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Abbreviations

COVID-19: Coronavirus Disease 2019; SARS-CoV-2: Severe 
Acute Respiratory Syndrome Coronavirus 2; ARDS: Acute 
Respiratory Distress Syndrome; ICU: Intensive Care Unit; WHO: 
World Health Organization; AGMs: Anesthesia Gas Machines; 
CNS: Central Nervous System; RYR: Ryanodine Receptor; EHS: 
Exertional Heatstroke; MTHFR: Methylenetetrahydrofolate 
Reductase; SNP: Single Nucleotide Polymorphism; H-Hcy: 
Hyper-Homocysteinemia; MYLK: Myosin Light-chain Kinase; 
ALI: Acute Lung Injury; N2O: Nitrous Oxide; O2: Oxygen

Background

COVID-19 has become a threatening disease worldwide as 
coronaviruses are highly diverse single-stranded RNA viruses 
that evoke several disease conditions as respiratory diseases, 
enteric diseases, hepatic diseases, and neurological diseases. 
Traditionally, human coronaviruses infections cause a low 
annual percent of respiratory infections [1,2].

There were 177,866,160 confi rmed COVID-19 cases 
worldwide with a death rate of 2.17% according to the situation 
report of WHO on June 22, 2021. Africa showed 3,791,054 
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confi rmed cases with a death rate of 2.42%, Europe showed 
55,325,145 confi rmed cases with a death rate of 2.12%, the 
Americas showed 70,663,034 confi rmed cases with a death rate 
of 2.63% till the 22nd of June 2021 [3].

SARS-CoV-2 is the 7th member of Coronaviruses family 
that infects humans. COVID-19 main symptoms are close to 
that of SARS-CoV and MERS-CoV infection which included 
fatigue, fever, and cough. Pathology of these coronaviruses are 
overlapping and diverse, thus, causing severe diseases [4].

Investigations indicated that SARS-CoV-2 (S-protein) 
binds ACE2 receptors 10 to 20 times higher than SARS-CoV 
(S-protein), that is how the spread of SARS-CoV-2 within 
human is facilitated [5].

SARS-CoV-2 provokes the secretion of different pro-
infl ammatory cytokines that can be lead to Cytokine Storm 
and serious respiratory injury due to epithelial cell damage and 
continuous infl ammation, showing Acute Respiratory Disease 
Syndrome (ARDS) in some patients. That is why it is required 
in critical cases to be admitted to ICU ventilators [6]. 

The reported clinical presentations of COVID-19 start from 
asymptomatic infection to pulmonary collapse. The main 
COVID-19 symptoms include fever, dry cough, tiredness, and 
dyspnea, while the less common symptoms include diarrhoea, 
sputum production, headache, and hemoptysis [7].

Severity of COVID-19 symptoms varies from mild 
symptoms showing no signs of pneumonia, passing through 
moderate symptoms as fever and respiratory pneumonia 
going through to severe symptoms characterized by dyspnea, 
respiratory rate more than or equal to 30/min, blood oxygen 
(O2) saturation less than or equal to 93%, PaO2/FiO2 ratio less 
than 300, and lung infi ltrates more than 50% within 24–48 
hours, ending with critical cases that shows respiration failure, 
septic shock, and multiple organ failure [8].

Severe SARS-CoV-2 infection can lead to respiratory failure 
and severe hypoxia necessitate invasive ventilation to improve 
oxygen supply is required [9].

Tracheal intubation is considered a high risk for COVID-19 
patients. Previously, before COVID-19, intubation was 
commonly done in controlled conditions, for example in ICUs, 
anesthesia and resuscitation rooms, as a consequence of the 
rapid increase in COVID-19 infections and high demand for 
such controlled areas, tracheal intubation is performed outside 
the ICUs by specially formed intubation teams [10,11].

To meet the increased demand of ICUs for critical COVID-19 
cases, some healthcare facilities used anesthesia gas machines 
(AGMs) as ICU ventilators for ventilating critical cases which 
has many problems and precautions that must be considered 
[12].

