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Introduction

The soil is a major repository for contamination where 
terrestrial organisms are exposed to pollution. Earthworms 
are important organism in the terrestrial ecosystem and their 
ecological functions are indispensable as they participate in 
various processes in soil. They form signifi cant biomass in 
the terrestrial ecosystem and they occupy a sensitive position 
in the food chain. Lumbricus terrestris, L. rubellus, Eisenia fetida 
and E. andrei are relevant earthworm species for monitoring 
environmental pollution [1] in terrestrial ecotoxicology studies. 
This is attributed to their capability to accumulate and tolerate 
elevated amounts of toxic metals within a certain threshold 
without experiencing signifi cant damages [2]. Their survival 
and tolerance are dependent on the regulation/excretion of 
metallic trace elements and detoxifi cation of non-essential 
toxic metal ions.

Earthworms are affected by soil contaminants at the 
various levels of biological organization from sub-organismal, 
individual to population levels. The passageways of contact 
with contaminants are majorly through the skin from the 
interstitial pore or from the ingestion of soil particles into their 
guts [3]. In their adaptive responses to such environmental 
stress, they exhibit non-transferable physiological adaptations 
which could induce metabolic modifi cations making them 

more tolerable to such environmental changes [4] like metal 
contamination [5] and [6]. On the other hand, the coping 
mechanisms could involve changes that would be transferable 
to offspring hence forming ecotypes of earthworm species 
based on location found [7]. 

There are standardized protocols for earthworm acute 
and sublethal testings of chemicals in contaminated soils 
[1] based on their responses and behavioural patterns [9]. 
Advances in molecular biology make use of biomarkers as rapid 
diagnostic and predictive tools in environmental assessments 
[10]. The use of genetic biomarkers gives better insight into 
ecotoxicological assessments as gene expression underscores 
changes in functionality at all levels of organizations and the 
predictive effect on the ecosystem. A protocol developed from 
a target gene can be extrapolated and used for similar genes 
in other related organisms [11]; hence this approach is more 
reliable than conventional earthworm testings [12]. Molecular 
markers are generally used because they typically indicate the 
susceptibility of organisms to contaminants or stressors. The 
molecular biomarkers monitored in earthworm ecotoxicological 
studies include Carboxylesterase (CES), Acetylcholinesterase 
(AChE), Catalase (CAT) and Glutathione S Transferase (GST) 
activity, the concentration of glutathione (GSH), [13]. Other 
genetic markers used in such studies are metallothioneins, 
annetocin [14]. Their presence and levels in organisms are 
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indicative of tolerance to metal, stress and other physiological 
forms of pollution hence their suitability as biomarkers and 
indicators of environmental status and pollution. 

Metallothioneins (MTs) are genetic biomarkers commonly 
monitored in annelids as it is referred to as the best-known 
biomarker candidate among Oligochaeta Annelida [15]. The 
common earthworm MT isoforms reported in works of 
literature are wMT1 and wMT2 [16], their induction when 
exposed to stress and contaminants, mechanisms of action in 
response to metals and their affi nity to metals are reasonably 
investigated. However, a third isoform is wMT3 detected at the 
embryonic stage of earthworms [17]; except this report, there 
is no other known report on wMT3.  Its structure and distinct 
mechanism of action remain obscure. This works compares the 
roles of the wMTs along with their mechanisms of action as 
well as highlighting signifi cant milestones in the progressive 
investigation of earthworm MTs. This work also centers on 
the detection of MTs in earthworms and their limitations with 
emphasis on the new technologies. We also reviewed the reports 
on and highlighted pitfalls in environmental monitoring of 
metallothioneins in earthworms exposed to Contaminants of 
Emerging Concerns (CECs) and crises of new technologies like 
nanotechnology on earthworm MTs. 

