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Introduction

Arsenic is a chemical element which is well known to 
human for its toxicity [1]. Chronic toxicity of arsenic via 
drinking arsenic-contaminated water will threat to human’s 
health [2]. Previous studies reported that  long-term exposure 
to arsenic-contaminated water will cause harmful effects on 
people’s skins, lungs, digestive systems and nervous systems 
[1,3]. Arsenic is widely distributed in natural water, due to 
natural geological processes and human activities, such as 
mining, metallurgy and chemical industry [4,5].

T he problem of water pollution caused by arsenic 
contamination is worldwide for a long time, and it is reported 
that drinking arsenic-contaminated water had seriously 
infl uence on more than 100 million people all over the world 
[6]. A rsenic removal from water has been an urgent problem 
to be solved, and reducing the limit of arsenic in drinking 
water is of great benefi t to human’s health. Therefore, the 
contaminant acceptance threshold of arsenic in drinking 
water in the related standards were more stringent in the 

past decades [7]. According to the regulation of World Health 
Organization (WHO), the maximum permissible limit for 
arsenic concentration in drinking water was revised from 50 
μg/L to 10 μg/L [8].

Arsenic usually exists in two valence states in natural 
water: As() and As(V). The toxicity of As(III) is much 
higher than that of As(V). As(III) mainly exists in the form of 
molecular, and As(V) mainly exists in the form of H2AsO4

- or 
HAsO4

2- under neutral conditions, in general, ionic arsenic is 
more easily removed by physical or chemical processes [9]. 
Therefore, As(III)  can be converted into As(V) by chemical or 
biological methods to reduce its toxicity and the diffi culty of 
subsequent treatment [10-12].

The main methods for As(V) removal from drinking 
water include adsorption technology [13-15], coagulation 
technology [16,17] and membrane technology [18,19]. Arsen ic-
contaminated water treatment by adsorption technology has 
been widely adopted due to its advantages such as simple 
operation, economic benefi ts, and a variety of materials which 
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are proven to be used as adsorbents. This study provided an 
overview of As(V) removal from water by adsorption technique, 
in order to give a reference for the application of adsorption 
technology to remove As(V) from water in practice.

The mechanism of arsenic removal by adsorption

Insoluble solid materials with high specifi c surface area 
or adsorption groups are chosen as adsorbents, and arsenic 
in drinking water can be fi xed to the adsorbent by physical 
or chemical process including electrostatic attraction, surface 
complexation, and ion exchange [20]. The characteristics 
and main infl uencing factors of adsorption pathways are 
summarized in Table  1. The adsorption capability of an adsorbent 
is an important indicator to evaluate its performance. The 
effects of As(V) adsorption are infl uenced by pH, temperature, 
initial concentration of As(V), contact time and the presence of 
other competing ions in water [14,21].

saturated adsorption capacity can reach 2.5 mg/g at pH 2–11.5 
and 20℃ after 72 h, using 2 g/L GAC, which was of 950 m2/g 
specifi c surface area (BET), treating raw water with initial As(V) 
concentration of 0.5–10 mg/L. This study also indicated that 
H2AsO4

- and HAsO4
2- in natural water were more conducive to 

be removed effi ciently under acidic condition (pH=3). Lodeiro, 
et al. [30] compared adsorption capabilities of four adsorbents: 
activated carbons prepared from sugar beet pulp (BP) using 
steam activation and with or without Fe or Mn oxidation (BP-
H2O, BP-H2O-Fe, BP-H2O-H2O2-Fe and BP-H2O-MnO2-Fe). 
Their BETs reached 821 m2/g, 762 m2/g, 858 m2/g and 741 
m2/g, respectively, for treating raw water with initial As(V) 
concentration of 100–1000 μg/L, using the dosage of 0.05 
g/100 mL. The adsorption capacity of these four adsorbents on 
As(V) were 0.69 mg/g, 2.94 mg/g, 3.25 mg/g and 16.8 mg/g, 
respectively, calculated according to Langmuir equation. The 
results showed that it is necessary for the activated carbon to 
be modifi ed in order to achieve a better adsorption ability.

