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Abstract

Bile acid (BA) plays an important role in the absorption and translocation of fat and fat-soluble 
vitamins. In addition, it can also act as a signaling molecule to infl uence the energy metabolism of 
organisms, glucose metabolism, and the development of liver and intestinal diseases by activating 
receptor.  Gut microbiota participates in the metabolism and transport of BA, which changes the BA 
associated with the occurrence and development of a variety of diseases. This is achieved through a 
variety of regulatory processes and is intrinsically linked to host physiology. In recent years, many 
scholars have used 16S rRNA gene sequencing in conjunction with serum, urine, and fecal metabolomics 
methods to study the mechanisms underlying the occurrence and development of disease associated 
with BA and gut microbiota, or to evaluate the protective action of drugs on the metabolic phenotype 
in rats with gut microbiota disorder. On the one hand, the gut microbiota regulates BA by activating 
receptors such as FXR, TGR5, and FGF15, and can regulate BA synthesis through enzyme reaction. In 
addition, gut microbiota can effectively hydrolyze bound parasites or heterogenous organisms that have 
been cleared by BA. On the other hand, BA can alter the composition of the gut microbiota by inhibiting the 
growth of bacteria in the intestine. These studies provide new ideas for further elucidating the relationship 
between gut microbiota and BA and treatment for related disease.
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Introduction

In modern scientifi c research, we have learned that 
there are hundreds of billions of microorganisms in living 
organisms. However, how these microorganisms coexist with 
the host is now a hot research topic in the fi eld of science. The 
gut microbiota can produce a variety of secondary metabolites 
that accumulate in the blood and have a systemic effect on the 
host [1]. Instability or dysbiosis of the gut microbiota and its 
metabolites may be related to the causes of immune, metabolic 
and neurological diseases [2-4]. Therefore, research on gut 
microbiota has become a new direction for a series of diseases 
prevention and control.

The host genome and the intestinal microfl ora as 
important energy substrates and signal factors collectively 
produce a good deal of metabolites including bile acid (BA), 
choline, neurotransmitters, short chain fatty acid (SCFAs). The 
crosstalk between gut microbiota-small molecule metabolite-
host regulates metabolic phenotypes and the immune system, 
and affects risk targets for disease and the response to 
treatment [5,6]. BA is currently receiving increasing attention 
in a variety of endogenous metabolites produced by co-
metabolism of the host-gut microbiota. BA is an important 
substance in bile. It regulates the digestion and absorption of 
lipids, prevents the formation of gall-stone, and regulates the 
intestinal endometrial homeostasis through the enterohepatic 
circulation. Moreover, BA plays the role of nutrient signaling 
hormones by combining with receptors that regulate the 
expression of genes involved in BA synthesis and transport 
by encoding enzymes and proteins [7], for instance, farnesoid 
X receptor (FXR), Takeda-G-protein-receptor-5(TGR5), 
pregnane X receptor (PXR), vitamin D receptor (VDR), and 
sphingosine-1-phosphate receptor 2 (S1P2) [6,8-10]. As an 
important signaling molecule, BA is involved in regulating the 
physiological activities of the host, which is also closely related 
to many metabolic and immune diseases in the body, such as 
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obesity, type 2 diabetes, infl ammation, liver and intestinal 
disease [5,11]. 

Even if the concentration of these small molecules produced 
in the host blood can reach the same level as the drug, which 
microorganisms are clearly controlling this metabolic process 
to regulate the production of these secondary metabolites, 
and thus affecting the host still needs further research [1]. 
At present, studies have confi rmed that the metabolism of 
BA is affected by the metabolism of gut microbiota that is 
an important factor affecting BA absorption and signaling 
pathways, thus acting on host metabolism, such as obesity, 
lipid metabolism, diabetes, liver disease, intestinal mucosal 
function, colon cancer and cardiovascular are related to BA 
metabolism and BA signal regulation [711,12-18]. Therefore, 
this paper reviews the understanding cross-talk between bile 
acids and gut microbiota.

Enterohepatic circulation of bile acid

BA is an amphiphilic steroid molecule synthesized from 
cholesterol [19]. There are two ways to synthesize bile acid. 
The main pathway for the bile acid synthesis is mediated 
by Cholesterol 7 alpha-hydroxylase (Cyp7a1) that is a rate-
limiting enzyme, and a small part (3%~18%) of the BA pool 
is synthesized through alternative pathway catalyzed by sterol 
27-hydroxylase (Cyp27a1) and oxysterol and steroid 7-alpha-
hydroxylase  (Cyp7b1) [20], which is shown in fi gure 1. What 
signifi cant to realize is that bile acid metabolites between 
rat/mice and humans differ due to rodent specifi city; the 
conversion of hydrophilic muricholic acid (antagonists of FXR) 
to hydrophobic chenodeoxycholic acid (agonists of FXR) [21].

