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Introduction

Diabetes mellitus affects millions of people globally, and its 
complications can be harmful to all body systems[1,2]. Diabetic 
men exhibit a higher prevalence of erectile dysfunction (ED) 
than non-diabetic men[3-5], with epidemiological studies 
documenting that up to 75% of diabetic men suffer from ED 
[6,7]. 

Diabetic ED involves nerve damage, endothelial injury, 
and cavernosal muscle fi brotic alterations (Figure 1) [3,8-10]. 
Complications due to diabetes can limit blood fl ow into the penis 
if atherosclerotic damage corresponds to major blood vessels 
in the vascular system [11]. Advanced glycation endproducts 
(AGE) cause microvascular complications as pathogenesis of 

ED in streptozotocin-induced diabetic rats[12]. AGE and its 
receptor (RAGE) interaction develop a metabolic memory [13-
15]. Insulin therapy for glycemic control can reduce AGE and 
RAGE and control the corresponding infl ammatory response in 
the penis[14,16]. 

Diabetic ED is currently managed by Phosphodiesterase 
(PDE)-5 inhibitors, vacuum erection devices, and prosthetic 
surgery. Though they are considered fi rst-line ED treatments, 
the effi cacy of oral PDE-5 inhibitor treatments, such as tadalafi l, 
vardenafi l, sildenafi l, and avanafi l, is lower in diabetic men 
compared with nondiabetic men, as these treatments do not 
alter the existing pathological changes caused by diabetes[17]. 
The effectiveness of PDE-5 inhibitors is further reduced due 
to inadequate nitric oxide (NO) bioavailability from both 
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neuropathic and endothelial dysfunction in diabetic men [18]. 
However, the inhibition of PDE-5 improves the therapeutic 
effi cacy of adipose-derived stem cells for ED in diabetic 
rats[19].

The past decade has witnessed no signifi cant developments 
in treatment options for men with diabetes-related ED; 
however, there has been considerable attention given to 
preclinical studies centered on stem cell therapies for ED in 
diabetic men [20]. Recent efforts to treat ED at a preclinical 
level have consisted of isolating SCs from various organs, such 
as bone marrow, adipose tissue, and human umbilical cord 
blood [20,21]. 

This review focuses on the advances of various mesenchymal 
stem cell (MSC) delivery methods, through preclinical literature 
and published clinical trials regarding ED in men with diabetes.

Penile erection and diabetic ED

Erectile function is a multifaceted neurovascular 
phenomenon that necessitates the healthy coordination of 
endothelial, nerve, and smooth muscle cells [22,23]. NO is 
formed by an enzymatic pathway involving both endothelial 
NO synthase [24] and neuronal (n) NOS and plays a crucial role 
in a normal erection [23,25]. For instance, the main cavernous 
nerve of the rat branches into the dorsal and intracavernous 
nerves. There is a loss of nNOS nitrergic fi bers due to damage to 
both locations of the cavernous nerve [26,27]. Cavernous nerve 
integrity is critically important for normal erectile physiology.

Burke, et al. [28] documented that nearly 50% of diabetic 
men aged 40–79 years suffer from ED. Additionally, many 
men seeking help for their ED are unaware they have diabetes 
[8]; however, clinical studies demonstrate that early metabolic 
control may delay the onset of diabetic complications. The 
analysis of both semen testosterone levels and hemoglobin 
A1c is a vital part of the clinical evaluation and treatment of 
diabetes, as diabetic men with sexual disorders have elevated 
glycated-hemoglobin levels (>6.5%) (Figure 1) [29]. Angulo, et 
al. [30] described that the NO-cyclic guanosine monophosphate 
(cGMP) pathway is severely affected by diabetic ED men.

Physiological loss of the properties of the endothelium 
leads to vascular endothelial dysfunction and a shift to 
a prothrombotic, vasoconstrictor, and proinfl ammatory 
state. This status is considered to be the initial insult in 
the progression of diabetic ED [31]. The smooth muscle 
relaxation by NO-mediated neurotransmission is reduced, 
and vascular hemodynamics in penile tissue is altered by 
chronic hyperglycemia [23,32]. Severe diabetes decreases NO 
bioavailability as a result of damage to the nitrergic nerves 
that serve the penile Corpus Cavernosum (CC). Furthermore, 
the effect of vasoconstrictor mediators, including endothelin-1 
and angiotensin II, is increased in diabetes [23,33,34]. 

