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Abstract

Objective: This manuscript reports the outcomes of medial meniscectomy (MM) surgery on 
cartilage and cortical bone strength and the reaction of cartilage and bone to intensive treatment with 
antiresorptive (zoledronate) and anabolic bone (PTH) therapies. 

Methods: Medial meniscectomy was used to induce OA in male Lewis rats. Therapy with 
zoledronate and human PTH was initiated immediately after surgery. A dynamic weight-bearing 
system was deployed to evaluate the weight-bearing capacity. At the end of the 10-week study 
cartilage pathology was evaluated by contrast µCT imaging and histology. Cortical bone geometry at 
femoral mid-diaphysis was evaluated by µCT and strength was tested using 3-point bending method. 

Results: MM surgery caused negative consequences including cartilage deterioration, 
osteophyte formation, a decrease in weight-bearing capacity and decreased cortical bone strength. 

Conclusions: Treatment with zoledronate and PTH cannot prevent or correct the deterioration of 
the hyaline cartilage, osteophyte formation and the mechanical incapacity of the osteoarthritic knee. 
The partial and prolonged disuse of the osteoarthritic leg caused by the surgery has a deteriorating 
effect on cortical strength that was not corrected with anabolic or antiresorptive treatment. Our data 
suggest that early restoration of the mechanical function of the injured knee is a mandatory first step 
in preventing cartilage deterioration and supporting the recovery of joint structures and that a multi-
therapeutic approach is warranted to treat various aspects of post-traumatic osteoarthritis.

exercise is recommended for the management of OA patients [12,13]. 
Because no effective therapies that specifically target chondrocytes 
exist, clinical guidelines recommend both pharmacological and non-
pharmacological approaches to relieve the symptoms of OA [14]. 
Both bone and cartilage turnover are deemed critical for the health 
of synovial joints, hence the use of both antiresorptive and anabolic 
bone agents could be used to treat OA symptoms [15,16]. Preclinical 
data overwhelmingly indicate that antiresorptive [17,18] and anabolic 
[19,20] therapies curb progression of OA in animal models, however, 
clinical results fail to demonstrate clear benefits of these therapies to 
OA patients despite the fact that these drugs have been in clinical use 
for many years [21,22]. 

A unilateral medial meniscectomy (MM) in rats results in the 
progressive degeneration of the articular cartilage with subsequent 
sclerosis and osteophyte formation, which further limit joint function 
[23]. The recent study conducted by our group showed no significant 
beneficial effects of either antiresorptive or anabolic therapy on the 
key denominators of OA, including cartilage damage, osteophyte 
formation, osteosclerosis and joint functionality [24]. Although 
our study results aligned with the clinical data, we did not expect 
a “no-effect” outcome, particularly because the vast majority of 
published preclinical data shows that bone-targeting drugs have at 
least moderate efficacy in animal models of OA [17-20]. To further 
elucidate the possible reasons for the abovementioned discrepancy 

Introduction
Osteoarthritis (OA) of the knee is the most common type of 

arthritis, and as such, it is the main cause of pain and disability in 
the elderly [1,2]. The risk factors related to OA are numerous and 
include past joint trauma or repeated micro-trauma, advanced 
age, obesity, nutritional factors, female gender, occupation, joint 
deformities, muscle weakness and genetics [3]. Out of all patients 
diagnosed with OA, approximately 12% have clear evidence of 
trauma prior to the onset of symptomatic disease [4]. The avascular 
nature of articular cartilage limits its regenerative and healing 
capacity; therefore, patients with post-traumatic OA (PTOA) heavily 
depend on external treatments designed to minimize damage 
to the joint structures and support the healing process. There is 
also a clear need to reestablish joint functionality in these patients 
because mechanical loads are critical to maintaining the health of 
the articular cartilage, bone, and muscles [5,6]. The pain caused by 
trauma, damaged tissue, and subsequent inflammation often creates 
a vicious cycle that starts with decreased physical activity and leads 
to atrophy of the joint and ultimately, physical debilitation [7,8]. 
Ample preclinical and clinical evidence suggests that physiologic 
loads are not only beneficial but necessary for the health of the 
joint [9-11]. The incapacity of the osteoarthritic limb to withstand 
physiologic loads is a critical element in OA pathophysiology; thus, 
the reestablishment of mechanical function through moderate 
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and to further extrapolate the ability of bone-targeted therapy to 
improve joint functionality and bone strength, we evaluated the 
cortical bone geometry and cortical bone strength of the femurs of 
injured (underloaded) and contralateral legs in a rat model of PTOA. 