According to current statistics, around 3.2 percent of 
patients infected with COVID-19 require intubation and invasive 
ventilation at some point during the disease’s progression [13].

The patient’s age, ethnicity, genetic mutations, and illness 
condition can all produce signifi cant variances in anaesthetic 
responsiveness, making general anesthesia a very complicated 
procedure [14].

General anesthesia are among the most serious drugs used 
in clinical practice because of their unusual pharmacokinetic 
properties, narrow therapeutic window and various drug-
unique adverse effects profi le. The majority of adverse effects 
are dose or concentration-related, like hypotension, CNS 
depression and respiratory depression, or resulting from 
drug or formulation, like pain at the injection site. However, 
sometimes dangerous adverse effects, like malignant 
hyperthermia and many others cannot be predictable which 
have a genetic background [15,16].

Main text

Various genetic polymorphisms of molecular targets, as 
well as transporters and metabolic enzymes might change 
anesthetic drug pharmacodynamic or pharmacokinetic 
characteristics thereby affecting anesthesia clinical response. 
Differences in inhalational anesthetics’ potency, speed of 
induction and recovery from anesthesia, as well as some 
specifi c side effects might contribute to selection of type of 
anesthesia used. 

It is worthy to mention that, the effect both clinical and 
safety of the used anesthesia is greatly affected by human 
genetic polymorphism as well as their safety and tolerability, 
thus, it is important to present the correlation and association 
of patient clinical response, including adverse effects, and 
different types of consumed anesthesia in the intensive care 
unit.

Anesthesia and sedative drugs

Isofl urane is a volatile anesthetic that is used to induce and 
maintain general anesthesia [17]. It produces concentration-
dependent intense pulmonary depression and hypotension 
due to reduced vascular resistance. Moreover, rapid changes 
in concentration can lead to transient tachycardia and 
hypertension as a result of sympathetic stimulation [18]. 

Sevofl urane can produce rapid initiation of anesthesia onset 
which is attributed to its lower solubility in blood and other 
tissues and is often used for outpatient anesthesia induction. It 
does not cause irritation to the respiratory airways and possess 
a strong bronchodilator effect. Moreover, in sick people at 
risk for myocardial infarction sevofl urane is considered as the 
anesthetic of choice, as it has no infl uence on heart rhythm 
[19]. 

Desfl urane has the lowest potency and the least solubility 
in blood and other tissues, so it induces rapid anesthesia effect 
and fast recovery and can be used for outpatient surgical 
interventions. Besides, it possesses the lowest fat-to-blood 
solubility that makes it suitable for those patients suffering 
from obesity and undergoing prolonged surgery. Desfl urane 
possesses a strong irritating effect on respiratory airways. 
Upper airway adverse events (moderate to severe events) may 
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be highly prevalent, so a choice for initiation of anesthesia 
desfl urane is not appropriate [20].

Nitrous oxide (N2O) is the only gas that has a signifi cant 
positive impact on anesthesia outcomes. Although N2O is 
unable to produce the required anesthetic depth during 
surgery, it is commonly applied as an auxiliary to halogenated 
anesthetics in order to reduce their effective concentrations 
and thus improve anesthesia safety. N2O is the least soluble of 
all general anesthetics and it induces rapid anesthesia onset 
and fast emergence from anesthesia. Besides, N2O produces a 
strong analgesic effect in comparison to morphine due to its 
stimulating action on the central opioidergic and adrenergic 
systems [21].

In addition to what is mentioned above, nitrous oxide (N2O) 
is considered to be from the widely used general anesthetic. 
However, it causes acute plasma homocysteine elevation by 
irretrievable inactivation of vitamin B12 suggesting an elevated 
incidence of perioperative myocardial infarction. Hence, 
proposals for prophylactic use of folic acid and vitamin B12 
resulted in a successful blunting of NO2 induced elevation in 
plasma homocysteine [22].