Minerals: Clay belonging to aluminum silicate minerals 
contains small amount of iron, magnesium and other elements, 
resulting in small particles, large specifi c surface area, good 
adsorption capability and ion exchange performance [13]. As 
typical of clay minerals, kaolinite, montmorillonite and illite 
can effectively adsorb As(V) from water [31]. In addition, 
natural iron ores (goethite, hematite, etc) and manganese ores 
(sodium manganese, manganese potassium, etc) also have 
good adsorption capacities for As(V) removal from water [32].

Chen, et al. [33] took high-quality clay as the main material, 
and processed into fl ake, spherical or columnar shape by a 
series of processes. Its surface was porous, with a BET of 38.19 
m2/g and a pore volume of 0.0869 mL/g at 25℃ under neutral 
condition (pH=6.9). According to Langmuir and Freundlich 
adsorption isotherm equations, the adsorbent can effectively 
treat raw water with initial concentration of As(V) ranging 
from 5 to 100 mg/L, and the adsorption capacity was about 4.19 
mg/g. Zeolite is a kind of aluminosilicate crystals with regular 
cage structure [34]. Jimenez-Cedillo, et al. [35] loaded Fe or Fe-
Mn onto two natural clinoptilolites (ZC and ZT) with BETs of 
5.97 m2/g and 14.68 m2/g, respectively. Four kinds of modifi ed 
adsorbents (ZCFe, ZTFe, ZCFeMn and ZTFeMn) were prepared, 
and their BET values were 40.44 m2/g, 38.20 m2/g, 36.40 m2/g 
and 35.54 m2/g, respectively. According to Langmuir equation, 
the adsorption capacities of these four modifi ed materials 
for As(V) removal were about 0.08–0.1 mg/g, specifi cally, 
ZTFeMn=ZCFeMn>ZCFe≈ZTFe.

Metal based materials: Metal based materials include metals, 
metal oxides and metal hydroxides [36]. Activated alumina is 
often used in drinking water treatment due to its large specifi c 
surface area and rich pore structure, which is often used for 
arsenic removal from water [37]. Previous studies reported 
that the adsorption capacity of As(V) using activated alumina 
as an adsorbent can be improved under acid conditions or by 
modifi cation methods [38-40].

Zero valent iron, iron oxides and their hydroxides also 
have good adsorption performances on As(V). Bang, et al. [41] 
showed that high dissolved oxygen (4.3–5.5 mg/L) and low pH 

Table 1: The characteristics and main infl uencing factors of different adsorption 
pathways [13,22-26].

Adsorption 
pathway

Force Main infl uencing factors

Electrostatic 
attraction

Van der Waals, chemical bond 
forces

properties of adsorbent and 
solution, such as the specifi c 
surface area, the number of 

surface functional groups, pH

Surface 
complexation

the complexation of surface 
hydroxyl groups or carboxyl 

groups with metal or metalloid 
oxide

concentration, pH, ionic strength

Ion exchange
concentration gradient,

affi  nity capacity
pH, temperature, the presence of 

competing ions in water

Furthermore, with the development of science and 
technology, a number of advanced techniques and precision 
instruments can be used for studying the mechanisms of arsenic 
removal from water by adsorption methods. It is reported that the 
characteristics of adsorbents can be investigated by means of 
X-ray diffraction (XRD), scanning electron microscope 
(SEM), Fourier transform infrared (FTIR), X-ray absorption 
spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), 
the extended X-ray absorption fi ne structure (EXAFS), etc 
[23,26-28].

Physical and chemical adsorption

Traditional adsorption materials

Activated carbons: Activated carbon is well-known to be 
used as adsorptions, which is a kind of carbide made from 
coconut shell, charcoal, lignin, sawdust, rice husk and other 
carbonaceous materials by carbonization and activation 
processes. The strong adsorption capacity is attributed to 
rich pore structure, huge specifi c surface area and surface 
functional groups [13].