Metallothioneins

The fi rst metallothionein was identifi ed by Margoshes and 
Vallee [18] and a myriad of research followed with a focus on 
vertebrate and mammalian isoforms [19] and [20]. Their roles 
in the medical fi eld are well reported [21] and [22]. Since its 
fi rst report, more than 11500 articles on metallothioneins are 
cited in PubMed, and about one-tenth of these are related 
to environmental studies.  MTs are low molecular weight 
cysteine-rich (up to 33% by composition) ubiquitous proteins 
expressed by organisms under stress condition especially 
when induced by metals at certain levels, making them very 
well-studied targets. They are heat-stable [23] and have 
approximately 70 amino acids [24,25]. MTs are encoded by a 
multigene family which vary in their responses to different 
inducers including heavy metals, glucocorticoids, hormones, 
oxidants, strenuous exercise, superoxide and hydroxyl radicals 
generated by gamma radiation and cold exposure [26]. The 
major roles of MTs include the homeostasis of trace metals 
(Zn, Cu, Mn, Fe etc), protection against oxidative stress and 
detoxifi cation of xenobiotic metals (Pd, Cd etc) [27] and [28], 
metal ion transport, maintaining redox pool, scavenging of 
radicals and regulation of expression as explained and depicted 
in Figure 1 [29]. They are found in a range of organisms from 
microbes to mammals and reports on invertebrate MTs include 
nematodes [30], annelids [31]; insects [32]; the oysters [33] and 
various species of gastropods [34,35].

MTs have shown functional variability among organisms 
and signifi cant sequence heterogeneity [36] between taxa but 
notable conserved regions within phylogenetically related taxa 
[30]. Extensive reports on their detection, roles, mechanisms 
of action and stoichiometry in a wide variety of organisms [37] 
are available. 

The basic structure of metallothioneins 

The structures of proteins depict their functionalities. 
Metallothionein has a chemical confi guration often occurring 
as a straight polypeptide chain of cysteine (cys-cys) or cysteine 
having other amino acids within the chain (cys – x - cys) 
[38]. This makes it form better binding cluster since cysteine 
possesses the thiolate – SH end for metal attachment [39]. 
Individual cysteine residue required for metal ion binding is 
typically insuffi cient, hence the cluster forming tetrahedral 
binding arrangement using bridging sulphur binding ligands. 
The sulphur groups of cysteines are usually positioned adjacent 
to themselves hence encouraging the clustering.

Their chemical confi gurations of various families of MTs 
are reported but the 3D depictions are scarce [40]. Although 
there are structural diversity among MTs in organisms, the 
functional domains (C- and N-) for metal binding is usually 
common, appearing as “dumbbell”. The functional domains 
only form 3D structures upon metal coordination, and 
when there are no metal ions, (apo-thionein or apo-T), the 
domains usually appear unstructured; their structure depicts 
their functionality [41]. One elucidated Mt 3D structure is the 
mammalian MTs; they have two metal-binding domains that 
form metal-cysteine clusters at the N- and C terminals [42]. 
They have structures confi gured to form folded metal-binding 
domains with the -domain closer to C-terminal and more 
stable while the other is a more reactive -domain, which is 
closer to N-terminal. The metal clusters formed are named 
“M4Cys11 (-domain) and M3Cys9 (-domain)” where M 
represents a divalent metal ion like Zn2+ or Cd2+ [43]. The 
functional domains are linked with varying lengths of amino 
acid sequences; these linkers determine the structural stability 
of the MT.  

Earthworm metallothioneins structure 

The mechanisms of tolerance of earthworms to metal by 
accumulation are attributed to expression of MTs and their 
formation of metal-rich granules (MRGs) [44]. Metal toxicity 
will only occur when the capacity of these mechanisms to 
bind metals is exceeded [45]. Unlike vertebrate MTs where 
similarities occur structurally, invertebrates MTs show inter / 
intra – structural diversities hence they have distant phylogenic 
relationships. This diversity could be due to their evolutionary 

Figure 1: Main functions of metallothionein in an organism. MT participates mainly 
in maintaining of metal ions homoestasis, toxic metal ions detoxication, metal 
ions transport, maintaining redox pool, scavenging of radicals and regulation of 
expression. Adapted from Ryvolova, et al. 2011 [29] with slight modifi cation.
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changes in adaptation to their environment, which constantly 
predisposes them to contaminants. 