Fentanyl and other related compounds like alfentanil, 
remifentanil, and sufentanil are synthetic opioids commonly 
used as parenteral anesthesia, either perioperative or 
postoperative owing to their fast and strong analgesic effect. 
Moreover, they relieve pain and minimize pain-evoked 
hemodynamic changes. Upon use, in combination with general 
anesthetics they aid in reduction of anesthetic required doses 
[23].

Propofol is considered from the most frequently used 
parenteral anesthetics for induction and maintenance of 
anesthesia. Propofol has a sedative-hypnotic effect, but also 
possess an anxiolytic effect, antiemetic, anticonvulsant, anti-
oxidative, anti-infl ammatory, and probably a neuroprotective 
effect [24].

Dexmedetomidine is an Alfa 2-adrenergic receptor agonist 
with high affi nity. It has analgesic, anxiolytic, and sedative 
effects and used for patients admitted to ICUs post operations. 
Theoretically, dexmedetomidine may have an advantage of changing 
the direction of immune response away from (T-helper cell 17) which 
has been correlated with severe COVID-19 pneumonia pathogenesis. 
Although different studies support the anti-infl ammatory 
and organoprotective effects of dexmedetomidine, its role in 
COVID-19 remains a proposal that is under investigation [25].

Midazolam is an imidazobenzodiazepine sedative having 
features that distinguish it from other benzodiazepines. In its 
acid formulation, it is water-soluble, but it is extremely fat-
soluble in vivo. When compared to other benzodiazepines, 
midazolam has a relatively quick onset of action and a high 
metabolic clearance. When taken orally, intramuscularly, or 
intravenously, the medication induces consistent hypnosis and 
antianxiety effects. Midazolam has several perioperative 
applications, including premedication, anesthetic induction 
and maintenance, and sedation for diagnostic and therapeutic 
operations [26].

Suxamethonium is a short-acting depolarizing 
neuromuscular blocker that has been licensed for use as an 
adjunct to other sedatives or hypnotics. It inhibits the activity 
of Acetylcholine (ACh), causing all cholinergic receptors in 
the parasympathetic and sympathetic nervous systems to be 
disrupted. Its usage can speed up endotracheal intubation, 
make surgical operations easier, and help with mechanical 
breathing by relaxing skeletal muscles [27] Table 1.

Gene polymorphism association with the risk anesthetic 
effects

RYR1 and CACNA1S are the two main gens that encode the 
components of skeletal muscle Excitation-Contraction coupling 
(EC) complex localized in calcium channels [20]. RYR1 and 
CACNA1S genetic defects are mainly associated with malignant 
hyperthermia and other myopathic diseases. Furthermore, 
variants in the RYR1 and CACNA1S genes have recently been 
linked to Exertional Heat Stroke (EHS) [28].

RYR1 Multiple (48 variants) at 19q13.1, CACNA1S rs772226819 
(c.520CT) genotypes showed to increase the risk of malignant 
hyperthermia resulting from Ca2+ leakage from the intracellular 
matrix for those individuals on sevofl urane, isofl urane, and 
desfl urane anesthesia [29,30].

A clinical study indicated that after anesthesia with N2O 
patients with 5,10-methylenetetrahydrofolic acid reductase 
(MTHFR 677C>T) or (1298A>C) mutation showed to be at a 
higher risk for developing abnormal plasma homocysteine 
concentrations [31].

Moreover, another study had reported that children with 
different Methylenetetrahydrofolate Reductase (MTHFR) gene 
polymorphisms had developed disastrous neurologic outcomes 
after N2O anesthesia [32,33]. Methylenetetrahydrofolate 
Reductase (MTHFR) is from the most important enzymes that 
regulate fundamental processes in cell physiology such as DNA 
repair, membrane transport, and neurotransmitter functions 
[34]. There is a suggestion that T allele of the MTHFR C677T 
polymorphism, acts as contributing factor in protection against 
neoplastic diseases such as acute lymphatic leukemia and colon 
cancer [35].