The tight control of glycemia is an essential fi rst step in 
the management of diabetes-related ED. In a recent study of 
ED in a rat model of type 1 diabetes, islet transplantation with 
improved hyperglycemic status allowed for smooth muscle cell 
regeneration, and reduced CC fi brosis to its normal state in rats 
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neural survival and neovascularization. True diabetic erectile regeneration with stem-cell treatment will require careful consideration at each step, from the isolation of the 
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with advanced-stage diabetes [35]. Hyperglycemia-induced 
tissue damage occurs via increased levels of oxygen-free 
radicals [36,37]. The underlying mechanism in the restoration 
of CC fi brosis by islet transplantation may be due to inhibition 
of transforming growth factor (TGF)-1/Samd2/ connective 
tissue growth factor in a rat model of type 1 diabetes [35]. Diabetic 
microvascular complications are associated with AGE in the ED 
pathogenesis in streptozotocin-induced diabetic rats [12]. 

Type-2 diabetic patients have a higher incidence of 
hypogonadism and ED[38]. Erectile function and sexual desire 
in type-2 diabetic men can be improved by testosterone 
replacement therapy (TRT). However, available data are 
inadequate, and the long-standing benefi ts of TRT are not well 
described in this diabetic population. TRT may be offered to 
type-2 diabetic men after all potential risks and benefi ts of 
treatment have been discussed [39].

In earlier studies using animal models of ED, SC treatment 
prevented neuronal and endothelial dysfunction in the 
penises of diabetic rats[40]. Erectile function was restored 
by bone marrow-derived SCs (BMSCs) and adipose-derived 
SCs (ADSCs), with increased generation of penile endothelial, 
smooth muscle, and neuronal cells [41-43]. nNOS and eNOS 
expressions in the cavernous tissues were increased by SCs in 
a diabetic rat model. Angulo, et al. [30] described that the NO-
cyclic guanosine monophosphate (cGMP) pathway is severely 
affected by diabetic ED men. Also, various types of cytokines, 
such as brain-derived neurotrophic factor (BDNF) and Vascular 
Endothelial Growth Factor (VEGF) are increased, and cavernous 
tissues are protected from apoptosis with the promotion of 
cell survival[44]. Intracavernous BMSCs differentiate into 
cells expressing both endothelial and smooth muscle markers. 
In the case of diabetes, numerous studies have reported that 
intracavernous-transplanted mesenchymal stem cells (MSCs) 
regenerate endothelial and smooth muscle cells in the CC of 
diabetic rats[45,46]. 

A challenge in the management of diabetic ED 

The fi rst-line treatment for ED is oral PDE-5 inhibitors, 
which are well recognized as less clinically useful in diabetic 
ED. While approximately 35% of patients with ED will fail 
to respond to PDE5 inhibitors, in diabetic men the fi gure is 
70%. The inadequate response to these agents stems from 
cGMP levels not reaching the threshold needed to induce 
a penile erection. This is due to insuffi cient NO caused by 
severe endothelial dysfunction and neuropathy. These agents 
generally inhibit GMP breakdown and augment the NO-cGMP 
pathway [30,47]. Combination therapy for diabetic ED involves 
PDE-5 inhibitors and TRT. Several antioxidants (e.g., ascorbic 
acid, melatonin, vitamin E, and sodium selenate) have been 
documented to partially restore ED in experimental diabetic 
animal models[36]. 

MSCs

MSCs are easily isolated from bone marrow and adipose 
tissue (BMSCs and ADSCs). The hypoimmunogenicity 
and immunomodulatory effects of MSCs have been well 

characterized and they have been widely used in clinical practice 
[48]. MSCs show both transdifferentiation capability and 
self-renewal potential and can be expanded in vitro, and then 
directed to various cell lineages to differentiate into cell types 
such as endothelial, smooth muscle, neuronal, and Schwann 
cells [49,50]. MSCs also secrete cytokines and paracrine factors 
that may enhance cell survival and angiogenesis and induce 
anti-apoptotic, pro-neurogenic, anti-infl ammatory, and anti-
fi brotic effects[51,52]. 