MTs do exist in homologues and are referred to as isoforms 
in the literature [46]; invertebrates like snails and earthworms 
have eight and three MT isoforms respectively. The most-
reported earthworm MT isoform are wMT1 and wMT2. They are 
often described to have a reverse mammalian MT arrangement 
“C- M4Cys11, -domain and N- M3Cys9, -domain” just as 
most vertebrates. Instead, there is an “N-terminal -domain 
(M4Cys11-cluster); C-terminal -domain (M3Cys9-cluster)” 
[42] arrangement depicted in Figure 2. These two isoforms 
(wMT1 and wMT2) have greater than 75% similarities in their 
sequences but differ considerably in the length and composition 
of their linker sequences. wMT1 have longer linker regions (6 
residues), and it is less stable than wMT2 with shorter linker 
sequences (4 residues) wMT2 has shown more stability in its 
metal retention with a wider range of pH and its effectiveness 
in cadmium toxicity protection than wMT1 [47].

Induction of metallothioneins in earthworms

Ecotoxicology studies involving earthworms earlier 
attributed major forms of cellular management of excess heavy 
metal to the possession of chloragosomes [48,49]. Figure 3 
depicts a conceptual model of impacts on soil metal chemistry 
due to exposure of earthworms to metal contaminated soils. 

One of the tolerance mechanisms of genetic origin is the 
induction of metallothionein and it is reported in several 
earthworm species. They include E. fetida [50,51], E. Andrei, 
[52,53] and Libyodrilus violaceous [54].The genetic origin 
of resistance is attributed to evolutionary changes in MT 
gene and researches suggest that MTs are the basis of metal 
resistance and tolerance in these organisms [55]. Earthworm 
MTs mainly function in metal detoxifi cation and evidence 
indicate that. Studies had shown metallothionein induction 
and their regulation in insects and vertebrates were conserved 
[57,58], it involved the binding of metal transcription factor 1 
(MTF-1) to metal responsive elements (MREs) usually found 
in the MT genes promoter. It was however established that 
the transcriptional activation of MTs in invertebrate is not 
consistent with that of the insects and invertebrates [59] but 
the exact mechanism is unclear. Instead, MREs were found in 
the invertebrate MT gene promoters in Lumbricus rubellus [60] 
and cAMP responsive element (CRE) was found to be involved in 
Cd-induced Wmt2 transcription and acted as a transcriptional 
activator of invertebrate MTs. Metallothionein as biomarker 

are monitored in earthworms for Cd contamination [61,62] 
and other metals like mercury and CuSO4 [63,64] and 
metallothionein monitoring in earthworm ecotoxicological 
studies is common. 

Earthworm metallothioneins induction by metals

In earthworms, metallothionein induction of two metal 
responsive proteins is known. They have nucleotide and amino 
acid sequences similarities of 80.9% and 74.7%, respectively but 
a distinctive deletion/insertion of two amino acids [65]. Their 
coding regions show a conserved arrangement of the cysteine 
residues which lack aromatic amino acids. The sequences of 
the two isoforms (wMT1 and wMT2) are structurally similar 
to other invertebrate MTs. The Metallothionein gene, Wmt2, is 
known to express the most responsive protein among wMTs. 
wMT3 is a third isoform of earthworm metallothioneins 
derived from an EST library generated from developing cocoon 
and highly expressed in embryonic development. It is 67% 
similar and 56% identical with wMT1 and wMT2 however, their 
role remains unclear. The three wMTs isoforms differ in their 
expression patterns and levels when exposed to metal ions. 

After the fi rst report on earthworm wMTs, their modes of 
action needed further elucidation; presently, with the advent 
of ecotoxicogenomic approaches, a handful of such reports 
are available. Studies reveal that wMT1 and wMT2 bind 
approximately six [6] Cd2+ in two domains and the report also 
indicates that recombinant WMTs coordinates seven [7] Cd2+ 
(Cd3Cys9 and Cd4Cys11); the MT contain 20 cysteines. These 
MTs are like the 20-cysteine in mammals, but the overall 
protein structures are different being that their 11-cys and 9–
cys segments are at alternate positions (i.e. the N – and C - 
terminus).  