It is important to mention that MTHFR C677T polymorphism 
is considered from the most prevalent Single Nucleotide 
Polymorphism (SNP) and the most common cause of hyper-
homocysteinemia (H-Hcy) [34]. Moreover, investigations 
suggest that MTHFR C677T polymorphism can be associated 
with a signifi cant elevated risk for coronary artery disease in 
homozygous men [36].

Also, hyper-homocysteinemia (H-Hcy) is correlated to the 
occurrence of vascular diseases like arterial hypertension and 
congestive heart failure [37]. Suggestions during the COVID-19 
pandemic is to undergo an early screen for patients by measurement 
of Hc-plasma levels to screen for possible presence of MTHFR C677T 
polymorphism and this seemed to be very promising [38].

Studies have shown that interleukin-10 polymorphism (IL10-
1082GG) responsible for high interleukin-10 production is linked to 
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lower disease severity, lower death rates and lower age-related 
organ failure among ARDS patients [39]. Also, it was found that 
variabilities represented as single nucleotide polymorphisms 
in Myosin Light-Chain Kinase (MYLK) is correlated to Acute Lung 
Injury (ALI) development [40].

Mu-opioid receptor gene (OPRM1) is the gene responsible 
for encoding Mu-Opioid Receptor (MOR) that regulate 
analgesic response to pain and governs the rewarding effects 
of several substances of abuse, including opioids, alcohol, and 
nicotine [41].

The effl ux pump P-glycoprotein (P-gp), a product of 
the ABCB1 gene, is essential for the transport of different 
substances across the blood-brain barrier. P-gp protects 
the brain by selectively extruding its substrates, including 
antidepressants, restricting their absorption into the brain. In 
individuals suffering from major depression, ABCB1 variants 
predicted remission to antidepressants with P-gp substrate 
characteristics [42].

Catabolizing catecholamines such as dopamine is 
catabolized by Catechol-O-Methyltransferase (COMT). These 
neurotransmitters appear to have a role in mood regulation, 
which can lead to aggressiveness [43].

 Investigations showed that opioid analgesics like 
fentanyl are affected by the existence of OPRM1 rs1799971 (AG) 
polymorphic gene, that leads to reduced analgesic eff ect. Moreover, 
it is affected with ABCB1 rs1045642 (AG) causing a decrease in 
drug excretion from CNS and plasma as a result of reduced P-gp 
expression, requiring a careful dosage adjustment [44,45].

Evidence showed that variability of analgesic impact of 
fentanyl is affected by genetic variants in OPRM1, P-gp and 

COMT, where, the SNP rs1799971 (118 A>G) is one of the most 
studied SNPs related to OPRM1 and the opioid analgesic action. 
Additionally, a meta-analysis on morphine provided persuasive 
evidence supporting functional polymorphism of OPRM1, 
where, the fi nding showed that GG genotype was related to a 
reduced analgesic effect and higher opioid doses is required. This 
fi nding was confi rmed by different studies to be applicable for 
fentanyl, sufentanil, and alfentanil as well [46].

A study that included 138 Japanese patients undergoing 
major abdominal surgery investigated the total opioid use 
(including epidural and rescue opioids) and monitored the use 
for 24 hours following surgery. Results indicated that when 
compared to heterozygous or homozygous wild-type carriers, 
homozygous c.118A.G carriers required considerably higher 
opioid analgesia [47].

The most common cytochrome in human body is cytochrome 
P450 3A4 (CYP3A4). It accounts for 30 to 50 percent of drugs 
metabolized by type I enzymes. Inhibitors, promoters, or 
substrates of CYP3A4 activity and expression may induce some 
serious drug interactions [48].

Cytochrome P450 Oxidoreductase (POR) is an electron 
source for all cytochrome P450 enzymes. POR function is 
required for adequate control of Retinoic Acid (RA) levels 
and tissue distribution during early embryonic development, 
later morphogenesis and molecular patterning of the brain, 
abdominal/caudal region, and limbs [49].