The pore-forming “large potassium conductance calcium-
activated channel” proteins of cell membranes are encoded 
by the gene KCNMA1 (potassium large-conductance calcium-
activated channel) [23,53]. In an earlier study, KCNMA1-
transfected BMSCs improved erectile function in diabetic 
rats[54]. Hyperpolarization of the membrane decreased the 
excitability of cells, and functional ion channel-mediated 
intracellular K+ outfl ow was increased by its expression [55]. 

Bahk et al. reported that penile blood fl ow and erectile 
function were improved by chronic placental matrix-derived 
MSC injections for ED in type-2 diabetic patients [23,56]. 
Although not all of the patients had satisfactory erections 
without oral medications or injectables, none of them requested 
a penile prosthesis [23].

Diabetes-associated ED has been reported to benefi t from 
low-energy shockwave therapy (LESWT), with the claims that 
nNOS positive nerves, endothelial, and smooth muscle cells 
in the penile tissue were regenerated by this treatment. SC 
transplantation combined with LESWT may be one suitable 
treatment for diabetic ED[57]. 

The improved erectile function observed by the combination 
of LESWT and BMSC in diabetic rats was more effi cient than 
BMSC transplantation alone[23,58]. Zhu, et al. [59] suggested 
that the combination approach stimulated autophagy and 
decreased apoptosis in the diabetic rat CC. After intracavernous 
transplantation of BMSCs, smooth muscle and endothelial 
content increased, inducing normal erectile function in 
diabetic rats. Labeled BMSCs were observed in the penis 
post-injection after four weeks, caused by the secretion of 
neurotrophic factors [20,60,61]. Erectile function was restored 
with the transplantation of Flk-1(+)Sca-1(-) mesenchymal 
SCs(Flk-1(+)Sca-1(-) MSCs) in STZ diabetic rats [62]. Flk-1(+)
Sca-1(-) MSCs were engrafted and led to homing of damaged 
muscle, myofi bers restoration, partial reconstitution of the 
sarcolemmal expression of myocardin, and restored specifi c 
pathological marker levels [62]. 

Intracavernosal injection of clonal BMSCs in streptozotocin-
induced diabetic mice signifi cantly recovered erectile function 
[63]. Increased cavernosal smooth muscle and endothelial 
cells, penile eNOS phosphorylation (Ser1177), and nNOS 
and neurofi lament were restored to 80–90% of the control 
values[23]. 

Recently, Bcl-2-modifi ed BMSCs were transplanted 
to treat diabetic ED in a rat model of type 2 diabetes [64]. 
Bcl-2 contributed to the function of BMSCs and improved 
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intracavernosal pressure (ICP)/ mean arterial pressure (MAP) 
and erections in diabetic ED rats [64]. 

Recently, BM-MSCs with a signifi cantly lowered maternally 
expressed gene (MEG)-3 were implanted intracavernous 
and improved ED of diabetic rats [65]. FOXM1 protein can be 
degraded by MEG3, and the differentiation of the endothelium 
is ultimately regulated by BM-MSCs [65].

A signifi cant aspect of diabetic complications is an injury 
caused by oxidative stress due to hyperglycemia; therefore, 
future studies of the antioxidant capacity of MSCs are 
warranted. Endothelial-progenitor cells (EPCs) from the bone 
marrow can be mobilized to counter diabetes-induced oxidative 
stress. In 2012, Qui et al. documented that treatment with 
melatonin promoted EPC mobilization and thereby preserved 
erectile function in type-1 diabetic rats [66]. ED was improved 
by transplantation of VEGF165-transfected EPCs into the CC 
of diabetic rats [67]. In a previous study, tissue repair and 
angiogenesis were synergistically promoted by the combined 
transplantation of MSCs and EPCs [68]. 