In the liver, primary BA is conjugated to glycine 
(taurine in rat/mice) at the C24 position by BA-CoA amino 
acid N-acetyltransferase (BAAT) and BA-CoA synthase 
(BACS). Furthermore, bile acid can also be glucuronidated 
by UDP -glucuronosyltransferases, or sulfotransferase by 
SULT2A1-mainly in human-or SULT2A9-mainly in rat/mice. 
And then,  bile acid is secreted into the bile canaliculi with the 
help of the BA transporters MDR1A and MRP2 and the bile salt 

export pump (BSEP). Bile acid fl ows through the biliary tree 
along with the bile into the gallbladder. enteroendocrine I cells 
secrete cholecystokinin (CCK) to induce gallbladder contraction 
after eating, which leads to bile enters the duodenum [22]. 

In the intestine, BA activates pancreatic lipase and forms 
micelles containing dietary fat and lipophilic vitamins (A, d, E 
and K). The gut microbiota converts primary BA to secondary BA. 
The vast majority of  bile acid leaves the liver in the conjugated 
form, and they are uncoupled and further metabolized by gut 
microbiota in the small intestine [23-25]. In the intestinal 
cells at the end of the ileum, 95% of intestinal BA are actively 
reabsorbed through the apical-sodium-dependent BA 
transporter (ASBT/SLC10A2) and secreted by the heterodimeric 
organic solute transporters  and  (OST /) at the basolateral 
membrane. The absorbed BA return to the liver through 
portal veins and the superior mesenteric, in which active 
transporters in the sinusoidal membrane of hepatocytes(OATP, 
OAT,mEH, NTCP) clear them [26]. Unabsorbed 5% intestinal 
BA can be unbound by the intestinal microbiota and lost into 
feces or passively reabsorbed in the colon. The enterohepatic 
circulatory system is a highly effective physiological system for 
the human which can not only maintain the energy balance of 
the organism, but also facilitate the absorption and digestion 
of nutrients [27].

Signal regulation of  bile acid synthesis, transport and 
metabolism

BA not only improves the absorption of fat-soluble nutrients, 
but also regulates many metabolic processes, including lipids, 
glucose, and energy homeostasis, by means of specifi c diacid-
activated nuclear and membrane-bound receptors. These 
receptors regulate the expression of genes encoding enzymes 
and proteins to control the synthesis and transport of bile acids 
[28]. FXR is a important regulator of bile acid enterohepatic 
circulation and homeostasis, and it has high expression 
levels both in the intestine liver [29]. FXR modulates the 
expression of genes taked part in the transport and synthesis 
of bile acid and can be combined with a variety of highly 
effective endogenous BA and their conjugates. Accumulation 
of a mass of of toxic bile acids may lead to liver damage and 
infl ammation and cholestatic liver disease. Therefore, BA 
synthesis is strictly regulated by BA that return to the liver cells 
from the ileum to restrain the transcription of the CYP8B1 gene 
and the Cyp7a1 gene through two mechanisms. In the liver 
BA binds to FXR, which in turn activates Shp to then inhibit 
their own synthesis in the liver and uptake in the ileum. In the 
intestine, BA activates FXR to induce fi broblast growth factor 
15 (FGF15) which circulates to the liver to inhibit Cyp7a1 gene 
and CYP8B1 gene transcription by activating membrane FGF 
receptor 4 signaling [30-34]. Recent studies have shown that 
the MAF bZIP transcription factor G MAFG)was the target of 
FXR. It provides negative feedback regulation of enterohepatic 
by FXR for bile acid synthesis and is a key transcriptional 
inhibitor of bile acid synthesis and metabolism [35]. F XR in 
the ileum controls the BA absorption from the small intestine 
to the portal vein by inducing ASBT (SLC10A2) that transports 
BA into epithelial cells, bile acid binding protein (I-BABP) that 
transports in the BA across the cell, and OST/ (SLC51A/B) that Figure 1: Action mechanism of bile acid synthesis, transport and metabolism.
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transports BA into the portal blood [37]. But when the ileal FXR 
signal is selectively activated, the mRNA levels of these genes 
increase [37]. There was a study that had established a method 
combining liquid chromatography mass spectrometry (LC-MS) 
with ileal and hepatic RNA-Seq analysis and complementary 
histopathological assessment, which demonstrated that TCDD 
increases levels of secondary bile acids in serum and disrupts 
feedback inhibition induced by bile acids, and conjugated 
secondary bile acid levels in the liver including GDCA and 
TLCA by inhibiting the FXR signaling pathway [38]. Increased 
levels of liver TLCA and other hydrophobic bile acid may cause 
hepatotoxicity by inducing bile duct proliferation and impairing 
bile fl ow that altered primary and secondary bile acid profi les. 
Bile acids and FXR can also affect sepsis by controlling NLRP3 
infl ammasome. Bile acids, the danger-associated molecular 
patterns (DAMPs), can activate both signal 1 and 2 of the 
NLRP3 infl ammasome in infl ammatory macrophages. The 
NLRP3 infl ammasome is negatively regulated by FXR through 
physical interaction between caspase 1 and NLRP3 [39].