A study of their biological function including biophysical 
properties, affi nities to particular metals and protein folding 
of wMT2 revealed there are signifi cant differences in the 

Figure 2: Aligned sequences of wMT1 from reports publishing wMT1 sequence 
showing proposed two domain structures with “N-terminal alpha-domain (M4Cys11-
cluster); C-terminal beta-domain (M3Cys9-cluster)” arrangement. Adapted from 
Kowald, et al. 2012 [40].

 

Figure 3: A conceptual model of possible impacts of earthworms on soil metal 
chemistry. Ingested soil travels through the gut and is egested. The egested soil 
may have a different pH, bacterial population and dissolved organic carbon content, 
all of which may modify soil chemistry. Modifi ed bacterial populations may impact 
on organic matter sorbed metals. pH and dissolved organic matter changes due to 
egestion of soil and / or excretion of mucus and urine may impact on sorbed metals. 
Some metals may be sequestered in earthworm tissues and subsequently excreted 
in a form different from the ingested metals. Adapted from Sizmur and Hodson, 
2009 [56] metal exposure correlates with production of MTs and consequently 
cause the reduction in metal toxicity [53].
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stoichiometry and protein folding of Zn-wMT2 and Cd-
wMT2, conferring wMT2 its function in Cd accumulation [46]. 
Though, Zn (II), Cd (II), or Cu (I) are metal ions known to form 
metallothionein clusters, the report on their overall affi nity 
are species dependent. The study of Foster and Robinson [66] 
reported HpMTs affi nity as Cu(I) > Cd(II) > Zn(II) and Cu(I) 
being the most competitive ion. The study indicated that the 
selection and discrimination of metals by metallothioneins was 
not entirely based on overall affi nity instead on the interplay of 
other factors. wMTs preference for metals is reported in some 
investigations but show inconsistences; this remains an area 
that require further explication.

Earthworm metallothionein induction by Contaminants 
of Emerging Concerns (CECs)

Substances other than metals are known contaminants 
found in the environment where they cause detrimental 
effects on the biota, among such are organic secretions like 
toxins and drugs, especially antibiotics; they are grouped as 
CECs. Investigating metallothionein induction due to these 
contaminants is of interest in recent times and a few reports are 
available. van OmmenKloeke [67] reported expression of MTs  
in E. Andrei induced by low concentrations of 2-phenylethyl-
isothiocyanates (ITCs), a known natural toxin. MT was 
recommended as an early biomarker of ITCs contamination 
even at low concentrations. Colistin is a feed additive used 
by animal farmers as antibiotics and nutrient enhancer 
[68]. Its suppression of MTs is shown by Guo, et al. [69] 
and they indicated that colistin in soils interfered with other 
molecular markers in metal ecotoxicity study, but MT served 
as early biomarker for colistin contamination. Enrofl oxacin is 
another antibiotic used in veterinary but did not induce MT 
in E. fetida [70]. Not all CECs are inducers of MTs. The CECs 
in the environment have gained attention in environmental 
studies because of their health implication. Their induction of 
molecular markers like MT indicated by few reports therefore 
implies that environmental monitoring with biomarkers like 
MT in earthworm for CECs is plausible. Elaborate investigation 
on other CECs as inducers of MT is therefore encouraged as 
only a few literature exist presently. 

Earthworm metallothionein induction by nanoparticle 

Nano-particles are described as substances in nanometer 
scales which are 1000 times smaller than normal bacteria. 
These nanoparticles are used in designing and manufacturing 
of various consumer products [71,72]. Natural nanoparticles 
of clay minerals, metal (hydr) oxides, humic substances are 
well-known examples of natural nanoparticles in soils. These 
nanoparticles because of their small size and large surface 
area have unique and novel properties. They are used in a wide 
variety of products from agrochemicals, food, textiles to solar 
panels and waste water treatment plants. The properties of 
nanoparticles can be further enhanced by surface coating of 
biocompatible molecules and stabilizing the surface, hence 
their surface charges, solubility and/or hydrophobicity changes 
depending upon the kind of biomolecule or the process of 
stabilization [73,74]. Global production of nanoparticles is 
projected to increase hence the usage and disposal of these 

materials will be enormous. Commonly used nanoparticles 
include AgNPs, CoNPsCuNPs, ZnNPs and AuNPs. Study on 
their environmental impact is of necessity, especially in the 
soil ecosystem where they are subject to transformations, 
aggregation/agglomeration and reaction with other 
biomolecules, exchange of surface elements and other redox 
reactions [74]. These properties make them behave differently 
with living organisms with respect to their parent metal. 