There are many unanswered questions, e.g., the question 
of single versus multiple injections. A single injection of 
MSCs may be insuffi cient for the maintenance of a long-term 
therapeutic effect. Similarly, the management of potency by 
multiple MSC injections within a short interval and the dosage 
of MSC infusions need to be further explored. 

Because of the complicated pathogenesis of diabetes 
mellitus, intrinsic dysfunction of the bone marrow SC niche 
ultimately results in MSC failure [23]. Some strategies for 
reducing the functional inability of BM-MSCs need to be 
recognized. HbA1c reduction and insulin requirements require 
close clinical follow-up to improve the effi cacy of MSC 
treatment in type II diabetes[23]. Similarly, ED studies using 
a diabetic animal model need to observe changing insulin 
resistance when using MSC therapies. While available data 
from animal and human studies are encouraging, MSC therapy 
may signify a new paradigm for glycemic control in type-2 
diabetes. 

The main biocomponent of the secretome is the exosome, 
which is a naturally occurring membrane nanoparticle of 30-
120 nm in diameter that mediates intercellular communication 
by delivering biomolecules into recipient cells[69,70]. 
Exosomes carry many molecules, including miRNAs, proteins, 
and lipids as a composite cargo, as well as the exosome cargo, 
which is transferable to different cell types. These recipient 
cells undergo expressional and functional changes with 
exosome uptake [71,72]. The role of exosomes in diabetic ED 
needs further study. 

The nanosized exosomes derived from MSCs may become 
a valuable therapeutic strategy in regenerative therapies 
compared with transplanted exogenous MSCs. There are many 
advantages of nanosized exosomes compared with exogenous 
MSCs. Exosomes are more natural to preserve and transfer, 
have lower immunogenicity, and are safer for therapeutic 
administration [73]. Exosomes derived from BMSCs may 
become a treatment for diabetes-induced ED. MSCs with 

hypoxic preconditioning may provide additional benefi t in 
diabetes-induced ED, due to increased angiogenesis and 
neuroprotection [74].

Erythropoietin [75] is a potent cytokine capable of reducing 
apoptosis of Schwann cells. However, the expression of EPO 
in MSC is limited, though overexpression of EPO in MSC 
signifi cantly improves neuroprotective actions. EPO-MSCs 
have the potential to reduce apoptosis of diabetes-triggered 
Schwann cells. Thus, suppression is likely due to the reduction 
of oxidative stress and apoptosis-related protein factors. 
Studies have revealed that the placenta (P)-derived MSCs have 
potent paracrine and differentiation potential effects in diabetic 
nude rats[76]. P-MSCs that survived three weeks accelerated 
the recovery of ischemic damage by increased generation of 
arterioles, the formation of capillaries, and the secretion of 
various proangiogenic factors [76].

MSCs combined with pioglitazone, or exendin-4 
demonstrated substantial benefi t compared with MSCs alone in 
regards to cardioprotective effects [77]. Recently, Jeon et al. [78] 
showed that stromal cell-derived factor-(SDF)-1-expressing 
engineered MSCs improved erectile function in STZ-induced 
diabetic ED rats [23]. A recent phase-I clinical study proved the 
safety, tolerability, and effi ciency of intracavernous autologous 
BM-MSC injections to treat ED in diabetic patients [79].

ADSCs

Adipose tissue is also a possible source for SCs, as ADSCs 
have self-renewal and multipotency characteristics similar to 
BMSCs [20,21]. The main advantages of ADSCs are that they 
are accessible to culture and easily collected from patients 
by a minimally invasive procedure, such as liposuction. The 
successful transplantation of allogeneic and xenogeneic ADSC 
illustrates their low immunogenicity [80,81].

Growing evidence suggests the success of ADSC in several 
ED models[82]. Intracavernosal unmodifi ed ADSCs have 
been shown to restore erectile function in numerous rat ED 
models[42,83]. 