Fibroblast growth factor 15 (FGF15), an enterokintic, can 
participate in many metabolic processes in the organism. 
Studies had shown that ileal FXR activation promoted FGF15 
(human FGF15 orthologs) derived from the intestine and can 
act on the liver gene transcription in mice [40]. What had been 
found was that secondary bile acid (TDCA) played the very 
important role in increasing ileal Fgf15 gene mRNA levels in 
mouse experiments [41]. 

Takeda G-protein coupled receptor-5 (TGR5), a G protein-
coupled receptor, is an important factor in maintaining glucose 
homeostasis [42]. In contrast to FXR, TRG5 is mainly activated 
by some secondary bile acid. BA activates PKA kinase through 
the TGR5 receptor and directly phosphorylates the serine at 
position 291 of NLRP3, leading to ubiquitination of NLRP3, 
which plays an important role in inhibiting the activation of 
NLRP3 infl ammatory bodies. At the same time, this molecular 
mechanism may also be involved in the pathogenesis of 
infl ammatory diseases caused by the excessive activation 
of certain NLRP3 infl ammatory bodies [43]. TGR5 signaling 
induces GLP-1 secretion from intestinal L cells to enhance 
pancreatic and liver function, and increase glucose tolerance 
in obese mice [44,45]. TGR5 also responds to ligands for bile 
acids in the liver [46]. When TGR5 is activated, circulating 
AMP and associated downstream effects increase [47]. Feeding 
Colesevelam changes the effect of fecal bile acid on TGR5 
signaling, which is benefi cial to increase the expression of GLP-
1 in the colon and increase its level in the portal vein blood, and 
may help to improve cholestatic liver injury in Mdr2-/- mice 
[48]. Recently, TGR5 was identifi ed as associated with rapid 
induction of hepatic steatosis and bile acid synthesis in mice 
[49]. Studies havd also shown that TGR5 promoted browning 
of adipose tissue [50]. In addition, the latest reports indicated 
that bile acid mediated the expression of TGR5 and FXR 
receptor signals, which reduced the incidence of cardiovascular 
disease [51].

Regulation of gut microbiota on bile acid

BA is a digestive juice secreted by the liver to help break 
down fat. The gut microbiota can mediate the conversion of 

primary BA to secondary. Blood from the gut passes through 
the liver and brings in metabolites from gut bacteria, which 
account for 70% of the liver’s blood supply. The liver bile acid 
balance is affected by intestinal bacterial metabolism [52]. 

Liver enzymes and bacterial enzymes are involved in a 
wide variety of bile acid synthesis. Microorganisms involved 
in bile acid synthesis increase the diversity of bile acid by 
dehydroxylation of conjugate dehydrogenation and acidifi cation 
reaction. Bacteroides and Lactobacillus increase the expression 
of bile salt hydrolase (BSH) by catalyzing the separation of 
early bile salts to release primary bile acid [53]. In addition, 
some bacteria containing hydroxysteroid dehydrogenase can 
mediate bile salt oxidation and isomerization [54]. 

Gut microbiota regulates bile acid synthesis through 
enzyme reactions. Antibiotic treatment inhibits the expression 
of FGF15 and upregulation of CYP7A1. What has also been found 
was that the expression levels of some enzymes, including 
CYP7A1 and CYP27A 1, were reduced in sterilized mice compared 
to normal mice [55]. Antibiotic treatment may change the 
structure of the intestinal microfl ora, thereby altering the bile 
acid composition in the intestine to inhibit FXR signaling in the 
ileum. Elimination of commensal fl ora with non-absorbable 
antibiotics decreased the expression of Cyp7a1 in the liver of 
mice and inhibited alcoholic liver disease, suggesting that 
intestinal bacteria modulate bile acid synthesis, which is 
consistent with the above fi ndings [56]. The BSH released by 
the gut bacteria acts on the amide bond of the bile salt and 
reacts to produce glycine or taurine as well as free bile acid; the 
gut bacteria can further catalyze the dehydroxylation of free 
cholic acid. It has been reported that BSH is commonly found 
in Bacteroides, Clostridium, Bifi dobacterium, Lactobacillus and 
Enterococcus [57]. However, different strains have different 
BSH activities. For example, L. helveticus and L. fermentum 
(yeast) can only dissociate taurine bile salts and cannot 
dissociate glycine bile salts. BSH in microorganisms may have 
the ability to recognize steroids and amino acids. In addition, 
it has been reported that the addition of BSH-active bacterias 
can effectively reduce serum and cholesterol levels in mice and 
dogs [58]. HFD-induced mice treated with antibiotics or tempol 
modifi ed their microbiota resulting in a reduction in poor 
metabolic phenotypes, which was due to decreased activity of 
BSH and decreased levels of Lactobacillus. A decrease in BSH 
leads to an increase in taurine-beta-murichic acid (T-beta-
MCA) levels that is a potent FXR antagonist and a substrate 
for BSH [59]. A study further showed that antibiotics interfere 
with intestinal microfl ora, which can increase the content of 
FXR receptor antagonist (T--MCA) and thus inhibit the FXR 
receptor [60].