Cytochrome P450 2B6 (CYP2B6) is a minor drug 
metabolizing enzyme found in the human liver. Non-
genetic variables, inducibility, genetic polymorphisms, and 
irreversible inhibition by various substances all contribute to 
substantial variability in expression both across and within 

Table 1: Summary table for different anesthetic agents and undesired or changes in anesthetic effect resulted from different genetic polymorphisms.
Anesthesia drug Gene name Gene polymorphism Undesired or change in Anesthetic effect Reference

Isofl urane RYR1 & CACNA1S
RYR1 Multiple (48 variants) at 19q13.1, 

CACNA1S rs772226819 (c.520CT)
Increased risk of malignant hyperthermia [29,30]

Sevofl urane RYR1 & CACNA1S
RYR1 Multiple (48 variants) at 19q13.1, 

CACNA1S rs772226819 (c.520CT)
Increased risk of malignant hyperthermia [29,30]

Desfl urane RYR1 & CACNA1S
RYR1 Multiple (48 variants) at 19q13.1, 

CACNA1S rs772226819 (c.520CT)
Increased risk of malignant hyperthermia [29,30]

Nitrous oxide (N2O) MTHFR MTHFR 677C>T or (1298A>C)
High risk for developing abnormal plasma homocysteine 

concentrations
Disastrous neurologic outcomes in children

[31-33]

Fentanyl
OPRM1 OPRM1 rs1799971(AG) Reduction in analgesic effect

[44,45]
ABCB1 ABCB1 rs1045642(AG) Decrease in drug excretion from CNS and plasma

Propofol CYP2B6
CYP2B6 rs3745274 (G>T) May result in a decrease in drug metabolism

[61,62]
CYP2B6 rs2279343 (A>G)

May result in a decreased drug elimination rate from the 
CNS

Dexmedetomidine ADRA2A
ADRA2A rs1800035, ADRA2A rs201376588, 

ADRA2A rs775887911
lowered analgesic and anesthetic effect [66]

Midazolam

CYP3A4 & CYP3A5 CYP3A4*22 & CYP3A5*3 Elevated levels of midazolam due to 
decreased metabolization resulting in high incidence of 

adverse effects or enhanced effect [55-57]
POR POR*28

GABRA1 GABRA1 187+3553 (AG)
Increased midazolam receptor affi  nity and potentiated 

sedation

Suxamethonium BChE

BChE A-variant: rs1799807 (c.293TC), 
BChE K-variant: rs1803274 (c.1699CT),

BChE F-variant: rs28933390 (c.1253CA), 
BChE S-variant: rs104893684 (c.1004AG).

Reduced suxamethonium metabolism leading to prolonged 
muscle relaxation and apnea

[58-60]
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people. Artemisinin, bupropion, cyclophosphamide, efavirenz, 
ketamine, and methadone are among the drugs mostly 
metabolized by CYP2B6. It is one among the most polymorphic 
CYP genes, with polymorphisms affecting transcriptional 
regulation, mRNA and protein expression, splicing, and 
catalytic activity. Some variations appear to infl uence many 
functional levels at the same time, resulting in haplotypes with 
complicated interactions between substrate-dependent and 
-independent processes [50].

GABRA1 (gamma-aminobutyric acid type A receptor subunit 
alpha1) is the gene that encodes a GABA (gamma-aminobutyric 
acid) receptor. GABA is the most important inhibitory 
neurotransmitter in brain, acting at GABA-A receptors, which 
are ligand-gated chloride channels. The chloride conductance 
of these channels can be altered by drugs that bind to the 
GABA-A receptor, such as benzodiazepines [51].

GABRA1 mutations have an important role in the genetic 
aetiology of both benign and severe epileptic disorders. 
Myoclonic and tonic-clonic seizures accompanied by a 
pathologic response to photic stimulation are prevalent and 
shared characteristics in both mild and severe phenotypes [52].