The preservation of neuronal and endothelial cells of CC 
in rat ED models has been observed after the intracavernous 
administration of cultured ADSCs [42,46]. Rats with diabetic ED 
treated with autologous ADSCs displayed improvement of erectile 
function, as well as reduced apoptosis of cavernosal tissues, 
but few labeled ADSCs were identifi ed [46]. The therapeutic 
benefi t of ADSCs appears to be an indirect mechanism, whereby 
ADSCs improve the extracellular environment and local tissue 
function via the direct transformation of ADSCs into local cell 
types[46]. Intracavernosal injection of ADSC to a VEGF-treated 
group of ED in a rodent diabetic model demonstrated improved 
erectile function linked to an amplifi ed expression of smooth 
muscle, endothelial, and pericyte markers[84]. The potential of 
ADSCs to regenerate and repair various tissues deserves more 
focus [85]. 

An ideal source for SC and stromal cells are the ADSC 
stromal vascular fraction (SVF). Human SVF was isolated 
from fi ve patients undergoing reduction mammoplasty and 
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administered to C57BL/6J mice after induction of diabetes. 
At eight weeks, erectile function was restored by increased 
endothelial and smooth muscle cells, nNOS-positive nerve 
fi bers, and eNOS phosphorylation in diabetic mice [86]. 

This benefi t witnessed in animal models [45,87] suggests 
that SC therapy may recover erectile function in humans [23]. 
Furthermore, the overexpression of adrenomedullin by ADSC 
enhanced erectile function in diabetic rats, likely by amplifi ed 
VE-cadherin and eNOS expressions in diabetic rats [88]. 

Various forms of fi brosis involve the TGF1-Smad signaling 
pathway. Hepatocyte growth factor (HGF) is known to inhibit 
the TGF1-Smad signaling pathway and attenuate renal 
fi brosis in diabetic rats[89,90]. Similarly, penile fi brosis occurs 
as a pathological response to diabetes. Erectile function was 
improved by ADSC monotherapy in streptozotocin-induced 
diabetic rats, and the benefi t was augmented when combined 
with HGF, resulting in a higher number of endothelial and 
smooth muscle cells and a lower cell apoptotic index in the CC 
[91]. 

Tissue inhibitors of matrix metalloproteinase -1 (MMP-1), 
lipopolysaccharide-inducible CXC chemokine (LIX), and VEGF 
are expressed after ADSC delivery [12]. Cavernous endothelium, 
smooth muscle, and nNOS-positive nerves were partially 
preserved, and apoptosis was reduced in ADSC-treated diabetic 
rats[12]. Theoretically, the addition of insulin may further 
control the infl ammatory response and decrease AGE-product 
accumulation in the penis[12,23,63]. 

In other experiments, a streptozotocin-diabetic rat, 
transplantation with pigment epithelium-derived factor 
(PEDF)-transfected ADSCs successfully improved ICP/MAP 
ratios as compared with untreated ADSC [92]. Overexpression 
of PEDF resulted in higher survival rates and decreased 
apoptosis of ADSC[92]. ADSC transplantation restored erectile 
function in a diabetic rat model by attenuating the harmful 
effects of hyperglycemia. Thus, the therapeutic potential of 
ADSC for treating ED, as well as the additional benefi ts of 
PEDF overexpression, is an exciting development [92]. At the 
early stages of elevated glucose levels in type-2 diabetic rats, 
nNOS and eNOS were unregulated and corporal veno-occlusive 
dysfunction (CVOD), caused by contracted smooth muscle, 
increased collagen, and fat infi ltration was improved by SC 
delivery [23,93]. However, SCs administered at a later stage in 
this high-glucose in a streptozotocin-diabetic rat model were 
unsuccessful in restoring functional corporal tissue [23,92]. 