Both activated carbon and modifi ed forms can be used 
as adsorbents to remove As(V) from water. Natale, et al. 
investigated the effect of As(V) removal using granular 
activated carbon (GAC) [29], and the results indicated that the 
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value (pH=6) could promote zero valent iron corrosion, and 
iron hydroxide formed by iron oxidation could adsorb As(V) in 
water. The removal rate of As(V) reached 99.8% after treating 
for 9 h, using zero valent iron 1 g/L to treat raw water with 
initial As(V) concentration of 100 mg/L. Guan, et al. [23] used 
granular iron hydroxide (GFH) as an adsorbent (BET 206 m2/g, 
pore volume 0.76 cm3/g, average pore diameter 14.8 nm) to 
treat raw water with initial As(V) concentration of 5–2000 
mg/L under different pH levels of 1–13. The results indicated 
that the suitable pH changed from weak alkaline (pH 8) to 
strong acid (pH 2) with the increasing As(V) concentrations. 
The structure of adsorbent was also analyzed by Fourier 
transform infrared spectroscopy (FTIR) and extended X-ray 
absorption fi ne structure (EXAFS) to explore the adsorption 
mechanism of As(V).

In addition, the composite iron aluminum hydroxide, 
manganese oxide, rare earth oxide (such as lanthanum and 
cerium), zirconium oxide, titanium oxide and tin oxide can also 
be used for As(V) adsorption from water [13,42].

Industrial and agricultural wastes: A large amount of wastes 
are often produced in the process of industrial and agricultural 
production, and these resources can be effi ciently reused. With 
the acceleration of industrialization and the rapid development 
of coal-fi red power industry, the emission of fl y ash rises 
sharply, and the pollution problems caused by fl y ash need to be 
solved effectively. Medina, et al. [43] used fl y ash to synthesize 
zeolite, which can be utilized as an adsorbent to treat As(V)-
contaminated water. As(V) concentration decreased from 740 
μg/L to less than 10 μg/L, and the removal rate reached 99% 
under neutral condition after contacting for 5 min. Red mud is 
a kind of waste produced in the process of alumina production, 
which needs to be treated properly. Altundoğan, et al. [44] 
reported that the adsorption capacity of As(V) can be effectively 
improved after the acid activation treatment. The initial 
concentration of As(V) in water was 10 mg/L, and the dosage 
of activated red mud was 20 g/L, resulting in the removal rate 
of 96.52% and the effl uent pH of 7.25 at 25 ℃. Pehlivan, et al. 
[24], made use of lignocellulosic materials extracted from rice 
husk (RH) to form RH-FeOOH by hydrolysis and impregnation 
of Fe(III) under alkaline condition. As(V) ions with negative 
charge in water can be effectively adsorbed on RH-FeOOH with 
positive charge on the surface via Coulomb interaction under 
slightly acidic condition, thus, As(V) can be removed from 
water effectively. The result reported that the removal rate 
reached 99.6%, by using the dosage of 0.2 g/50 mL to treat 
initial As(V) concentration of 3 mg/L, at pH 4 and 22℃ for 6 h. 
The adsorbent was regenerated by 0.1 M NaOH solution for 20 h 
at pH 12–14, and the regeneration rate can reach 90%.

Ion exchange resins: Ion exchange resins are made of 
insoluble polymer networks with functional groups, and 
As(V) ions in water are exchanged with functional groups and 
absorbed on the resins. The synthesis of ion exchange resins 
can be divided into two steps: preparing polymer skeleton and 
introducing functional groups into the skeleton [45].

Ligand exchange cellulose adsorbent was prepared by 
Awual, et al. [15], who loaded Zr (IV) onto the cation exchange 

resin (Zr-FCPS) with bifunctional groups (phosphate and 
sulfonate). The results indicated that the infl uence of initial 
As(V) concentrations of 1.115 mg/L can be purifi ed to less 
than 10 mg/L by adding 0.5 g Zr-FCPS into 1.93 L of As(V)-
contaminated water, and 0.1 M NaOH solution can be used as 
the eluent reagent. An ion exchange/electrodialysis (IXED) fl ow 
cell was introduced by Rivero, et al. [46], to remove As(V) from 
water. A central compartment packed with anion exchange 
resin, and two anion membranes are placed as its boundary of 
compartments on the anode side and cathode side, respectively. 
As(V) anions can be exchanged by OH- anions produced by 
water dissociation in cathode side, and the transport rate of 
anions was infl uenced by several factors, such as the potential 
profi les, Donnan potential and concentration polarization.