Methods 
Animals and management

Four-month-old male Lewis rats (Charles River Laboratories, 
Portage, MI, USA) weighing 350 g were used in this study. All in vivo 
procedures were approved by the Institutional Animal Care and Use 
Committee (IACUC) at Pfizer and were performed in accordance 
with the Guidance [25]. The rats were pair-housed in ventilated 
cages (Innovive Inc., San Diego, CA, USA) in a temperature- and 
humidity-controlled room on a regular 12-hour light/dark cycle. 
Irradiated LabDietTM 5053 (Purina, Richmond, IN, USA) and water 
were provided ad libitum. The rats were acclimated for one week 
prior to their use in the study. A total of 48 rats were used for the 
10-week study, with 12 rats per group. One group of 12 rats received 
sham surgery; the remaining 36 rats underwent MM surgery. The 
four study groups were as follows: a sham control (Sham), an MM 
vehicle-treated (MM/Veh), an MM + zoledronate (MM/Zol) and an 
MM + PTH (MM/PTH). 

Surgery 
The rats were anesthetized using isoflurane. One dose of carprofen 

(Pfizer Animal Health, New York, NY, USA) and sustained-release 
buprenorphine (Zoopharm, Windsor, CO, USA) were administered 
prior to surgery for analgesic coverage. In the sham group, a surgical 
approach to the medial collateral ligament on the right hind limb 
was completed by cutting the skin and leaving the medial collateral 
ligament intact. In the surgery groups, MM was performed by fully 
transecting both the medial collateral ligament and the medial 
meniscus of the right hind limb, followed by closure in 2 layers using 
absorbable sutures [23]. 

Dosing and bone labeling 
The rats in the sham and MM/Veh control groups received vehicle 

(sterile water) at 1 mL/kg subcutaneously (sc) 5 days/week starting on 
the day of surgery. The rats in the MM/Zol group received zoledronic 
acid (Zol; Sargent Pharmaceuticals 25021-801, Schaumburg, IL, 
USA) at 100 µg/kg sc twice/week [16], and the rats in the MM/PTH 
group received human PTH (hPTH 1-34; Sigma-Aldrich, P3796, St. 
Louis, MO, USA) at 40 µg/kg sc five times/week [20] starting on the 
day of surgery. To label the actively mineralized bone surfaces calcein 
(Sigma-Aldrich Cat# C-0875) at 10 mg/kg (3.3 mL/kg) was injected 
13 days before necropsy and alizarin (Sigma-Aldrich Cat# A-5533) at 
30 mg/kg (3.0 mL/kg) 3 days before necropsy. 

Body weight, sample collection 
Body weight was recorded twice weekly throughout the study. At 

the end of the 10-week study, both hind legs were carefully harvested 
and wrapped in saline-soaked gauze and frozen at -20°C for ex vivo 
imaging, mechanical testing and histological analyses. 

Dynamic weight bearing
Dynamic weight-bearing (DWB) measurements were obtained 

before surgery, at week 5 and before euthanasia to assess the effects 
of surgery on the weight-bearing capacity of the hind and front legs 
using a BIO-SWB-R model (Bioseb, Boulogne, France, version 1.3) 
and method described earlier [26]. 

