In this paper we establish a unique factorization theorem for pure quantum states expressed in computational basis. We show that there always exists unique factorization for any given N-qubit pure quantum state in terms of the tensor product of non-factorable or ``prime'' pure quantum states. This result is based on a simple criterion: Given N-qubit pure quantum state in computational basis can be factorized as the tensor product of an m-qubit pure quantum state and an n-qubit pure quantum state, where (m + n) = N, if and only if the rank of the certain associated matrix is equal to one. This simple criterion leads to a factorization algorithm which when applied to an N-qubit pure quantum state factorizes that state into the tensor product of non-factorable or ``prime'' pure quantum states. This paper shows that for any given N-qubit pure quantum state the said factorization always ``exists'' and is ``unique''. We demonstrated our work here on a computational basis.
PACS Number: 03.67.Mn, 03.65.Ca, 03.65.Ud
Keywords:
Published on: Sep 15, 2023 Pages: 149-153
Full Text PDF
Full Text HTML
DOI: 10.17352/amp.000094
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."