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Introduction 

The civilization of mankind and the agriculture 
sustainability rely on two precious bio-resources namely land 
and water [1,2]. So, the two last ones have been subjected to 
an hyper exploration and they were severely polluted by kinds 
of contaminants having its origin from various anthropogenic 
studies [2,3]. 

The potentially toxic elements can occur naturally in 
soils at various amounts depending on the source rock 
geochemical compositions and soil formation processes like 
weathering sedimentation and volcanic eruptions. Meanwhile, 
anthropogenic activities such mining and smelting operations, 
industrial production, oil and gas production, agricultural 
activities and military practices can also result in elevated 
soil contaminant amounts. Indeed Figure 1 illustrates the 
potentially toxic element sources in soil ecosystems [4,5].

It is crucial to note that the majority of contaminants get 
accumulated in plants and either directly or indirectly, fi nd 
their way into food web thus cause severe consequences [3]. 
In addition, the plants undergo several abiotic stresses such 
as salt, drought and heavy metal witch are known among the 
most limiting ones [6-10]. Indeed, it is crucial to signal that 

as much as one-half of the world irrigated areas are affected 
by the high salinity level [7,8,10,11], the drought and also the 
excessive soil metal amount [6,7,12]. The last cited one pose 
signifi cant hazard to human, plant, animal and health, hence 
to the ecosystem [7,13,14]. We indicate in this case that soil 
contamination by toxic metal has often resulted from human 
activities, such as those related to application of sewage sludge 
to agricultural soils, industrial emissions, mining, leakage 
and/ or disposal of industrial wastes and also the pesticide use 
[12,15]. It is basic also to signal that the phytoextraction is one 
of the metal phytoremediation technologies as illustrated in 
Table 1 [16]. 

Due to the potential toxicity and the high metals persistence, 
those facts constitute a serious environmental problem that 
requires an affordable solution [15,17]. Hence, phytoextraction 
seems to be the most promising technique and has received 
increasing attention from researchers since it was proposed 
by various research teams such as [18] as a technology for 
reclaiming metal polluted soils [3,7,12].

The metal phytoextraction from the soil relies on the use of 
plants to extract and translocate metals to their harvestable parts 
[3,16,19,20]. The phytoextraction aim consists on the reduction 
of the metal concentration in contaminated soils to regulatory 
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levels within a reasonable time frame. This extraction process 
depends directly on the able duality of the selected plants to 
grow and accumulate metals under the specifi c climatic and 
soil conditions of the site being remediated [16,20]. 

In another case, it is fundamental to note that the 
Brassicaceae plant family represents hundreds of plant families 
reported so far for their potential use in the remediation of 
varied environmental contaminants including toxic metals 
and metalloids. The most of the members of the Brassicaceae 
plant family well represent the metal hyperaccumulation 
among 0.2% of all angiosperms and thus, have key role in 
phytoremediation technology. Many of the plant species 
within Brassicaceae family such as Alyssum, Arabidopsis, 
Berkheya, Bornmuellera, Cardamine, Cochlearia, Crambe, Peltaria, 
Stanleya, Thlaspi including oilseed Brassicas grow fast, yield 
high biomass and are well adapted to a range of environmental 
conditions [19,20,21]. 

Metal extraction process 

The heavy  metal extraction process is due to two approaches 
that have currently been used to reach this purpose: the fi rst one 
results in the exploration of plants with exceptional, natural 
metal-accumulating capacity, so called hyperaccumulators 
[22], and the second one is the use of high-biomass crop plants 
with a chemically enhanced phytoextraction method [6,12,21-
25]. So, the basic properties of those two phytoextraction 
strategies of metals from soils are illustrated as followed 
in Table 2. In addition, the analysis of the Table 2 content 
and based on some of other’s investigations give birth to a 
fundamental conclusion summarized on the fact that the 
natural metal-accumulating capacity seem to be the most 

one because of the negative repercussion of the chemically 
enhanced phytoextraction method [26-28]. 

Metal hyperaccumulation and tolerance in plants

The metal hyperaccumulation capability is a rare 
phenomenon in plants. Occurring ≈400 vascular plant species 

Figure 1: Illustration of the plausible toxic element sources in soil [4].

Table 1: Illustration of the phytoremediation technologies and their signifi cances.