In a recent study, the in vivo homing effi ciency provided by 
superparamagnetic iron oxide nanoparticles (SPION)-labeled 
ADSCs to the CC region was improved by the use of an external 
magnetic fi eld in a rat model of diabetic ED [23,94]. Smooth 
muscle and endothelial density increased after magnetic fi eld-
guided SPION-labeled ADSCs in the CC, and erectile function 
was improved when compared to ADSC treatment alone[94]. 
The combination of intracavernous injection of ADSCs and 
icariin via daily gastric gavage augmented ICP and ICP/MAP 
values[23,95]. Thus, icariin has a positive effect on ADSC 
treatment of diabetic ED [95]. ADSC-derived exosomes also 

induced a benefi cial effect on erectile function in a type-2 
diabetic rat model [96]. Exosomes were isolated from the 
supernatants of cultured ADSC by ultracentrifugation. ADSC-
derived exosomes, similar to ADSC, were capable of rescuing 
CC endothelial and smooth muscle cells by inhibiting apoptosis 
and thus promoting the recovery of erectile function in a 
type-2 diabetic rat model (using a high-fat diet and low-dose 
streptozotocin administered by intraperitoneal injection) [64]. 
ADSCs-based Microtissues (MT) in STZ-induced diabetic rats 
with ED induced expression of Nerve Growth Factor (NGF), VEGF, 
and tumor necrosis factor-stimulated gene-6 [97]. Also, MT 
treatment improved ICP, nNOS levels, and endothelial and 
smooth muscle contents and reduced local infl ammation in the 
CC of diabetic rats. MTs combined with intracavernosal ADSC 
enhanced erectile function and histopathological changes in 
streptozotocin-induced diabetic rats [97]. Very recently, the 
injection of ADSCs into the tunica albuginea during the active 
phase of Peyronie’s disease prevents the development of 
fi brosis[98].

ADSCs and platelet-rich plasma co-transplantation is 
an attractive option in therapies using autologous cells. 
However, transplantation of ADSCs is often exposed to hostile 
environments in which local oxidative stress, hypoxia, and 
infl ammation induce early cell loss. Reduced survival of 
transplanted ADSCs will dramatically reduce their therapeutic 
effects. Of note, a current study in a rat model of type 2 diabetes 
showed that hypoxia-preconditioning promoted ADSC-based 
repair of diabetes-induced ED by augmenting angiogenesis 
and neuroprotection [99].

The effi cacy of ADSC in improving ED in diabetic rats is 
mainly derived through a paracrine effect. ADSC-derived 
exosomes, similar to ADSC, are capable of restoring CC 
endothelial and smooth muscle cells by inhibiting apoptosis 
and promoting recovery of erectile function [64]. ADSC-
derived exosomes display in vitro proangiogenic properties, 
and restored erectile function in vivo, by the proliferation of 
endothelial cells and decreasing fi brosis of CC. 

Molecular mechanisms underlying MSC dysfunction

The accumulation of AGEs is one of the recognized 
mechanisms of MSC dysfunction in diabetes. In short, the 
formation of AGEs due to the overproduction of Reactive 
Oxygen Species (ROS)[29] mediates the intracellular glycation 
of mitochondrial respiratory chain proteins and triggers a 
cascade of events through activation of the receptor for RAGE 
[24,100,101]. Hyperglycemia exerts metabolic stress, leading 
to the production of AGE and the generation of ROS. In turn, 
mitochondrial DNA polymerase- mutations are stimulated, and 
ROS production is exacerbated. The apoptosis and senescence 
of stem/progenitor cells contribute to these pathological effects 
of diabetes. Chronic RAGE stimulation causes defects in cellular 
membrane repair [102]. This triggered damage via oxidative 
and endoplasmic reticulum stress by ROS production and 
increases infl ammation through TNF- signaling[100-102]. 
The effect of AGEs on BM-MSC function results from amplifi ed 
oxidative stress and infl ammatory response[23,103,104]. It is 
unclear whether the benefi cial effects of in vitro preconditioning 
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can be sustained when MSCs are transplanted into a hostile 
environment. Together, these studies suggest that the use 
of anti-infl ammatory and antioxidant agents should be 
concurrently employed in patients with diabetes undergoing 
MSC therapy.

Future perspectives 

The effects and safety issues for diabetes-associated ED 
treatment need further delineation to improve the quality of 
life for affl icted men. 