Radiology
All of the knee samples were X-rayed with a Faxitron Model 

MX20 specimen scanner (Faxitron Bioptics LLC., Tucson, AZ, USA) 
using exposure time of 12-18 sec at 31-35 kV and 3 x magnifications 
to inspect the bone samples possible abnormalities. 

µCT and EPIC µCT measurements
Pre-contrast scans of all the tibias were obtained using the 

MicroCT 100® computed tomography system (Scanco Medical, 
Bassersdorf, Switzerland) with the following parameters: 800 slices, 
10-µm resolution, a total scanned area of 8.0 mm2, and source energy 
of 70 kVp, 115 µA at 8 W to capture the entire proximal tibia section. 
The tibias were then incubated in the Hexabrix solution and scanned 
using a previously described method [24,27]. Post-soak scanning of 
the right tibia was performed using source energy of 55 kVp, 145 µA 
at 8 W and an average scan time of 42 min per sample. 

µCT evaluation of the epiphyseal cartilage 
Using the post-contrast scans, contour lines were drawn around 

a range of interest (ROI) that included the cartilage overlying the 
medial tibial plateau as described earlier [24,28]. Other ROIs were 
drawn and analyzed on this central midpoint of the articular surface 
in a manner corresponding to the standard histological evaluation 
techniques for the articular cartilage [29]. The length of the medial 
articular cartilage was measured and divided into 3 zones of equal 
length, and the cartilage volume was evaluated as described elsewhere 
[24].

Cartilage histology
After the EPIC µCT imaging of the articular cartilage was 

completed, six tibias were randomly chosen and placed in 10% 
neutral buffered formalin for 72 h prior to demineralization for 8 days 
in Immunocal (Decal Chemical Corp. Tillman, NY, USA). The tibias 
were then processed in paraffin and serially sectioned at ~200-µm 
intervals into 5-µm-thick sections for with hematoxylin and eosin, 
toluidine blue and safranin O to evaluate cartilage damage using the 
method suggested in the literature [24,29,30]. Here, we report the 
overall histology findings and zonal analysis of the cartilage thickness 
parameter, as evaluated using toluidine blue sections.

µCT evaluation of the cortical bone at the femoral 
mid-diaphysis

µCT of the cortical bone mid-diaphysis was conducted on both the 
left and right femurs using a µCT-100® computed tomography system 
and previously described method [31]. Sample scans were performed 
on 25 slices (1 slice = 10.5 µm) using high-resolution settings. The 
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following parameters were evaluated bone mineral density, tissue 
volume, bone volume, bone marrow volume, cortical thickness, bone 
area, polar moment of inertia, maximal I value, minimal I value and 
IMAX/CMAX.

Bone strength testing using the 3-point bending 
method

Both the left and right femurs were mechanically tested with 
using an Instron materials testing machine (5543A, Instron Inc., 
Norwood, MA, USA). The femurs were positioned cranial side up 
across two lower contacts that had a span of 5-7 mm, with an upper 
contact centered between the lower contacts. The bone was broken 
in 3-point bending using a cross-head speed of 0.5 mm/min. During 
testing, force and displacement data were collected at a frequency of 
200 Hz using the BlueHill 3 testing software, version 3.41 (Instron 
Inc). Force/displacement curves were generated, and ultimate force 
(maximum load), stiffness (maximum slope) and energy to fracture 
were recorded.

Dynamic histomorphometry of the cortical bone
The distal ends of the femoral cortical bone from the left and 

right femurs were collected after mechanical testing and embedded 
undecalcified in methylmethacrylate, cut into 20-µm-thick sections 
using a bone cutting system (Exakt Norderstedt, Germany) and 
evaluated for the new bone formation at the periosteal and endosteal 
envelope under UV light.

Statistical analysis
The data are reported as the means ± standard deviations (SDs). 

Differences were tested for significance using 3-factor repeated-
measures analysis of variance (ANOVA) with interactions (SigmaPlot, 
version 12.2, Systat Software, Chicago, IL, USA). Post hoc comparisons 
of means with a Bonferroni correction for multiple comparisons were 
performed only when interaction effects were significant. P values less 
than 0.05 were considered statistically significant.

