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Abstract

Background: Schizophrenia is a polygenic mental disorder with about 80% heritability. Growing 
evidence indicated that synaptic dysfunctions contribute to SCZ etiopathogenesis. 

The context and purpose of the study: Transcription factors play an important role in the regulation 
of gene expression. Whereas expression analysis of transcription factor has been performed, studies of 
their genetic variants are limited. The current review article summarizes data on transcription factors 
early growth response 3 (EGR3), c-fos transcription (FOS), immune early response 5 (IER5), c-jun (JUN), Nk2 
Homeobox 1 (NKX2-1), and transcription factor 4 (TCF4) encoding genes in schizophrenia.

Results and main fi ndings: An important role of the mentioned genes in this pathology has been 
identifi ed. 

Conclusions: We concluded that the genetic variants of the transcription factor encodng genes might 
contribute to the assessment of disease susceptibility and can fi nd potential use for the development of 
genetically-driven diagnostic approaches in the future. 
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Abbreviations 

EGR3: Early Growth Response 3 Encoding Gene; FOS: C-Fos 
Transcription Factor Encoding Gene; IER5: Immune Early 
Response 5 Transcription Factor Encoding Gene; JUN: C-Jun 
Transcription Factor Encoding Gene; NKX2-1: Nk2 Homeobox 
1 Encoding Gene; PCR-SSP: Polymerase Chain Reaction 
with Allele-Specifi c Primers; SCZ: Schizophrenia; TCF4: 
Transcription Factor 4 Encoding Gene

Background

Schizophrenia is a polygenic mental disorder with the 
estimated prevalence of 1% in general population and high 
heritability up to 80% [1]. Despite the results from a number 
of genome-wide and genetic association studies performed 
indicating an important role of several genes involved in 
immune response, neuronal development, apoptosis [2-6], the 
vast majority of heritable factors is still unclear. Transcription 
factors and their genetic variants are of special interest in the 
temrs of genetic component of schizophrenia development. It 
is well known that transcription factors are essential regulators 
of gene expression, and perform their function due to specifi c 
interaction with transcription factor binding sites located 

in the promoter region [7]. So far, Maurano et al. (2012) has 
shown that common single nucleotide polymorphisms (SNPs) 
are systematically enriched in transcription factor binding 
sites, especially, those active during fetal development [8]. 
While expression levels of some transcriptions factors have 
been partly studied [9-11], their genetic variants are relatively 
less studied in terms of schizophrenia [12].  

The present review summarizes current fi ndings concerning 
transcription factors in the pathogenesis of schizophrenia at 
both molecular and genetic levels.

Materials and Methods

An electronic literature search of peer-reviewed English 
language articles focused on transcription factors and 
schizophrenia using Pubmed was undertaken. 

Transcription factor 4 (TCF4) in schizophrenia

Transcription factor 4 (TCF4, GeneBank ID: 6925) 
belongs to the superfamily of basic Helix-Loop-Helix (bHLH) 
transcription factors which acts as a transcriptional repressor 
or activator of gene expression [13]. A recent genome-wide 
association study has identifi ed that TCF4 is located in the 
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genetic region considered as a risk factor for schizophrenia [14]. 
Animal studies suggested that Tcf4-defi cient mice demonstrate 
abnormal brain development suggestting that TCF4 gene 
expression might also affect brain networks involved in the 
cognitive functioning and processing [14]. In order to evaluate 
the potential association of genetic polymorphisms of TCF4 with 
cognitive defi cit in schizophrenia, Hui et al., (2015) performed a 
case-control study in Han Chinese population [15]. Assessment 
of disease symptoms using the Positive and Negative Syndrome 
Scale (PANSS) and Repeatable Battery for the Assessment of 
Neuropsychological Status (RBANS) suggested that a allele 
of the TCF4 gene rs2958182 single nucleotide polymorphism 
(SNP) is a risk allele of schizophrenia, and is associated with 
lower cognitive performance in schizophrenia patients as well 
as delayed memory in controls [15]. By contrast, the earlier 
study performed in the same population has identifi ed T allele 
as being associated with better performance of cognitive tasks 
in patients with schizophrenia but with worse performance in 
controls [16]. The results from expression analyses showed that 
mRNA expression level of TCF4 is elevated in neurons derived 
from human-induced pluripotential stem cells of schizophrenia 
patients compared to those in healthy subjects [17]. Concerning 
the relevance to clinical symptoms, a recent pharmacogenetic 
study has revealed that TCF4 does not affect the improvement 
of disease symptoms during the treatment with antipsychotics 
[18]. However, it has been shown that the carriers of disease-
associated TCF4 gene rs9960767 allele had better recognition 
and information processing skills [18] suggesting an important 
contribution of TCF4 to the pathogenesis of schizophrenia.