Butyrylcholinesterase (BChE) aids in the modulation of the 
cholinergic neurotransmitter’s metabolism. BChE is primarily 
expressed in white matter and glia, as well as discrete 
populations of neurons in cognitive and behavior-related areas 
of the human brain [53].

Patients with pharmacological inhibition of 
Acetylcholinesterase (AChE) by cholinesterase inhibitors 
(ChEIs) and lower Butyrylcholinesterase (BChE) activity owing 
to single nucleotide polymorphisms have a negative effect on 
cognitive performance [54].

Sedatives like midazolam are affected by the presence of 
different genetic variations as CYP3A4*22 which reduce the 
enzymatic metabolic activity leading to elevated levels of 
midazolam and high incidence of adverse effects. Besides, 
POR*28 decreases midazolam metabolization and enhances 
its effect, fi nally, GABRA1 187 + 3553 (AG) increases midazolam 
receptor affi nity and, thus, potentiates sedation [55,56].

Also, CYP3A5*3 carriers showed a 22% lower average 
Clearance of midazolam than non-carriers in a study of 24 
Asian patients with late stage gastrointestinal cancer [57].

Muscle relaxants including suxamethonium proved to be 
affected by different BChE variants like A-variant: rs1799807 
(c.293TC), K-variant: rs1803274 (c.1699CT), F-variant: rs28933390 
(c.1253CA), S-variant: rs104893684 (c.1004AG). The existence of 
these variants lead to enzymatic metabolic activity reduction 
and consequently reduced suxamethonium metabolism leading 
to prolonged muscle relaxation and apnea [58-60].

Pharmacokinetics of intravenous anesthetics like propofol is 
affected by genetic polymorphism as the existence of genotype 
CYP2B6 rs3745274 (G>T) might result in a decrease in drug 
metabolism. Also, CYP2B6 rs2279343 (A>G) genotype may result 

in a decreased drug elimination rate from the CNS, and hence 
propofol dosing adjustment should be taken in consideration [61,62].

Genes polymorphisms for those ones coding for CYP2B6 and 
uridine 50-diphosphate (UDP) glucuronosyltransferase metabolic 
enzymes might contribute in response variability to propofol. 
Propofol is mainly conjugated to glucuronide (70%) while 
(30%) undergoes hydroxylation via CYP2B6. The gene for 
CYP2B6 is considered from the most polymorphic CYP genes 
(more than 100 SNPs) [63].

A model-based dosing simulations for SNP rs2279343 in 
CYP2B6 propose a 50% reduction in propofol infusion dose in AA 
patient and AG patient genotypes during the maintenance of general 
anesthesia. A 250% higher exposure will occur within 1 hour 
from starting propofol infusion in these patients without 
dosage adjustments. Thereby, this particular polymorphism 
is important for dose adjustment to secure optimal anesthesia 
and avoid adverse effects [64].

The alpha 2A-adrenergic receptor (ADRA2A) is essential for 
the control of systemic sympathetic activity. ADRA2A functional 
defi ciency has recently been linked to depression, attention 
defi cit hyperactivity disorder, and Tourette syndrome [65].

A study that included Chinese women undergoing cesarean 
section concluded that the mutation of the ADRA2A rs1800035, 
ADRA2A rs201376588 and ADRA2A rs775887911 loci can lower 
the analgesic and anesthetic effect of dexmedetomidine for 
postoperative analgesia, without affecting drug safety [66].

Bradykinin and its metabolites work on G protein-coupled 
receptors B1 and B2 to cause vasodilation and enhanced vascular 
permeability [67]. Bradykinin type 2 Receptor (BE1+9/+9) 
polymorphism in 166 white Americans, and 62 black Americans 
patients showed an increased Systolic Blood Pressure (SBP) or 
vascular resistance that may contribute to the increased left 
ventricular mass [68]. Targeting the bradykinin system, either 
by suppressing or blocking bradykinin receptors, may provide 
novel treatment options for COVID-19-induced pulmonary 
edoema [69].