Metal phytoremediation technologies

phytoextraction
Exploration of plants to remove metals from soils and 

transportation and also their concentration in above-ground 
biomass

Phytostabilization
the use of plants to minimize metal mobility in contaminated 
soil through accumulation by roots or precipitation within the 

rhizosphere

phytovolatilization
Exploitation of plants to turn volatile chemical species of soil 

metals

Table 2: Basic properties of the two phytoextraction strategies of metals from soils.

Phytoextraction strategies

Natural phytoextraction Chemically assisted phytoextraction

-Plants naturally hyperaccumulate metals
-Slow growing ability, low biomass 

production
-Natural capacity to extract high amount 

of metals from contaminated soils

-Effi  cient transfer of metals from roots 
to shoots

-High tolerance; survival with high 
concentrations of metals in tissues

-No environmental drawback regarding 
leaching of metals

- Plants are normally metal excluders
-Fast growing capacity, high biomass 

plants
-Synthetic chelators and organic acids 

are used to enhance metal uptake

-Chemical amendments increase the 
metal transfer from roots to shoots

-Low metal tolerance; the increase in 
absorption leads to plant death

-Risk of leaching of metal chelates to 
groundwater
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in which vast majority of those ones discovered so far was 
being Ni hyperaccumulators. The plant species having the 
ability to accumulate Zn, Cd, Pb, Cu and Co are much less 
numerous [23]. The hyperaccumulation concept has been 
extended to a plant growing in its natural habitat in that those 
metal concentrations have been canned in the dry matter of 
any above ground tissue. This more detailed defi nition includes 
plants which accumulate metals in their aerial tissues other 
than leaves, that might be useful to phytoextraction as well, 
and disqualify any species that hyperaccumulate metals under 
synthetic conditions like massive metals addition to the soil or 
the nutrient solution [13]. 

The correlation and also the relationship between metal 
hyperaccumulation and tolerance is still a subject of discussion. 
Some authors suggest the non-correlation between those traits, 
while others suggest that hyperaccumulators possess a high 
degree of metals tolerance. [6] compiled a number of studies 
in that the metal accumulation meaning tolerant and non-
tolerant plants had been compared [29]. Those funding’s led to 
conclude that there is no pattern regarding accumulation and 
tolerance [6]. Both shoot and root concentrations are equally 
variable even when only one particular metal is [7,30,31]. 
However, at least in some cases, it is clear that the increased 
tolerance give birth to greater metal amount. Plants may use 
two strategies to deal with high metal amounts adjacent to their 
roots: (i) exclusion mechanisms by which the uptake and/or 
root to shoot transport of metals are restricted; and (2i) internal 
tolerance mechanisms which immobilize, compartmentalize or 
detoxify metals in the symplasm through production of metal 
binding compounds. Given that the phytoextraction purpose is 
to maximize metal accumulation effeciency in plant tissues, 
mechanisms of internal tolerance are likely to be crucial and 
[6,19,32]. 

Stress-associated protein provides tolerance to heavy 
metals 

The boom in industrialization over the past few decades 
has led to the onset of long-term pollution by heavy metals as 
well as serious environmental and also ecological problems for 
humans, plants and animals. In addition, we signal that some 
heavy metals have a crucial role during various physiological 
processes in plants [33,34]; Yet, when present in excessive 
concentrations in the soil, they can inactive biomolecules, 
block functional proteins, or displace other essential metal ions 
and, hence, become toxic causing serious ecological problems. 
We recently showed that overexpression of LmSAP, a member 
of the stress-associated protein (SAP) gene family isolated 
from Lobularia maritima, in transgenic plants led to enhanced 
tolerance to metal stresses (Cd, Cu, Mn and Zn). Indeed, 
LmSAP expression increased after 12 h of treatment with those 
metals, suggesting its involvement in the plant response to 
heavy metal stress [34]. LmSAP transgenic tobacco plants 
subjected to these stress conditions were healthy, experienced 
higher seedling survival rates, and had longer roots than non-
transgenic plants. However, they exhibited higher tolerance 
towards cadmium and manganese than towards copper and 
zinc [7,30,33,35,36]. 