Early growth response 3 (EGR3) in schizophrenia

Early growth response 3 gene (EGR3, GeneBank ID: 1960) 
encodes a transcriptional regulator belonging to the EGR family 
of CysCysHisCys (C2HC)-type zinc-fi nger proteins. It has been 
shown that EGR3 is an immediate-early growth response gene 
and participates in the transcriptional regulation of genes 
involved in biological rhythm control. A variety of functions 
of EGR3 such as participation in lymphocyte development, 
endothelial cell growth and migration as well neuronal 
development including regulation of synaptic proteins and 
synaptic plasticity has been shown [19,20]. Together with other 
immediate early gene transcription factors, EGR3 is activated 
in the brain in response to environmental stimuli and regulate 
downstream neuronal gene expression [20,21]. 

Genetic association studies performed in different 
populations have demonstrated important role of EGR3 gene 
SNPs in the pathogenesis of schizophrenia [22-25]. Results 
from the Japanese study confi rmed for 1140 independent case-
control samples demonstrated that IVS1+607(A/G) (rs35201266) 
SNP has the strongest evidence for disease association [22]. 
Kim et al., (2010) reported that among the four examined 
SNPs of the EGR3 gene the rs35201266 has a signifi cant 
association with schizophrenia [23] that is in concordance 
with the previously reported data for the same population [22]. 
Moreover, it has been shown that the “T-G-C-G” haplotype 
of the rs1008949, rs7009708, rs35201266, and rs3750192 SNPs 

is overrepresented in patients with schizophrenia compared 
to controls [23]. A meta-analysis performed by Zhang et al., 
(2012) revealed a statistically signifi cant association between 
schizophrenia and rs35201266 polymorphism of the EGR3 gene 
[24]. Later, Nishamara et al., (2014) has provided in vivo human 
evidence of a signifi cant effect of the EGR3 gene polymorphisms 
(namely, rs35201266) on prefrontal hemodynamic activation 
level in healthy adults and schizophrenia patients. These data 
suggest that EGR3 may affect prefrontal function through 
neurodevelopment [20]. So far, in a pooled study of biological 
pathways of schizophrenia risk it has been shown that the EGR3 
gene rs1877670 SNP is associated with disease [25]. Further, 
Willams et al., (2012) using a pharmacological approach has 
found that the locomotor suppressive effects of clozapine in 
Egr3(-/-) defi cient mice is specifi c to second-generation 
antipsychotics while the fi rst-generation medications 
suppress the locomotor activity of Egr3(-/-) and wild type 
mice to a similar degree [26]. Moreover, as the defi cit in 
cortical serotonin 2A receptor (5HT(2A)R) in Egr3(-/-) mice 
aligns with reports on decreased 5HT(2A)R levels in the brains 
of schizophrenia patients suggesting a potential mechanism by 
which putative dysfunction in EGR3 in humans might affect 
the risk of schizophrenia development [26].

Nk2 Homeobox 1 (NKX2-1) gene in schizophrenia

Nk2 Homeobox 1 gene (NKX2-1, GeneBank ID: 7080) encodes 
a protein also known as a thyroid-specifi c transcription factor 
which binds to the thyroglobulin promoter and regulates the 
expression of thyroid-specifi c genes and those relevant to 
somatic symptoms common for schizophrenia [27]. NKX2-1 
also plays a central role in the neurodevelopment and is essential 
for the formation and function of subgroups of neurons, glia, 
and functional neural networks affected in schizophrenia. 
It is well known that NKX2-1 expressing striatal GABAergic 
interneurons mainly contain parvalbumin (PV) [28] and it has 
been suggested that striatal PV+ interneurons play an important 
role in the behavioral effects mediated by antipsychotic drugs 
[29]. Moreover, a number of mice studies confi rm the infl uence 
of striatal PV+ interneurons on schizophrenia [30,31]. This 
transcription factor also interacts with several susceptibility 
genes for schizophrenia, and is involved in gene-environment 
interactions with neurodevelopmental implications. Findings 
from families affected by inactivating mutations in NKX2-1 
suggested that they may result in brain-lung-thyroid disease, 
also known as benign hereditary chorea, characterized by 
impaired coordination, delayed speech development, neonatal 
pulmonary distress, and congenital hypothyroidism [32].  