BA plays a key role in the pathological development of 
infl ammatory bowel disease (IBD). The signal of intestinal 
peroxisome proliferator-activated receptor alpha PPAR-
UDP-glucuronosyltransferase (PPAR-UGTs) is an important 
determinant of bile acid homeostasis. Colitis induced by 
dextran sulfate sodium (DSS) caused accumulation of BA in 
infl amed colon tissue by activating P PAR-UGTs pathway. 
UGT accelerated the elimination of metabolism of BA, thereby 
reducing their intracellular levels in the small intestine. 
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Decreased intracellular BA inhibited FXR-FGF15 signaling, 
leading to upregulation of liver CYP71, there by promoting new 
bile synthesis. The researchers demonstrated that knockout of 
PPAR and treatment with recombinant FGF19 (rodent FGF15) 
signifi cantly ameliorated colitis induced by DSS [61].

Intestinal dysbacteriosis can alter bile acid in the intestine 
and can also be associated with many diseases [62]. At present, 
the criticality of gut microbiota in host homeostasis and in the 
pathogenesis of intestinal barrier dysfunction and metabolic 
diseases such as cancer, type 2 diabetes (T2D), nonalcoholic 
fatty liver and even mental disorders is recognized [63-65]. 
There is growing evidence that intestinal fl ora can exacerbate 
the development of NAFLD in various animal and human 
[66,67].

Host-microbe metabolic interactions have a signifi cant 
effect on heterologous metabolism [68]. Clayton et al. had 
demonstrated that metabolic interactions in the intestinal 
microfl ora led to alteration of major heterogeneous organisms 
metabolize cytochrome enzymes and cholic acid metabolites 
[69]. In another study, the gut microbiota was identifi ed 
to promote the positive effects of cold on obesity through 
mechanisms involved in producing conjugated bile acid 
and AMPK activation [70]. Cold exposure can also result in 
changes in the bile acid composition, including an increase in 
secondary BA, and the transfer of gut microbiota reduces diet-
induced obesity in sterile mice [71]. A study had shown that 
morphine-induced intestinal metabonomics changes gradually 
with different changes in individual metabolites. Differential 
changes in intestinal metabonomics may refl ect changes in the 
gut microbiota, which was conducive to the host’s response 
after morphine treatment. The cross-correlation between the 
gut microbiome and the metabolome suggests an association 
between bacterial communities and functional metabolites 
[72].

Recently, researchers have discovered that bile acids that 
can be altered by bacteria that live in the large intestine can 
inhibit the growth of C. diffi cile, a harmful bacteria that 
can cause pain or even death in the body. The use of special 
antibiotics can cause high-risk bacterial infections in the 
body. The investigators observed differences in intestinal 
contents between mice before and after treatment with a 
variety of different antibiotics, identifi ed 26 differential 
primary bile acids and secondary bile acids, and determined 
their concentrations. The researchers found that in a healthy 
intestinal environment, normal intestinal bacteria produce 
secondary bile acids to block the growth of C. diffi cile; and 
when these bacteria do not exist after antibiotic therapy, these 
C. diffi cile will grow quickly 55 . The study of how the spores 
of C. diffi cile interact with the microbial community provides a 
new idea for the mechanism of g ut microbiota regulation of BA. 
With further research, new therapies for Clostridium diffi cile 
can be developed and proposed reasonable advice on the use 
of antibiotics.

In recent years, beige fat has attracted more and more 
attention in the fi eld of obesity research. The liver and gut 
microbiota promote the conversion of white fat to beige fat 

by secreting bile acids. In the blood, BA accumulation and its 
interaction with the TGR5 receptor can alter the metabolic 
function of white fat cells. Not only is the color of the cells 
affected, but BA also increased the number of mitochondria 
in the new fat cells, indicating that these newly transformed 
beige fat cells have higher levels of energy metabolism, and 
BA analogs also cause lipolysis. Letting fat cells use fatty acids 
as their primary fuel source is the fi rst step in fat degradation 
in the body. “The role of bile acids is not only to promote 
digestion, but when the concentration of bile acids in the blood 
reaches a certain level, fat burning and calorie production in 
humans/animals will increase, thereby better maintaining body 
temperature and promoting metabolism. With the direct link 
between bile acids and fat loss, people have a new intervention 
strategy for obesity treatment [73,74].