A few nano-related ecotoxicology studies monitoring 
molecular markers in earthworms are available. This include 
assessing levels of biomarkers like Lipid Peroxidation (LPO), 
total, reduced and oxidized glutathione content (TG,GSH 
and GSSG), the enzymatic activity of superoxide dismutase 
(SOD), catalase (CAT), glutathione reductase (GR), glutathione 
peroxidase (GPx),glutathione S-transferases (GSTs) and 
cholinesterases (ChEs) in Enchytraeus albidus exposed to ionic 
copper and copper nanoparticles (75). Such studies also include 
genotoxic (comet assay) and oxidative effects (SOD activity, 
TBARS) of functionalized-QDs and cadmium chloride on 
Hedistedi versicolor and Eisenia fetida coelomocytes [76].

Just a handful of investigations involve MTs’ use as 
biomarkers in nano – related ecotoxicological studies with few 
focusing on the detection and quantifi cation of metallothioneins 
in earthworms. Inductions of MT in earthworms are recorded in 
recent studies of Unrine, et al. [77,78]. Other such investigations 
include Enchytraeus crypticus exposed to AgNP [79], Lumbricus 
rubellus and their coelomocytes impacted by AgNPs (NM-300 
K) [80] and AgNPs exposure to E. fetida causing transcriptional 
expression of MT [81]. The presence of nanoparticles, drugs 
and toxins in the environment and their impact are areas of 
interest in recent time, such studies involving earthworm MTs 
are under reported hence more investigations in this area are 
encouraged.

Methods of Metallothionein (Mts) Detection and Quan-
tifi cation 

The earliest detection of organic substances like cystine 
was by Heyrousky polarography [82] while the fi rst detection 
of metallothioneins was by Differential pulse polarography - 
DPP method [83]. In the earlier approach, cystine was the only 
amino acid that showed a polarographic reaction in a solution 
of ammonium chloride, ammonia and cobaltous chloride 
(Brdicka electrolyte). Conversely, cysteine and other thioacids 
act catalytically in the Brdcka solution which they owe to their 
sulfhydryl groups, the technique involves the catalysis of 
hydrogen in the presence of a protein containing SH- groups. 
Using this technique, the quantifi cation of cysteine and others 
were reported by Brdicka [84,85] hence the subsequent use of 
the term “Bridcka reaction” by Thompson and Cosson [83]. 
With this method, Cystine and cysteine were quantifi ed in 
pure solutions and hydrolysates of organic substances in work 
by Stern, et al. [82]. Several efforts have been made in the 
modifi cation of DPP technique which had yielded better results 
like better detection limits, rapid assays, increased sensitivity 
etc [86]. 

Series of techniques including colorimetric, fractionation, 
paper electrophoresis etc were involved in the detection 
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of the fi rst MTs [18]. Brdicka reaction (with several 
modifi cations - AdTS, AdTS CV, AdTS DPV) was commonly 
used in metallothionein detection and quantifi cation in various 
organisms [87,88]. Other MT detection involved using metal 
saturation assays in monitoring Mt in fi sh [89] and terrestrial 
organisms [90]. The method involves equating the quantity of 
MTs as a total saturation of their sulphydryl groups by metal 
ions. This estimation was misleading as other metal-binding 
ligands also exist in these biological systems could interfere 
with the estimation [91,92].

The present-day technique used in the detection and 
quantifi cation of MTs range from electrochemical to 
bioanalytical and molecular methods. These methods involve 
procedures like ELISA, enzyme-linked assays, chromatography, 
electrophoresis, mass spectrometry, inductive coupled 
plasma mass spectrometry, electrochemistry, etc. Most of 
these techniques, however, do have their pros and cons. The 
immunochemical technique was the most commonly reported 
in publications in metallothionein detection between 2001 and 
2010 [29], it is specifi c and sensitive however limited by the 
diffi culty to obtain MTs antibodies among other disadvantages 
[93]. The electrochemical techniques like AdTS, AdTS CV, AdTS 
DPV [94,95] were sensitive and could detect MT peaks but 
require the use of analyser such as AUTOLAB Analyzer [24].