Results
Animals

All of the rats enrolled in the study showed a 15% increase in body 
weight regardless of their treatment group. Neither the surgery nor 
treatment had an effect on animal health. 

Dynamic weight bearing
The MM rats showed a different pattern of weight distribution 

compared with the sham controls. The weight-bearing load on the 
front feet of the MM rats was approximately 20% greater relative to 
sham controls at the 5-week time point, while both sham and MM 
rats showed similar weight bearing on the front feet at the end of 
study. The load-bearing capacity of the operated limbs of the MM rats 
did not increase despite the gain in body weight. The weight-bearing 
loads placed on the left hind leg were only moderately increased at 5 
weeks in all 3 groups of MM rats regardless of treatment and stayed 
similar in all study groups throughout the 10-week study (Figure 1). 

Figure 1: Figure 1 shows the change in the weight-bearing capacity of the 
front paws (A), rear left leg (B) and rear right leg (C) in the Sham rats, MM 
rats, MM rats treated with zoledronate and MM rats treated with PTH. The 
weight-bearing load on the front paws in all three groups of MM rats was 
higher at the 5-week time point relative to the Sham controls. Additionally, 
the weight-bearing load on the rear right leg in all three groups of MM rats 
was lower at the 5- and 10-week time points relative to the Sham controls. 
(n=12 rats/group; *p<0.05 vs MM, MM/Zol, MM/PTH and **p<0.05 vs MM/
Zol and MM/PTH).

EPIC µCT evaluation of the articular cartilage at the 
medial tibial plateau

The articular cartilage was significantly thicker in Zone 1, which 
borders the osteophytes, in all three groups of rats that received the 
MM surgery compared with the sham controls. The cartilage was 
either considerably thinner or completely missing in the lateral part 
of Zone 1 and in the entirety of Zone 2 in all 3 groups of MM rats 
compared with the sham controls Figure 2 A-D. 

Histology evaluation of the articular cartilage
In the control sham rats, the articular cartilage at the medial tibial 

plateau grew progressively thicker from the most medial zone 1 to 
the most lateral part zone 3 (Figure 3A). The mechanical imbalance 
induced by the MM surgery resulted in cartilage thickening at the 
most medial half of zone 1, next to the osteophytes, whereas the 
cartilage in zone 2 was thin and or completely missing in all MM rats 
(Figure 3B-D). 
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Figure 3 A-D: Figure 3A-D shows polarized images of the proximal tibial epiphysis stained with toluidine blue. All three groups of rats that received the MM surgery 
show significant cartilage deterioration, cartilage fibrillation (yellow arrowheads), and a thicker subchondral bone plate (red arrows) in Zones 1 and 2. Osteophyte 
formation (red arrowheads) and thickening of the articular cartilage is evident in Zone 1 of them MM rats. The numbers in parentheses indicate the mean ± SD of 
cartilage thickness in µm for each zone.

Figure 2 A-D: Figure 2 A-D shows the EPIC µCT color thickness (“heat”) images of the articular cartilage covering the medial tibial plateau. Large cartilage defects 
can be seen in Zones 1 and 2, as indicated by arrows. The most medial part of Zone 1 is thicker in all three MM groups compared with the Sham controls, while 
Zone 3 has a similar thickness in all four groups of rats. The numbers in parentheses indicate the mean ± SD of cartilage volume in mm3 for each zone.

also exhibited somewhat lower values for all measured parameters 
compared with the contralateral left femurs. Both femurs from 
zoledronate and PTH treated rats showed slightly higher values for 
cortical bone parameters relative to the MM controls. The left femurs 
of the rats treated with zoledronate and PTH showed somewhat 
higher values for cortical bone properties compared to corresponding 
right femurs (Table 1). 