Studies by a research group have shown that metformin 
increases the level of GUDCA by inhibiting the BSH activity 
produced by Bacteroides fragilis. Further mechanistic studies 
have revealed that GUDCA is an endogenous antagonist of 
human farnesoid X receptor FXR and has potential therapeutic 
effects on type 2 diabetes. Metformin exerts a hypoglycemic 
effect through the intestinal tract Bacteroides-Bile acid 
GUDCA-intestinal FXR metabolic axis. This study analyzed 
the remodeling effect of metformin on intestinal fl ora and its 
metabolites; explored the target of colonic fl ora in the host and 
its function; and suggested that bile acid GUDCA and intestinal 
FXR can be used as a treatment for obesity. A new target for 
related metabolic diseases [75].

Increased amounts of certain intestinal metabolites such as 
DCA, TCA, TLCA and TCNCA promote the development of liver 
tumors [76]. High fat diet (HFD) feeding leads to changes in 
the gut microbiota of mice. The microbiome promotes cancer 
by emitting certain signals that alter the microenvironment, 
and liver stellate cells are important sensors for these signals. 
The researchers also identifi ed a specifi c intestinal bacterial 
metabolite: carcinogen deoxycholic acid (DCA) is a trigger for 
SASP. Inhibition of DCA production can inhibit liver cancer 
in obese mice, and treatment with antibiotics in mice with 
a high-fat diet containing DCA can lead to a surge in liver 
cancer. It also promotes the formation of colon and esophageal 
cancer, especially in the case of obesity [77,78]. An increase in 
the amount of bile acids, such as DCA, TCA, TLCA and TCDCA, 
promotes the development of liver tumors [79,80]. 

In the gastrointestinal tract, destruction of the enterohepatic 
circulation of hepatic bile acids is a cause of infl ammation in 
the liver. Intestinal symbiotic bacterial metabolites play an 
important role in regulating gastrointestinal barrier function 
through pregnane X receptor (PXR)-dependent TLR4 signaling 
[81]. BA p romotes the expression of pro-infl ammatory 
cytokines such as IL1 and TNF, thereby inhibiting the 
transcription of FXR target genes [82]. T he down-regulation 
results in the transfer of bile acids from the intestinal cells 
back to the portal vein via the IBABP and OSTOMS complex. 
Therefore, bile acids are accumulated in the intestinal mucosa 
[83]. Patients with liver diseases such as fi brosis, HCC and 
cirrhosis frequently manifest intestinal disorders characterized 
by BSH rich bacteria, pro infl ammatory, a major elevation 
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of aerobic enterobacteria that Can promote the production 
of secondary bile acids, including the genera Enterococcus, 
Enterobacter and Clostridium [84]. In contrast, In contrast, 
patients with intestinal diseases typically exhibit intestinal 
disorders characterized by decreased microbial diversity and 
reduced bacterial abundance at the phylum Firmicutes. For 
example, Faecalibacterium prausnitzii causes a decrease in 
secondary bile acid levels and an increase in conjugated bile 
acids in the intestine [85-87]. These microbial populations 
induce bile acid profi le changes, which may further result 
in decreased FXR activity, increased bile acid content in 
hepatocytes and intestinal mucosa, and decreased expression 
of liver BSEP, OST OST complexes in the liver and intestinal 
[83,88].  M oreover, the use of probiotics to alter gut microbiota 
characteristics increases excretion of bile acids in feces and 
promotes the synthesis of bile acids in the liver of mice, the 
mechanism of which involved reducing the reabsorption of 
bile acids from the ileum and inhibiting the FXR-FGF15 axis 
of the intestine-liver, suggesting that dysplastic probiotics can 
reverse abnormal bile acid metabolism [89]. 