Chemical amendments upgrades metal phytoextraction

The solubility and availability of metal are both dependent 
on the soil characteristics and are strongly infl uenced by pH [4] 
and also the level of complexation with soluble ligands [37,38]. 
So, the metals exist in soil under various organization types: in 
solution as ionic or organically complexed species; on exchange 
sites of reactive soil components; complexed with organic 
matter; occluded in Fe, Al, and Mn oxides and hydroxides; 
entrapped in primary and secondary minerals [37]. Most metals 
in soils exist in unavailable forms, thus soil conditions have 
to be altered to elicit phytoextraction since the phenomenon, 
depends on a relatively abundant source of soluble metal to 
enable signifi cant metal uptake and translocation to shoots. In 
addition, some metals have their extraction rate limited by their 
inherently low solubility. In such a case, the organic compounds 
may be used as amendments to upgrade phytoextraction. Such 
substances can chelate metal ions, therefore modifying the 
metals availability in soils [4,37,38].

At the same case, we note that as indicated by [39], DTPA 
and EDTA were noticeably effective in desorbing Pb whereas 
the natural organic acids solubilized very small amount of 
this metal from soil. Actually, the lower effi ciency of LMWOA 
in making soil-Pb available to plants compared to synthetic 
chelates had already been demonstrated. The major drawback 
for using synthetic chelates (especially EDTA) in fi eld conditions 
is their high persistence to biodegradation, with consequent 
high risks of metal leaching through soil profi le. The heavy 
metal levels of in the soil solution after EDTA treatment can be 
much higher than plant's capabilities to absorb them. Indeed, 
the analysis of the fundings followed in Table 3 shows that 
EDTA and DTPA can solubilize up to 77 and 100% of Pb present 
in the soil samples, respectively. This was equivalent to bring 
383 (EDTA) and 521 mg kg-1 (DTPA) of Pb into the soil solution. 
Of course, such high values must be weighted against the use 
of these chelates for phytoextraction in the fi eld [6,39].

The chelating agent and its use in Brassicaceae plants 
for phyto-extraction

Concerning the chelating agent and its use in Brassicaceae 
plants for phyto-extraction, various studies and investigations 
were described the effect of the heavy metal and the EDTA 

Table 3: Dose for maximum desorption, estimated amount of metal solution, 
and recovery rate for doses of chelates versus concentrations of Cd and Pb in a 
contaminated soil.

Metal Dose (mmol/Kg) Solibility (mg/L) Recovery (%)

EDTA

Cd 20.2 28.1 57

Pb 18.9 383.3 77

DTPA
Cd 13.4 38.6 77

Pb 14.8 521 104

Oxalic Acid

Cd 15.7 16.9 34

Galic Acid

Cd 15.3 12 2
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application on plant growth and the phyto-extraction potential. 
Indeed, the pot experiment was conducted to evaluate the 
phyto-extraction capability of heavy metals by Sorghum. The 
last one was grown in soil artifi cially contaminated with a 
range of heavy metals at various concentrations like lead (300, 
350 and 400 mg/kg), chromium (50,100 and 150 mg/kg) and 
cadmium (100, 150 and 200 mg/kg). In this case, 5 mM EDTA 
was applied, as chelating agent to the plants after 4 weeks of 
sowing. Plants were grown for a total of two months and fresh 
weight and dry weight of shoot and heavy metal accumulation 
were analyzed at 6 and 8 weeks after sowing. The fundings 
revealed that the described heavy metals application and EDTA 
adversely affected shoot length, fresh weight and dry weight of 
the biological matrix used at both time intervals. Hence, heavy 
metals uptake increased with the increment of heavy metal by 
the used plant. The use of 5mM EDTA upgrades the uptake of 
heavy metal [40-42]. It has been reported that EDTA enhances 
the availability of heavy metal to plants and thus increases the 
accumulation in their shoots [43-45].

Final Remarks and future research outlook

Basic and fundamental advances have been made in those 
last decades in understanding the processes implicated in 
metal phytoextraction from the contaminated soils. In the case 
of the chemically-assisted phytoextraction, the metal chelates 
dynamics in the rhizosphere have to be examined, either to 
overcome the risks associated with the low synthetic chelators 
degradability, or to optimize the use of more biodegradable 
compounds. In addition, researchers and policy makers have 
also to look for into the chemical pools of metals in soils and 
identify which ones are the targets for phytoextraction. A 
complete understanding of plant metal tolerance will be crucial 
to develop strategies to ameliorate the plant metal accumulation 
capacity. This will have signifi cant involvements for 
phytoremediation. Since most of the known hyperaccumulator 
species are slow-growing and have small biomass, expressing 
their metal-accumulating genes in fast-growing, high biomass 
plants, is a promising approach for developing plants that can 
be used as novel tools in phytoextraction. 
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