Myelin transcription factor 1-like (MYT1L) gene in schi-
zophrenia

The myelin transcription factor 1-like gene (MYT1L, 
GeneBank ID: 23040) coding protein regulates proliferation and 
differentiation of oligodendrocytes and neural transcription 
[33,34]. Romm et al. (2005) has found that MYT1L is mainly 
expressed in the developing central nervous system (CNS) 
[34]. Among other pathologies, rare genetic variations of this 



019

Citation: Zakharyan R (2016) Transcription Factors in Schizophrenia: A Current View of Genetic Aspects. Scientific J Genet Gene Ther 2(1): 017-021. 
DOI: http://dx.doi.org/10.17352/sjggt.000010

gene have been linked to schizophrenia as well [35]. Later, Li 
et al., (2012) has examined six SNPs of the MYT1L gene in a 
Han Chinese population and has found that the rs17039584 
polymorphism signifi cantly associates with schizophrenia 
[36]. Up to date, there is lack of data suggesting implication 
of MYT1L gene SNPs in pharmacogenetics of schizophrenia; 
however, functions of the corresponding protein imply its 
putative signifi cance in the terms of this disease. 

Transcription factors cFos, cJun, and Ier5 

Transcription factors cFos, cJun, and Ier5 participate in 
the regulation of numerous processes in human and higher 
animals, including those associated with neuronal plasticity 
and immune response. It has been shown that cFos is directly 
involved in learning and memory mechanisms and the lack of 
the cFos encoding gene in mice leads to impaired the long-term 
memory and synaptic transmission [37], the functional activity 
of which is also usually altered in schizophrenia [38]. Besides, 
cFos mediates cell response to mitogenic signals, which play 
a central role in neuron growth and differentiation, as well as 
in the formation of neural networks [39], typically altered in 
schizophrenia [40-42]. Experimental data from animal models 
of schizophrenia also suggest that FOS variants may contribute 
to the pathogenesis of schizophrenia [43-45]. Thus, it has been 
shown that fos gene expression is associated with signifi cant 
weight gain [46]. 

Transcription factor AP1 formed by these two interacting 
proteins [47] enhances the transcription of genes the products 
of which are involved in a number of processes, including 
the formation of neuronal plasticity and longterm memory 
[48,49]. AP1 participates in the biogenesis of synaptic vesicles 
[49], in the assembly of their membranes [40], in the receptor 
transfer to dendrites [41] as well as controls cell differentiation, 
proliferation, and apoptosis [42]. Impaired functional activity 
of AP1 was observed in different diseases of the CNS, brain 
damage, cognitive defi cit, and aging [43-46]. Postmortem 
brain studies showed that patients with schizophrenia had 
elevated FOS and JUN RNA levels in the thalamus, the structure 
that performs processing and integration of nearly all signals 
that the cortex receives the spinal cord, the midbrain, the 
cerebellum, and basal ganglions of the brain [47]. AP1 and cFos 
are also involved in the regulation of immune response: AP1 
mediates the expression of proinfl ammatory cytokines [48], 
while cFos regulates cytokine expression by mast cells [49]. 

Up to date, there is lack of information concerning the 
role of the genetic variants of these transcription factors 
in schizophrenia. Moreover, no pharmacogenetic approach 
was used to study the effect of antipsychotic medications 
depending on the FOS, JUN, and IER5 genetic variants. Our recent 
fi ndings have identifi ed three genetic variants associated with 
susceptibility to disease [50]. Thus, we have found that the 
FOS rs1063169, FOS rs7101, JUN rs11688, and IER5 rs6425663 
polymorphisms were associated with schizophrenia. In 
particular, the risk of schizophrenia was decreased in carriers 
of the minor alleles FOS rs1063169*T, JUN rs11688*A, and IER5 
rs6425663*T, but increased in carriers of the FOS rs7101*T 
minor variant, especially in homozygotes [50].

Conclusion

This paper suggested the important role of transcription 
factors in the pathogenesis of schizophrenia. Based upon current 
fi ndings we may suppose that as the most important players in 
the genetics of schizophrenia could be nominated transcription 
factors TCF4, EGR3, NKX2-1 as well as FOS, JUN, IER5 because 
SNPs in these genes are associated either with disease or its 
symptoms. However, the limited fi ndings on genetics available 
nowadays in the terms of this pathology indicated the need of 
more investigations with s special focus on genetics. Only with 
specifi c focus on pharmacogenetic relevant genetic variants 
of transcription factors it would become possible to uncover 
disease-associated SNPs and develop genetically-driven 
diagnostic and prognostic approaches.
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