Cortical bone geometry at the femoral mid-diaphysis
The µCT results confirmed that the left and right femurs of the 

sham rats had similar cortical bone properties at the femoral mid-
diaphysis. The left femurs of the MM rats showed cortical bone 
geometry similar to that of the left femurs of the sham rats. However, 
the right femurs of the MM rats showed lower values for cortical 
bone properties compared with the right femurs of the sham rats but 
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Cortical bone strength
The left femurs of all 4 study groups showed similar maximum 

load parameters. The right femurs of the rats that underwent MM 
surgery displayed significantly lower maximum loads and energy to 
break values compared with the contralateral left femurs of the same 
study group and the right femurs of the sham rats (Figure 4). 

Dynamic histomorphometry of the cortical bone
The rats in the sham group showed a similar intensity of bone 

mineralization in both the left and right femurs and at both cortical 
envelopes. The rats that underwent MM surgery showed less 
intensive mineralization of the right (operated) legs compared with 
the contralateral left legs of the same dosing group. Additionally, the 
rats treated with PTH showed the most intense mineralization at both 
cortical envelopes while the zoledronate-treated rats showed minimal 
bone formation at the endosteal envelope in both femurs (Figure 5). 

Discussion
Animal disease models for testing novel osteoarthritis therapies 

are the gold standard in the preclinical phase of drug development. 
Despite improvements in animal experimentation, technological 
advances and biomarkers, too many unnecessary and poorly designed 

animal studies are still being conducted, yielding redundant and 
misleading results that have not been clinically confirmed. Although 
the overall benefit of such studies to the medical community is 
negligible, the lack of standardized animal models, study designs and 
defined endpoints continues to enable the publishing of pointless 
data.

The recent study conducted by our group was one of a very 
few publications to show the lack of efficacy of antiresorptive and 
anabolic therapy on the key indicators of OA in a preclinical model 
of PTOA [24]. As summarized in this manuscript, study results 
reveal that neither zoledronate nor PTH had a substantial effect on 
cartilage deterioration, osteophyte formation, osteosclerosis and 
joint functionality. Similar to our findings, the clinical data fail to 
demonstrate a clear benefit of anabolic and antiresorptive therapies in 
OA patients [21,22] despite decades of the use of these agents to treat 
patients with skeletal maladies [32,33]. The animal models of bone 
diseases and the biomarkers of bone metabolism, mass and structure 
are highly predictive of clinical outcomes [34,35]. Similarly, animal 
models of OA also seem to closely replicate the pathophysiology 
of human disease and are endorsed by the OARSI governing body 
[23]. Therefore, the discrepancy between the preclinical results and 
the clinical findings regarding benefits of bisphosphonates and PTH 

Table 1: Table 1 shows the µCT analysis of the cortical bone at the femoral mid-diaphysis (midshaft) for both the left (L) and right (R) femurs. The following parameters 
were evaluated: bone mineral density (BMD; mg/cm3), tissue volume (T. Volume; mm3), bone volume (B. Volume; mm3), bone marrow volume (B. M. Volume; mm3), 
cortical thickness (C. Thickness; mm), bone area (B. Area; mm2), polar moment of inertia (pMoI; mm4), maximal I value (IMAX; mm4), minimal I value (IMIN; mm4), and 
IMAX/CMAX (mm3).

