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Short Communication

Availability of new has afforded rheumatologists the 
opportunity to investigate molecular pathophysiology 
of joint disease techniques [1,2]. Attempts to relate DNA 
polymorphisms to disease activity or addresses one aspect 
susceptibility [3-5]. Mutations and epigenetics have received 
consideration [3,6], but there is another pertinent concept that 
needs a clearer defi nition when seeking to understand synovial 
pathophysiology and that is pleiotropy. This concept is not 
frequently discussed and its signifi cance and implications, 
rarely recognized. Epigenetics is the alteration of gene function 
in an organism, but not of the gene itself [7-11], (Reik, 2007). 
This is in contradistinction to pleiotropic effects, variable 
somatic changes induced by a single gene often simultaneously, 
but differentially affecting multiple body systems [12-14].

The genomes of an increasing variety of organisms have 
been studied in suffi cient detail so that trait-coding genes 
are often specifi cally localized on chromosomes [15]. Merely 
because a given gene is present, however, does not mean 
the information it contains will always be transcribed. Even 
if transcribed, the process does not necessarily involve the 
entire gene, but may be limited to only select sequences. 
Which portions subjected to selection is organ- and sometimes 
tissue-dependent. Thus, changes in functional morphology 
do not necessarily require a change in the DNA sequence. 
Perhaps the effectors of the resultant functions are analogous 
to allosteric effects on enzyme function [16-18]. These are 
of great importance because they alter the shape of the DNA 
molecule, changing the components that are accessible to 
transfer (t)-RNA transcription. 

Traditional thinking suggests that transcription begins 
with an initiation sequence of several nucleotides, and that 

the t-RNA continues to move along the full length of the gene 
until reaching a termination sequence. However, transcription 
of segments of genes does not always use this mechanism. 
This difference may be part of maintaining the fi delity of DNA 
replication, but not necessarily the transcription of separate 
components of the gene.

Although there may be more than a single DNA sequence 
that that can be translated into a specifi c protein, only a limited 
number of variations will allow for the generation of the correct 
three-dimensional product [12,14,19]. If the incorrectly copied 
instructions are accurate enough that a substitute t-RNA is 
generated, it may not work well or at all. At the least, it is 
likely to have an altered tertiary shape. The new shape is likely 
to cause a change or failure of function. In fact, many such 
molecules that show altered shapes might not be able to fold 
themselves into units that are functional enough that they are 
capable of accomplishing the task for which they are intended 
to code [20].

Another area that has not received as much attention is 
the number of copies of the gene present in the full organism 
genome. A most timely example relates to the p53 locus, 
important in the biochemical pathophysiology of cancer [21-
23]. The rarity of cancer in elephants may well be related to 
their possession of 20 separate chromosome sites (double-
stranded DNA providing 40 copies) of the gene responsible for 
coding this function [24]. What we don’t yet know is whether 
all copies are active or whether their behavior refl ects their 
neighborhood (surrounding gene activators and suppressors 
– the “deciders” Finally, we are left with the question: How 
much of functional morphology refl ects nature (the genome 
sequence) and how much is a product of “nuture.” (The 
environment in which the gene fi nds itself).
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