Gut microbiota participates in the regulation of nutrient 
hormone signaling processes regulated by bile acids [90]. 
Microbiota can regulate BA by activating FXR [91]. As previously 
reported, reduction of FXR signaling may be due to inhibition 
of Abcb11. Abcb11 has been identifi ed as a target gene for FXR, 
which delivers newly synthesized primary bile acids from liver 
to the bile canaliculi [92]. This is detrimental to bile collection in 
the gallbladder, which leads to accumulation of bile in the liver 
cells and eventually spillovers to sinusoidal blood. A carbose 
consumes Bacteroides in the gut microbiota and increases the 
relative abundance of bifi dobacteria and lactobacilli, which 
alters the relative abundance of microbial genes involved in 
bile acid metabolism, and thereby changes the bile acid profi le 
in plasma and feces. T he level of unconjugated BA in the 
plasma of patients with type 2 diabetes (T2D) who have not 
receive acarbose treatment, the ratio between primary BA and 
secondary BA increases after treatment, which enhances FXR 
activity in the body and alters the fecal BA profi le, leading to 
reduced internal lipid absorption and reduced hyperglycemia 
[93-95]. Insuffi cient expression of FXR in intestine of mice 
is resistant to insulin resistance, NAFLD and obesity induced 
by HFD, which confi rms the possibility that intestinal FXR is 
associated with the development of metabolic diseases. HFD-
fed mice were given Glycine--muricholic acid (Gly-MCA)a 
potent intestinal FXR antagonist that is resistant to BSH, to 
simulate the effects of changes in the mimic microbiota on 
HFD-induced metabolic diseases. The study have shown that 
Gly--MCA reduces the poor metabolic phenotype due to lower 
serum ceramide. Intestinal FXR defi ciency in mice also leads 
to a decrease in serum ceramide, a adaptation to metabolism 
and resistance to HFD-induced metabolic diseases, which can 
be reversed by injection of C16:0 ceramide. Due to the role of 
endogenous hepatic FXR agonists, its target genes related to 
ceramide synthesis in the ileum of mice are activated, which are 
inhibited by a decrease in serum ceramide when Gly--MCA is 
controlled. It shows that Ceramide produced in the ileum under 
FXR management is associated with metabolic diseases [96]. 
Jiang has demonstrated that it is possible to intervene in the 

development of NAFLD associated with the gut microbiota by 
inhibiting the intestinal FXR-ceramide axis, which correlates 
the microbiome, nuclear receptor signaling and NAFLD [97]. 
Consequently, Gly--MCA can inhibit FXR receptors in the 
intestine and prevent and treat fatty liver [98].

Lili Sheng et al. had showed that BA and FXR and related 
intestinal microbiota are concerned with differences of gender 
in metabolic diseases [99]. Gender differences in predicted 
microbiota function, insulin sensitivity, and steatosis induced 
by WD were attributed to FXR. The lack of FXR enriched 
Helicobacteraceae, Deferribacteraceae and Desulfovibrionaceae, 
which were accompanied by increased and serum lipids as 
well as -muricholic acid and taurine-conjugated cholic acid 
in the liver. The FXR signal in the ileum can also modulate 
the composition of bile acid via enterobacterial-mediated 
degradation. Enterobacteriaceae enhance ileal FXR signaling 
by degrading (deconjugated) taurocholic acid (TCA) [100]. 
However, the specifi c role of evaluating individual bile acid is 
hampered by the fact that the conversion of bile acid occurs 
under the action of Enterobacteriaceae-mediated degradation, 
dehydroxylation, and amino acid binding in the liver and 
the rehydroxylation pathway [101]. Fexaramine, an enteric-
restricted FXR agonist that restores FXR activity in the small 
intestine of chronically fed mice, which protects mice from 
liver damage induced by alcohol. Al though the metabolism of 
bile acids is slightly altered, fexaramine treatment stabilizes 
the intestinal barrier and signifi cantly regulates liver genes 
that affect lipid metabolism. In conclusion, alcohol-related 
metagenomic alterations result in changes in the bile acid 
profi le. Effective interventions modulate bile acid-FXR-FGF15 
signaling and protected mice from liver alcohol-induced 
disease by regulating hepatic Cyp7al and lipid metabolism 
[102].

 T GR5 that is expressed in a variety of tissues including 
intestine, gallbladder, liver, and brain is related to cAMP and 
determined to affect energy homeostasis, immune response, 
insulin secretion, infl ammation and gallbladder relaxation 
[103-110].  In recent years, TGR5 has become a promising 
intervention target [111,112]. In the intestine, Tgr5 is activated 
by its specifi c agonist to protect intestinal barrier function 
and from infl ammation, stimulate the gallbladder to refi ll, 
stimulate glucagon, such as peptide 1 (GLP-1) secreted from 
the intestinal secretion of cells, thereby stimulating insulin 
secretion from pancreatic cells [113,114]. In brown adipocytes, 
activated TGR5 stimulates thyroid hormones by inducing 
thyroid hormone deiodinase 2 (DIO2) to promote energy 
metabolism [115]. Secondary bile acids are potent activators of 
TGR5, such as DCA and LCA, which induce cAMP and activate 
protein kinase alpha signaling pathways [103,104]. Ac tivation 
of TGR5 can maintain glucose homeostasis to attenuate 
hepatic steatosis and obesity in obese mice induced by diet 
[116]. Bile acid inhibited NLRP3 infl ammasome activation via 
the TGR5-cAMP-PKA axis. Furthermore, studies in vivo have 
shown that bile acids and TGR5 activation blocked NLRP3 
infl ammasome-dependent infl ammation, such as type-2 
diabetes-related infl ammation, lipopolysaccharide-induced 
systemic infl ammation [117]. Activation of intestinal in the 
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intestine promotes elevated levels of LCA in the gut to affect bile 
acid metabolism. Simultaneously, the increased LCA activate 
TGR5 in the gut, follow which facilitates GLP-1 secretion 
from intestinal L cells to lead adipose tissue browning and 
regulate lipid and glucose metabolism in the liver [118]. The 
gastrointestinal FXR-gut microbiota-TGR5-GLP-1 axis is a key 
target for regulating intestinal bile acid receptor signaling to 
improve homeostasis and liver metabolism.