The human Angiotensin-Converting Enzyme II (ACE2) 
is responsible for viral cell entrance. ACE2 and ACE1 are now 
being studied as possible genes in which Single-Nucleotide 
Polymorphisms (SNPs) might modify SARS-CoV-2 binding 
or entrance and increase tissue damage in the lung or other 
organs. A study on 297 covid-19 positive and 253 covid-19 
negative patients showed that the G-allele for ACE2 rs2285666 
was strongly related with a nearly two-fold increased risk 
of SARS-CoV-2 infection and a three-fold greater chance of 
developing severe illness or COVID-19 mortality. The ACE1 
polymorphism, on the other hand, was unrelated to infection 
risk or illness severity [70].

Serotonin (5-HT) is strongly linked to pain regulation. The 
promoter region (5-HTTLPR) of the human 5-HT Transporter 
(5-HTT) gene (SLC6A4) has many polymorphisms that alter 
5-HTT expression. The S allele of 5-HTTLPR causes low 5-HT 
tone and may impact chronic pain regulation [71].
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Individual risk of experiencing postoperative vomiting 
appears to be connected with genetic variants in the serotonin 
receptor subunits A and B (HTR3A and HTR3B) genes. This 
was investigated in a study that included 95 patients who had 
suffered from postoperative vomiting after general anesthesia. 
Results indicated that HTR3A variant c1377A>G was associated 
with a signifi cantly higher risk for postoperative vomiting. 
On the other hand, HTR3B variant (c5+201_+202delCA) and 
HTR3B variant (c6-137C>T) were associated with a lower risk 
for postoperative vomiting [72].

Based on the previous fi ndings, we suggest avoiding 
isofl urane in COVID-19 patients requiring ICUs mechanical 
ventilation to avoid risk of possible respiratory depression. 
From our point of view and based on the previously presented 
data, Sevofl urane is a good option for use in COVID-19 patients 
owing to its rapid onset, bronchodilator effect and its safety on 
the heart, furthermore, RYR1 variants and CACNA1S rs772226819 
(c.520CT) genotypes should be considered in order to avoid 
possible occurrence of malignant hyperthermia.

Despite the advantages of N2O as an adjunct in reducing 
the required concentrations needed of halogenated anesthetics 
and its strong analgesic effect, caution should be taken in 
consolation to avoid possible homocysteine elevation and 
myocardial infarction risk especially in those with MTHFR 
677C>T or 1298A>C genetic mutations.

Fentanyl is a good choice in combination with general 
anesthetics, in COVID-19 patients admitted to intensive 
care unit, that contributes to reduction of anesthetic doses 
required and possess a strong analgesic effect that minimizes 
hemodynamic changes resulting from pain.

Also, propofol is considered a good choice, for COVID-19 patients, 
as a parenteral anesthetic due to its sedative-hypnotic characteristic, 
anxiolytic eff ect, antiemetic, anticonvulsant, anti-oxidative, anti-
infl ammatory, and neuroprotective eff ect.

Conclusion

Gene screening is an essential procedure that can stratify 
COVID-19 patients into different groups and provide healthcare 
professionals the chance for proper selection of appropriate 
anesthetic agents required in severe cases requiring ICU 
mechanical ventilation, especially those with ARDS. 

Genetic screening must be implemented as one of the 
important procedures to be performed for all individuals, 
healthy before being infected or sick, to identify genetic 
polymorphic types that may alter the effect of anesthesia 
before using them in ICUs ventilation, when needed, in order to 
avoid possible adverse effects and different sedation response 
variations. 

Sevofl urane, fentanyl, and propofol can be considered 
a safe and good choice for use in ICUs. Dexmedetomidine is, 
up to presenting this review, under evaluation for its role in 
COVID-19. 

Other anesthetics should be investigated to assess its risk 

versus benefi t concerning its use on individualizing basics. 
Thus it is recommended to extend personalized medicine 
application and dose adjustment based on human genomics, 
including genetic polymorphism, to the different types of 
anesthesia used either pre-, peri-, or post-operation including 
the intensive care unit. 
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