STUDY GROUPS

Parameter Unit Leg Sham MM MM/Zol MM/PTH

BMD mg/mm3 L 1367.54 ± 23.23 1371.21 ± 20.51 1389.00 ± 22.20 1356.92 ± 23.25

R 1342.94 ± 16.81 1332.36 ± 9.82 1338.04 ± 11.87 1329.47 ± 13.20

T. Volume mm3 L 6.38 ± 0.44 6.08 ± 0.37 6.27 ± 0.32 6.40 ± 0.29

R 6.37 ± 0.40 6.04 ± 0.55 6.05 ± 0.43 6.18 ± 0.32

B. Volume mm3 L 3.05 ± 0.15 2.93 ± 0.10 3.06 ± 0.17 3.15 ± 0.14

R 2.99 ± 0.19 2.89 ± 0.23 2.93 ± 0.17 3.04 ± 0.13

BM. Volume mm3 L 3.13 ± 0.31 3.15 ± 0.28 3.21± 0.19 3.25 ± 0.17

R 2.98 ± 0.23 3.12 ± 0.34 3.13 ± 0.28 3.14 ± 0.21

Co. Th mm L 0.79 ± 0.05 0.77 ± 0.01 0.81 ± 0.03a 0.82 ± 0.02a

R 0.79 ± 0.03 0.75 ± 0.01 0.78 ± 0.02a 0.80 ± 0.01a

B. Area mm2 L 7.24 ± 0.37 6.96 ± 0.24 7.25 ± 0.21a 7.47 ± 0.34a

R 7.19 ± 0.26 6.71 ± 0.22 6.95 ± 0.21a 7.21 ± 0.30a

PMoI mm4 L 16.36 ± 1.60 15.46 ± 1.41# 16.21 ± 1.70# 17.15 ± 1.69#

R 16.28 ± 1.13 14.40 ± 1.14* 14.95 ± 1.72 16.01 ± 1.58

IMAX mm4 L 10.18 ± 1.11 9.71 ± 0.98# 10.21 ± 0.94# 10.58 ± 1.21#

R 10.18 ± 0.68 8.79 ± 0.70* 9.26 ± 1.08 9.68 ± 1.02

IMIN mm4 L 6.18 ± 0.54 5.75 ± 0.49 5.99 ± 0.85 6.57 ± 0.54a

R 6.17 ± 0.53 5.61 ± 0.53 5.70 ± 0.72 6.34 ± 0.65a

IMAX/CMAX mm3 L 4.53 ± 0.35 4.36 ± 0.28 4.58 ± 0.34 4.67 ± 0.35

R 4.45 ± 0.22 4.10 ± 0.24 4.30 ± 0.40 4.38 ± 0.30
*p<0.05 or **p<0.01 relative to the sham rats. ap<0.05 or bp<0.01 relative to the MM rats.
#p<0.05 relative to the right femurs of the same group of rats.
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strength. Also, sedentary life style of rats in laboratory condition 
and different biomechanics in quadrupeds can minimize the change 
in cortical bone remodeling imposed by diminished capacity of 
osteoarthritic leg to withstand the mechanical loads and that should 
be taken into account when extrapolating these data to human 
subjects.

Similar to our findings, previous studies have shown that injured, 
osteoarthritic legs have a diminished capacity to withstand mechanical 
loads [42,43]. Here, we demonstrate that even moderate disuse over 
long periods has a deteriorating effect on cortical bone energy to 
break and maximal loads and that neither anabolic nor antiresorptive 
treatment can fully compensate for lack of physiological weight-
bearing loads. Although cortical bone geometry and stiffness (the 
ability of bone to resist deformation under a given load) is preserved 
with PTH and, to a lesser extent, with zoledronate, those therapies fail 
to significantly improve bone strength, perhaps because of impaired 
mineralization and changes in the material properties of the cortical 
bone [44]. 

The mechanical loading that occurs with weight-bearing exercise 
is a potent anabolic stimulus of muscle, bone, and cartilage and is 

Figure 4: Figure 4 shows the change in maximum load (A), stiffness (B) 
and energy to break (C) in the Sham rats, MM rats, MM rats treated with 
zoledronate and MM rats treated with PTH. The maximum load and energy 
to break parameters of the right femurs were decreased in all of the rats 
that underwent MM surgery relative to the right femurs of the sham controls. 
There was also a significant difference in the maximum load and energy 
to break parameters between the left and the right femurs of all rats that 
underwent MM surgery. (n=12 rats/group; *p<0.05 vs the right femurs of the 
Sham group; ap<0.05 vs the left femurs of the same treatment group).