Metabolic disorders are commonly observed after the 
pathological effects of diabetes have occurred [105]. The loss 
of penile smooth muscle and impaired vasculogenesis in 
patients with diabetic ED can hopefully be reversed by MSC 
regenerative therapy. However, issues to be considered include 
cellular senescence due to hyperglycemia-induced metabolic 
changes caused by epigenetic changes. In this condition, post-
translational histone modifi cation, DNA methylation, and 
regulation by noncoding RNA-like miRNA and lncRNA have 
reduced the regenerative abilities of MSCs. Similarly, exosomes 
regulate the effi cacy of endogenous/transplanted cells and 
carry the molecular cargo that infl uences the angiogenesis of 
the diabetic penis. The regenerative ability of diabetic stem/
progenitor cells is affected by reduced secretion of therapeutic 
exosomes or the aberrant release of diseased exosomes. 
Progress to enable cell differentiation to include increasing 
the yield of cells, enabling grafting via direct cell or tissue 
transplantation and overcoming legal issues regarding national 
regulations [106]. 

In regenerative medicine, MSCs that can differentiate and 
migrate are a necessity. Paracrine action is vital to realize the 
curative effect of MSCs to improve erectile function. LESWT, 
in theory, recruits endogenous SC to the cavernous bodies to 
improve the diabetic microenvironment in the CC, and possibly 
provide some benefi t to transplanted SC survival. Combined 
SC and gene therapy would similarly promote SC survival and 
increase cell differentiation for tissue repair[107]. However, 
single-cell-based injections have a low cellular survival, which 
counters any long-lasting success. Adult SCs may be altered 
from their regular adherent culture[82]. 

A wide range of growth factors is secreted by ADSCs, 
and these, in turn, stimulate tissue regeneration. In clinical 
applications, the use of ADSCs is a reasonable concept for the 
repair of damaged tissues and the stimulation of angiogenic 
activity. Hypoxia preconditioning might also improve the 
therapeutic effi cacy of ADSC in diabetes-induced ED. Additional 
issues to consider are unwanted side effects, the survival rate 
of ADSC in cavernous tissues, and changes that occur to ADSC 
in the cavernosal microenvironment[23]. 

Further discovery of the pathophysiological mechanisms 
will come. SPIONs effectively incorporated into ADSCs had 
no adverse effects on SC properties. ADSCs and platelet-rich 
plasma co-transplantation is another novel approach to cell 
therapy in regenerative medicine. 

Platelet-rich plasma can enhance the properties of ADSCs 
and also needs further investigation [108]. Conversely, the 
processes related to culturing and isolating ADSCs have 
boundaries; these comprise the high cost of amenities and 
staff, the underlying threat of contamination with undefi ned 
proteins and foreign serum, and changes in functional 
characteristics due to repeated culturing procedures[109,110].

Soluble factors released from MSCs may benefi t MSC effects 
[111]. High levels of cellular senescence, apoptosis, and altered 
differentiation capacity in ADSC isolated from type-2 diabetics, 
have been observed [112]. Thus, the addition of adjuncts that 
increase differentiation and proliferation is needed to fortify 
ADSCs.

Modifi cation of MSCs with growth factor genes may 
enhance the effi ciency of MSC therapy. Groups treated with 
modifi ed MSCs demonstrated better erectile function than that 
is unmodifi ed. Among these strategies, MSC-based treatment 
is the most promising due to its ability to recover function in 
cells and tissues.

The investigational procedures of ADSC and BM-MSC are 
similar when comparing studies with only minor alterations 
regarding the cells examined and monitored. ICP-measured, 
post-SC injection into the CC is signifi cantly higher than the 
control populations. The addition of specifi c growth factors 
to SCs by gene transfection may recover the effi cacy of 
damaged cells. Until now, no reproducible tracking markers 
of these cells have been developed. The encouraging effect 
by injection of SCs on the ICP is attributed to cellular trans-
differentiation, and various paracrine effects [113]. The positive 
impact of the injection of SCs on the ICP belongs to the cellular 
transdifferentiation effect and particularly to the paracrine 
effects, which have not yet been understood[114]. 