The fecal and mucosa-associated microbiota in animals and 
humans with alcoholic liver disease is also been altered [119-
122]. Alcoholic fatty liver has been shown to be connected with 
elevated levels of bacterial choloylglycine hydrolase, which 
deconjugates intestine bile acids in mice by analyzing the gut 
microbiota and bile acid. Overexpression of the CYP7A1 protein 
reduces FXR activity in intestinal epithelial cells, which inhibits 
FGF-15 protein secretion. The total concentration of bile acids 
in the plasma is elevated, which is likely to cause hepatocyte 
death together with ethanol. Furthermore, consumption of 
symbiotic microbiota with non-absorbable antibiotics reduced 
the expression of Cyp7a1 gene in liver to reduce the incidence 
of alcoholic liver disease in mice, which suggested that the 
increase in bile acid synthesis is dependent on gut microbiota 
[123]. 

Taken together, the gut microbiota can participate regulation 
and metabolism of bile acids composition and metabolism, and 
affect the occurrence and development of diseases through 
regulation. In addition, the intestinal microfl ora can effectively 
hydrolyze the bound parasites or heterologous organisms 
that have been cleared by bile acid. Substances and promote 
activation of these substances or enterohepatic circulation 
.In addition, the intestinal microbial fl ora can also be very 
effective in the hydrolysis of bound parasites or heterologous 
substances in organisms that have been cleared by bile acid and 
promote the activation of these substances or enterohepatic 
circulation [ 124].

Effect of bile acid on intestinal fl ora

The relationship between bile acids and intestinal fl ora 
is not unidirectional. Bile acids can alter the structure of the 
intestinal fl ora by mediating bacterial growth and inhibiting 
the growth of other sensitive bacteria [90,91,125]. Taurine 
bile salts, a bile salt hydrolysate,can inhibit a certain dose of 
C. diffi cile (C. diffi cile) toxins, thereby effectively avoiding 
damage to colonic epithelial cells [126]. Intestinal purifi cation 
can stabilize the intestinal barrier, prevent excessive growth of 
intestinal bacteria and bacterial transfer to the liver [127]. Bile 
acid act as a detersive agent, which can destroy the bacteria’s 
cell membrane and exert a bacteriostatic effect directly, and 
can indirectly affect the gut microbiota through FXR [91]. FXR 
knockout mice exhibit higher bacterial density and impaired 
epithelial barrier integrity in the ileum [128]. HFD-induced 
mice knocked out of FXR, rather than wild-type control mice, 
increased the amount of Phylum Firmicutes and reduced 
Bacteroides levels [129]. Increased hydrophobicity of bile acid 
can lead to increased antigen and bacterial translocation in 
the intestine, resulting in the development of diseases such 
as cholelithiasis, infl ammatory bowel disease, and colon 

cancer [130]. When feeding bile acid, complex and signifi cant 
changes were observed in the intestine. In general, bile acid 
affect the gut microbiota diversity and regulate the structure 
of gut microbiota. Islam et al. had demonstrated that the 
intake of mo derate amounts of bile acid (0.00125 mol/L) 
and high bile acid (0.005 mol/L) caused changes in the gut 
microbiota, in particular the signifi cant expansion of the genus 
Mycobacteria [131]. The response of the gut microbiota to 
cholic acid differed from that of feeding for 50 days, possibly 
due to differences in dose and exposure time. In addition, there 
seems to be a difference in the response of gut microbes to 
bile acid. Metabolic pathway associated with bile acids is one 
of the most relevant pathways involved in antibiotic-induced 
dysregulation of the gut microbiota. Cholic acid, deoxycholic 
acid, and chenodeoxycholic acid were observed in the fecal 
samples of rats with dysbacteriosis in the intestine. After 
CSGS treatment, all derivatives of the bile acid metabolites 
were corrected, explaining that bile acid metabolism involves 
dysregulation of the gut microbiota [132]. In another study, 
colesevelam promotes bile acid excretion through feces and 
conversion to secondary bile acids, while liver and biliary BA 
components change to hydrophilic BA.The expression of ileal 
FGF15 is eliminated by colesevelam to stimulate the secretion 
of GLP-1 from enteroendocrine l-cells and attenuates liver and 
bile duct injury in Mdr2-/- mice. Microbiota analysis showed 
that the level of the phylum -Proteobacteria was increased 
and Clostridiales was transformed into Lactobacillus within 
the phyla Firmicutes after colesevelam treatment [133]. In 
addition, bile acid has been shown to mediate host resistance to 
Clostridium infection. The reduction of primary and secondary 
bile acid in the intestinal tract after morphine treatment is 
associated with an increase in pathogenic intestinal bacteria 
such as Enterococcus faecalis. Bile acid was negatively 
correlated with enterococci and erysipelas, but positively 
correlated with Bacteroideae [134].