Figure 5: Figure 5 shows UV images of cortical bone from left (L) and right 
(R) femurs. The right femurs of the rats that underwent MM surgery show less 
intense mineralization at both cortical envelopes. The blue arrows indicate 
minimal bone formation at the endosteal envelope in the zoledronate-treated 
rats. The rats treated with PTH show the most intense formation of both the 
periosteal and endosteal envelope. (bm – bone marrow; cb – cortical bone).

to treat OA require further evaluation. Based on the literature, we 
hypothesized that both therapies would maintain or improve the 
strength of the cortical bone in the OA limb and that the bones 
would thereby remain fit to withstand mechanical loads and provide 
a foundation implementing physical therapy. The published literature 
unequivocally indicates that therapy with PTH and bisphosphonates 
increases cortical bone mass and strength during physiologic loading 
and that the addition of physical exercise further promotes the drugs’ 
effects on the cortical bone [36,37]. Contrariwise, in animal models 
with decreased load-bearing activity, anabolic and antiresorptive 
therapy seems to be less effective [38,39], proving the “mechanostat” 
theory that bone mass and architecture are regulated in response to 
the local strains generated in the local tissue by functional loading 
[40,41]. The results of this study show that partial disuse and reduced 
weight-bearing loads negatively impact the cortical bone geometry 
of the operated leg, as all 3 groups of osteoarthritic rats consistently 
exhibited somewhat lower values for cortical bone denominators 
compared with the contralateral left leg. Even though decline in 
cortical bone qualities of the operated leg was rather small and 
reached the significant difference only for pMoI and IMAX parameters, 
the change seems to be sufficient to significantly affect cortical bone 
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essential for the health of the musculoskeletal system [9-11,45]. 
The data from this study led us to conclude that patients with 
acute traumatic cartilage injury will benefit most from the early 
implementation of physical therapy and moderate exercise [45-48], 
which should provide the optimal milieu for simultaneous treatment 
with other therapies (anti-inflammatory, regenerative, nutrient and 
vitamin, and bone therapies) to support healing of the articular 
cartilage and subchondral bone end to ensure that the mechanical 
functions of the injured joint are restored.

In recent years, the regulatory and scientific community has 
imposed stringent rules to ensure that the well-being of laboratory 
animals and that the 3Rs paradigm is implemented [25,49]. It has 
been estimated that 25 million animals are used in research every year 
[50]. To further improve the usefulness of animal studies investigators 
should carefully select a suitable disease model and design the study 
of appropriate duration taking into account the slow metabolism of 
the cartilage and subchondral bone to allow the complete assessment 
of joint functionality. Additionally, several independent methods 
should be mandatory for every in vivo study to evaluate key attributes 
of cartilage and bone physiology, including imaging and histological 
evaluation of cartilage and bone, histochemistry and serum 
biomarkers. The lack of appropriate skills, technologies or funding 
should not be an excuse to compromise and run incomplete and 
poorly designed studies. Publishing “negative” data, even in the form 
of summary, should be encouraged to further promote information 
sharing and deter scientists from conducting unnecessary and 
redundant work. To that end, scientific journals and conferences 
should enforce stricter rules and guidelines for publishing data from 
in vivo studies to ensure scientific excellence and the proper use of 
laboratory animals.

Conclusions
The various methods utilized in this study showed that aggressive 

treatment with zoledronate and PTH was not sufficient to prevent 
or correct the deterioration of the hyaline cartilage, osteophyte 
formation and the mechanical incapacity of the osteoarthritic 
knee. Additionally, partial disuse of the osteoarthritic leg over 
long periods weakens cortical bone strength, and neither anabolic 
nor antiresorptive treatment could compensate for the lack of 
physiological weight-bearing loads. Our data suggest that the quick 
restoration of the mechanical function of the injured knee is a 
mandatory first step to prevent cartilage deterioration and support 
the recovery of joint structures and that a multi-therapeutic approach 
is warranted to treat various aspects of post-traumatic OA.
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