The improvement of fl uorescent technique for MT detection 
resulted in detecting trace amount of MTs where fl uorescent 
agents like ammonium-7fl uorobenzo-2-oxa- 1, 3-diazole-
4-sulfonate (SBD-F) [96] and monobromobimane (mBBr) 
[97] are derived. Geng, et al. [98] further improved on the 
fl uorimetric method for MT quantifi cation; it was sensitive to a 
wide range of MT concentrations and gave a relatively accurate 
estimation of MT. It however required tandem column system 
to separate the derived compound to eliminate interference 
or require a prior MT purifi cation before derivation. Also, 
improved colorimetric method for detecting metallothioneins 
(MTs) was developed by Qian, et al. [99]. It involves using a 
thymine (T)-rich oligonucleotide (TRO)–Hg–AuNP system. 
The thiol groups of MTs could interact with mercury from 
the T–Hg2+–T complex to release TRO, resulting in a colour 
change of the system. MTs concentration of the range 2.56 
x108 to 3.08 x 107 mol/L and the detection limit of 7.67 x 109 
mol/ L were possible. This method allows direct analysis of the 
samples by the naked eye without costly instruments, and it is 
reliable, inexpensive, and sensitive. 

The advent of high-performance liquid-phase 
chromatography-electrospray tandem mass spectrometry 
(HPLC ESI MS) and high-performance liquid chromatography-
inductively coupled plasma-mass spectrometry (HPLC-ICP-
MS) promised more accurate quantifi cation of metallothioneins. 
The high costs and technicalities of this equipment remain an 
imperative factor to consider in their use for the advancement 
of biological research. Biomolecular method, e.g. ELISA, MT 
- mRNA (PCR and QT-PCR) are standard method used in 
detecting and quantifying of metallothioneins; they are simple, 
less technical and accessible. They can be used to distinguish 
Mt-isoforms but the mRNA concentration does not give an 
accurate estimate of the protein concentration [93].

The fi rst detection of earthworm MTs reported in 1998 [16] 
required the combination of gel chromatographic techniques 
and “novel” molecular methodologies (Directed Differential 
Display and quantitative PCR. Recent reports on earthworm 
MTs detection and quantifi cation indicate molecular based 
kit as the most commonly used method. They are reliable but 
require devices like PCR and QPCR. These equipments and their 
consumables are relatively expensive. 

Conclusion 

Metallothioneins among other biomarkers impact on 
pollution tolerance and management in the ecosystem are 
well documented. Techniques involving High performance 
liquid-phase chromatography - electrospray tandem 
mass spectrometry (HPLCESI-MS), high performance 
liquid chromatography-inductively coupled plasma-mass 
spectrometry (HPLC-ICP-MS) are used for the detection and 
quantifi cation of MT; they are expensive, requires technical 
– know - how and are not readily available. Other methods 
include fl ourimetric method and biomolecular methods but the 
biomolecular method is the most accessible and commonly in 
used. Earthworms play vital role in metal detoxifi cation and 
maintenance and this functionality is associated with MTs. 
Studies have indicated that three MTs isoforms of earthworms 
(Wmt1, Wmt2 and Wmt3). They differ in their affi nity, 
expression patterns and levels when exposed to metal ions and 
Wmt2 is the most responsive protein among Wmts especially to 
Cd. Though earthworm metallothioneins are well studied and 
documented, the mechanism of gene induction and mechanism 
of action need more scientifi c investigation, wMT3 remains the 
least understood and it is under reported. Also, with the advent 
of nanotechnology, a handful of studies have evaluated the effect 
of nanoparticles in the environment using metallothioneins 
and a few focused-on earthworms an important entity of the 
soil ecosystem. Nanoparticles ecotoxocological impact are not 
well elucidated and remains an area that require more research 
attention. Other specifi c areas are wMTs induction, mechanism 
of action and their entire functions in nanoparticle impacted 
environment. Research is an ongoing process and the grey 
areas in earthworm metallothioneins research highlighted in 
this review are area that can be elucidated.
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