New adsorption materials

Nanomaterials: Nanomaterials have  smaller particle size, 
higher specifi c surface area and stronger adsorption capacity, 
compared with the traditional adsorption materials [14,47]. 
Previous studies have shown that nano-Cu(II), zero-valent 
iron, crystal TiO2, granular ZrO2, ZrO(OH)2, Al2O3, magnetic 
Fe2O3, magnetic bimetallic oxide (MnFe2O4 and CoFe2O4) have 
good adsorption performances on As(V) removal from water 
[14,21,27,48-51].

On this basis, previous studies reported that nanoparticles 
loaded onto adsorbents can deal with the problems of high 
price and diffi cult operation. Ntim and Mitra [52] loaded 
carbon nanotubes with nano zirconia particles (MWCNT-ZrO2), 
with a BET of 152 m2/g, to treat raw water with initial As(V) 
concentration of 100 μg/L. The contact time was extended 
from 10 min to 60 min, correspondingly, the removal ratio was 
increased from 50% to 99%. The results indicated that As(V) 
can be removed effectively from water, and its concentration 
was as low as 1 μg/L in effl uent. The adsorption capacity was 
5000 μg/L calculated by Langmuir and Freundlich adsorption 
isotherms. Kanematsu, et al. [53] fi lled the adsorption fi xed 
bed with nano goethite particles (BET 158.1 m2/g), for treating 
As(V)-contaminated water with initial As(V) concentration 
of 120 μg/L at pH=7. The empty bed contact time (EBCT) was 
controlled at 0.328 min, to ensure the discharge to meet the 
standards of As(V) in drinking water. In addition, silicate was 
not conducive to be used for As(V) removal because of strong 
adsorption competition with the existing As(V) ions.

Mesoporous materials: Mesoporous materials is a kind of 
adsorption material with pore sizes ranging from 2 nm to 
50 nm, with large specifi c surface area, highly ordered pore 
structure and high adsorption capacity [28]. Patra, et al. [54] 
showed that mesoporous γ-Al2O3 spherical nanoparticles with 
BET of 497 m2/g had a high affi nity for As(V) in water. The 
dosage of adsorbent was 0.1 g/100 mL, and the contact time 
was prolonged from 1 h to 6 h, then, the removal rate can be 
increased from 60% to 80% when treating the water with 
initial As(V) concentration of 100 μg/L. The structure, surface 
and optical property of the particles were analyzed by X-ray 
diffraction, transmission electron microscopy and ultraviolet 
visible spectroscopy. Pillewan, et al. [55] prepared copper oxide 
incorporated mesoporous alumina (COIMA) (BET 189.25 m2/g) 
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by impregnating mesoporous alumina with copper sulfate 
solution to treat raw water with initial As(V) concentration 
of 1.0 mg/L for 24 h at 30℃, using the dosage of 0.4 g/L, the 
calculated adsorption capacity of COIMA for As(V) was 2.017 
mg/g according to Langmuir equation.

Biological adsorption

Biological adsorbents include plants, microorganisms and 
biomaterials, which can adsorb, transform and degrade As(V) 
in water through a series of physical, chemical and biological 
processes. Biological adsorbents have promising application 
prospects due to the advantages of high effi ciency, cost 
effective and less secondary pollution.

Many species of a l gae in huge quantities are widely 
distributed in natural water, which have been reported to be 
associated with adsorption and degradation of pollutants 
in water. As(V) can be adsorbed on the surface of algae and 
accumulated in their cells, and then reduced to As(III), which 
can be further degraded and detoxifi ed by methylation process, 
to achieve arsenic removal from water [56].

Microbial cell walls are composed of polysaccharides, lipids 
and proteins, which are rich in binding sites, therefore, they can 
be used as adsorbents for water treatment [13]. As(V) in water 
is adsorbed on the surface of microorganism and degraded by 
a series of metabolic activities. It has been proven that several 
fungal strains of Aspergillus and Trichoderma, and other fungi 
were isolated from soil [57]. Aspergillus candidus belonging 
to a facultative marine fungus also showed good adsorption 
performance on As(V) removal from water [58].

