectively, from the garden soil, while 71% of EDTA was 
recycled and no waste water was generated [186]. In another 
study, soil washing of a metal contaminated vegetable garden 
soil with EDTA reduced the metal burden by 80, 28 and 
72% for Pb, Zn and Cd respectively. However, the treatment 
signifi cantly decreased the potential soil enzyme activity and 
the washed soil did not recover its biological properties [187]. 

The major limitations of soil washing are its effects on soil 
health and fertility. Although the amount of readily available 
As in soils were reduced after soil washing with different 
solutions, the bioassay tests showed that the washed soils had 
lower seed germination, shoot growth, and enzyme activities 
which was attributed to the acidic pH and/or excessive nutrient 
contents of the washed soils [188]. 

The choice of soil washing solutions and their washing 
order are critical to ensure high removal effi ciencies of metal 
fractions and sustain soil fertility in contaminated soils [189]. 
Two-step washing of Cu contaminated soil with 0.34 M citric 
acid and then 1500 mg L−1 dissolved organic matter (DOM) 
solution (pH 8.5) was found to be most favorable for the soil 
than the conventional EDTA extraction. The citric acid and 
DOM treatment removed 91% Cu from the topsoil while the 
organic matter, cation exchange capacity, plant-available 
nitrogen, and available phosphate content increased by 28.1%, 
103%, 17.7%, and 422%, respectively [190].

The use of a degradable chelator, N, N-bis (carboxymethyl)-
l-glutamic acid (GLDA), as washing solution removed 71.34%, 
81.02%, and 50.95% of Cd, Pb, and Zn respectively from a 
polluted farmland soil. GLDA washing solution was as effective 
as the conventional EDTA washing, and was able to retain most 
of the soil nutrients [125].

Conclusion

The sources of HMs in agricultural soils include irrigation 
with wastewater, applications of agrochemicals, organic 
and inorganic amendments. Natural sources include parent 
material and atmospheric deposition. Proximity to mines and 
smelters also increases concentrations of HMs in farmlands. 
Partitioning of HMs in agricultural soils depends on source, soil 
properties and farm management practices. The availability of 
HMs for plant uptake depends on their fractionation within the 
soil. Soil properties such as pH, organic matter content, soil 
texture, and Fe/Mn oxide content infl uence the mobility of HMs 
in contaminated soils. pH is the major factor determining metal 
mobility in the soil. Acid rain, high temperature, root exudation 
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and microbial activities in the soil may increase the mobility 
of HMs in the soil by increasing acidity. Farm management 
practices such as cropping systems, tillage methods, and 
land use change also infl uences the mobility of HMs in the 
soil. Strategies for reducing HM mobility in contaminated 
farmlands include stabilization with organic and inorganic 
amendments, crop-hyper accumulating plant rotations, HM 
resistant microbes and soil washing. These techniques reduce 
bioavailability by removing the plant available fractions, 
converting mobile fractions to less available fractions and by 
changing contaminants to less mobile oxidation states.
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