The pathogenesis of diabetes mellitus may induce intrinsic 
MSC dysfunction that eventually will be unsuccessful. This 
highlights the need for a strategy to counteract the functional 
decline of MSCs. Compromised BM-MSCs may be ineffective, as 
impairment of BM-MSCs may lead to disease progression and 
the development of comorbidities. The emergence of autologous 
MSC therapy in diabetes necessitates a deeper understanding 
of the SC alterations that occur when these cells are chronically 
exposed to a pathological environment. Future studies need to 
mimic the changes in MSC in diabetes and either rectify them 
before transplantation or prevent them from occurring. There 
is still a need for preclinical studies investigating the effi cacy 
of antioxidants and anti-infl ammatory agents in reversing the 
functional decline of MSCs[23]. Chronic RAGE exposure induces 
changes in cellular membrane repair, triggers intracellular 
damage by causing oxidative and endoplasmic reticulum stress 
through elevations in cytosolic ROS production, and amplifi es 
infl ammation through NFB-mediated TNF- signaling. The 
RAGE signaling pathway may be a pivotal point to preserve SC 
function in diabetic ED. 

As type-2 diabetes is a multifactorial disease that is 
associated with insulin resistance-induced hyperglycemia[23], 
the majority of preclinical MSC studies in diabetic ED have 
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focused on type-1 diabetes, which is an autoimmune condition 
characterized by a complete loss of insulin secretion, leading to 
hyperglycemia. Therefore, the development of autologous MSC 
therapies depends on a better understanding of the extrinsic 
host milieu on MSC function. 

Advancements in technology and experimental techniques 
have provided an insight into how aging affects the properties 
of MSCs. Given that human life expectancy is expected to 
increase, the topic of cell aging and therapeutic applications 
continues to be an area of interest. 

The more recent evidence suggests a developmental 
affi liation between pericytes and MSCs based on cell markers 
and differentiation potential[115, 116]. As a novel stem cell 
source, pericytes are generally considered to be the origin of 
MSCs. Pericytes have crucial roles in blood vessel function/
stability, angiogenesis, endothelial cell proliferation/
differentiation, wound healing, blood-brain barrier function, 
and hematopoietic stem cell maintenance [117]. All of these 
properties make pericytes preferred cells in the fi eld of tissue 
engineering. Similar to other types of stem cells, pericytes act 
as a repair system in response to injury by maintaining the 
structural integrity of blood vessels[118]. Pericytes have recently 
been recognized for their central role in blood vessel formation. 
Pericytes are multipotent cells that are heterogeneous in 
their origin, function, morphology, and surface markers. 
In situ, pericytes are recognized by their localization to the 
abluminal side of the blood vessel wall and closely associated 
with endothelial cells, in combination with the expression of 
markers such as CD146, neural glial 2, platelet derived growth 
factor receptor , -smooth muscle actin, nestin and/or leptin 
receptor[116]. Similar to other types of stem cells, pericytes act 
as a repair system in response to injury by maintaining the 
structural integrity of blood vessels The role of pericytes is not 
restricted to the formation and development of the vasculature: 
they have been shown to possess stem cell-like characteristics 
and may differentiate into cell types from different lineages. 
While this assumption relies mainly on indirect evidence, the 
data supports the possibility that a precursor of the MSC is 
natively associated with the blood vessel wall and belongs to 
a subset of perivascular cells. Addressing this aspect may help 
improve the novelty of the subject in diabetes.

Conclusion

Though few stem cell-based studies have been directed 
toward type-2 diabetes, MSC-based therapies may provide 
better multifaceted metabolic corrections and concurrently 
offer long-term benefi ts to diabetic patients (Figure 1). MSC 
therapy in diabetic men with ED appears very close to addressing 
the effectiveness and safety of regenerative technology (Figure 
1) [119]. MSC seems to be safe and effective in the shorter term 
and may provide genomic or epigenetic changes in the longer 
term. 

It is useful for future MSC clinical trials to include histology 
confi rmation and more extensive multicenter trials with 
various study protocols to compare treatment templates, 
including dose, duration, and a number of MSC injections[120]. 
Adult MSC has the advantage of avoiding the ethical issues 
of ESCs, and besides, published literature shows a very low 

probability of malignant transformation and tumor formation 
[121]. Diabetic patients need to be counseled and treated 
for many problems [122] hopefully, and regenerative effects 
will soon be brought into clinical practice. 
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