In addition, previous studies have shown that biomaterials 
can also adsorb As(V) in water [59]. For example, chitosan 
converted from crustacean shell by deacetylation process is 
used as an adsorbent to treat As(V)-contaminated water, which 
has good adsorption capacity for As(V), due to its high affi nity 
for ions caused by its high molecular chain structure, rich 
hydroxyl and amino groups [13].

Furthermore, the adsorbents can also be modifi ed by 
chemical methods to improve the adsorption capacities of 
As(V). A novel Fe(III)-loaded ligand exchange cotton cellulose 
adsorbent was prepared by loading Fe(III) onto cotton cellulose 
(BET 2.23 m2/g, water content 87%) by Zhao, et. al. [60], and 
this adsorbent was fi lled into a glass fi lter column (φ 9.5 × 
300 mm). The raw water with initial As(V) concentration of 
1 mg/L (coexisting ions SO4

2- 250 mg/L, Cl- 250 mg/L) could 
be purifi ed until the effl uent was less than 10 μg/L, under the 
conditions of pH=7.1, 25 ° C and the fi ltration rate of 26 BV/h. 
The desorption rate of As(V) was higher than 96% when the 
fi lter column was regenerated with 1 M NaOH. Boddu, et al. 
[61] coated chitosan on alumina ceramics to prepare a new 
composite chitosan biosorbent (BET 125.24 m2/g), and then the 
biological adsorbent was fi lled in a fi lter column (inner diameter 
1.1 cm, height 30 cm). The results showed that the raw water 
with initial As(V) concentration of 101 mg/L can be treated until 

there was no As(V) in effl uent (downward fi ltration, fi ltration 
rate 2.5 mL/min, pH=4), thus, the adsorption capacity was as 
high as 96.46 mg/g. It has also indicated that acidic condition 
was more conducive to the removal of As(V), and 0.1 M NaOH 
solution can be used as regeneration agent.

Problems and suggestions

As(V) removal from water by adsorption will not produce 
chemical sludge and concentrated water needed subsequent 
treatment, compared with treating As(V) using coagulation 
or membrane technologies. However, the adsorption capacity 
of an adsorbent is limited, and the effect of arsenic removal 
is easily affected by the competition of coexisting ions in 
water, therefore, it is not benefi cial to select adsorption 
technology to treat As(V)-contaminated water with complex 
ionic composition, and the costs will be highly increased due 
to the needed extra pretreatment process. Furthermore, the 
se paration of adsorbents from water has been considered as a 
big challenge for drinking water treatment processes.

In general, the adsorption technology is suitable for treating 
the water containing As(V) with low concentration and simple 
composition. It is wise to use different adsorption materials 
in different practical application directions, and it needs to 
make an overall comparison comprehensively between the 
adsorption capability and economic feasibility. The adsorbents 
reused after regeneration by chemical methods complies with 
the trend of sustainable developm ent. In the future, to develop 
environmental friendly materials achieving more effi cient 
performance, explore methods enhancing regeneration 
capacity, optimize the synthesis and modifi cation methods and 
try to reduce the overall cost are the development directions, 
in order to promote this technology to be commercialized. 
The adsorption performance of the adsorbents can be further 
improved by modifying the powder adsorbents into granular 
forms, loading metal ions or bacteria on adsorbents, fi xing 
 nano or mesop orous particles on the adsorbents with relatively 
low price or large volume, adding magnetic components, using 
symbiont of bacteria and algae as adsorbents, and modifying 
biological adsorption materials by chemical methods.

Conclusions

Arsenic discharge into water environment should 
be effectively minimized in productive activities to 
prevent arsenic pollution. It is necessary to select the 
technology on the basis of detailed investigation of the 
water quality of water sources combined with the applicable 
conditions of various technologies. The adsorption technology 
is suitable for purifying the water containing As(V) with low 
concentration and simple composition. It is important to weigh 
the advantages and disadvantages of each adsorption material 
for arsenic removal when selecting a feasible material for 
As(V)-contaminated water treatment. This technology needs 
to be further explored in search of effi cient and environmental 
friendly adsorption materials, comprehensive utilization 
of chemical and biological methods, and improvement 
of regeneration methods, to optimize the synthesis and 
modifi cation of adsorbents.
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