Conclusion and future development

Bile acids can act as important signaling molecules through 
different cell signaling pathways and nuclear receptor to 
regulate glucose, lipid and energy metabolism. Bile acid 
disorders can lead to a variety of disease states, including 
metabolic diseases such as diabetes, gastrointestinal diseases, 
liver diseases, and infl ammation and cancer. This review 
highlights the signaling and regulation involved in bile acid 
synthesis and metabolic pathways. In addition, the interaction 
between bile acids and the  gut microbiota is also discussed. 

Recently, metagenomics and bioinformatics analysis have 
shown that the intestinal microbiota can regulate the synthesis 
and metabolism of bile acids, and also reveals that the regulation 
of gut microbiota can prevent or treat metabolic diseases 
associated with bile acids. Bile acids and their activated nuclear 
receptors (such as FXR) and membrane receptors (TGR5) are 
key therapeutic targets for related diseases. Regulating the gut 
microbiota to activate the tgr5-glp-1 signal is a new direction 
in the treatment of diseases such as NAFLD, diabetes and 
obesity.

In addition, individualized studies of gut microbiota 
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also contribute to disease treatment. A study has found that 
the treatment of type 2 diabetes with acarbose depends on 
the composition of the gut microbiota before treatment. 
Compared with the predominant gut microbiota of Prevotella, 
those strains with high abundance Bacteroides had greater 
changes in plasma BA after acarbose treatment and improved 
metabolic parameters. Thus, the patient can be stratifi ed based 
on the composition of the gut microbiota before treatment to 
facilitate a more rational customized treatment [99]. Another 
study suggests that probiotics or other means of preventing 
and treating metabolic disorders should be adjusted based 
on patient gender and other phenotypes (eg, microbiota and 
BA profi les) [99]. However, artifi cial disturbance of the gu t  
microbiota or bile acid composition may cause side effects, 
such as affecting the enterohepatic circulation of bile acids or 
breaking the homeostasis in the organism, which needs further 
study. 

Bacteria in humans and animals are subjected to 
environmental stress such as stomach acid and intestinal 
bile acids.Adaptation and tolerance to bile acid toxicity are 
key conditions for the survival of microbiota in the gut of 
humans and animals. Some bile acids, such as LCA, DCA, CDCA 
and TCNCA, may promote cancer or inhibit cancer because of 
their cytotoxicity, and the mechanism of action needs further 
discussion [52,132-136]. Prevention of bile acid toxicity by 
regulating the amount and type of bile acids in the liver and 
intestine will require a better understanding of the pathway of 
bile acid synthesis, transport and metabolism.

With the advent of new analytical tools and strategies such 
as metabolomics and metagenomics, the interaction between 
bile acids and gut microbiota and its regulation of disease-
related signaling pathways are rapidly gaining insight. The 
regulation of bile acid profi les and gut microbiota presents new 
treatments for the treatment of metabolic and digestive tract 
diseases. There are still three core challenges to establish the 
relationship between gut  microbiota-metabolite-host health 
and linkages at the molecular level. Firstly, analyze the biological 
activities of these metabolites, including their association with 
human diseases; secondly, identify the metabolic pathways that 
produce these metabolites; thirdly, use the analytical results to 
further combine genetic engineering and synthetic biology to 
reprogram these Metabolite produced by intestinal microbes. 
This strategy has great promise and clearly indicates the next 
direction in the study of these diseases. Du e to the complexity 
of the bile acid signaling pathway and the complex metabolic 
interactions between the host and the gut microbiota, future 
research should understand bile acid-microbiota crosstalk and 
its effects on related diseases based on systems biology. Future 
research to prevent and treat disease may include identifying 
benefi cial symbiotic microbiota and its key metabolites 
that drive the development of related diseases, especially 
infl ammation and cancer. 
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