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Introduction

Cachexia affects 80% of advanced-stage cancer patients 
and is a direct cause of death in 30% [1,2]. As defi ned by the 
2008 cachexia consensus conference “cachexia, is a complex 
metabolic syndrome associated with underlying illness and 
characterized by loss of muscle with or without loss of fat 
mass”[3], skeletal muscle atrophy is considered a major 
pathology of cancer cachexia [4,5]. In addition, decreased 
skeletal muscle mass in cancer patients is not only associated 
with decreased quality of life for patients, but is also closely 
associated with survival prognosis [3]. On the other hand, 
suppressing skeletal muscle atrophy signifi cantly prolongs life 
prognosis regardless of tumor burden [6]. From these fi ndings, 
improvement of skeletal muscle atrophy in cancer cachexia is 
an important issue. In recent years, exercise for improving 
malnutrition, anticancer treatment, and activity enhancement 
has been recommended in patients with cachexia [7]. In this 
review, we focus on nutritional interventions and show the 
possibility of nutritional interventions aimed at preventing 
skeletal muscle atrophy using an animal model of cancer 
cachexia. 

Cancer cachexia and nutritional intervention

Cancer cachexia causes anorexia and weight loss in cancer 
patients, eventually leading to irreversible malnutrition [8]. 
Along with this, the skeletal muscles are atrophied, and the 
tolerance for treatment with anticancer agents. Treatment of 
cancer cachexia requires measures to manage reduced food 
intake and address catabolism as a result of infl ammation [9]. 
Therefore, nutritional intervention has recently been proposed 
as a treatment for cancer patients with malnutrition [10,11]. 
However, nutrients such as carbohydrates and linoleic acid 
may promote tumor growth [12-14]. Therefore, nutrition 
interventions in cancerous sarcopenia require careful 
consideration of their effects on tumors as well as skeletal 
muscle. However, while there are many reports on the effects 
of nutritional interventions in cancerous sarcopenia, there are 
few reports on nutritional interventions that focus on both 
skeletal muscle and tumors. 

Effects of carbohydrates on tumors and skeletal muscle

Glucose is an essential nutrient for skeletal muscle cells, 
leading to muscle contraction, homeostasis, and muscle cell 
growth [15]. Glucose uptake in skeletal muscle cells is insulin 
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dependent via GLUT4 [16]. On the other hand, glucose is known 
to have a growth promoting action also in tumor cells, and it 
is known that the tumor cells selectively produce energy by 
glycolytic metabolism as a Warburg effect [17]. In addition, 
glucose uptake by tumor cells is insulin-independent by 
GLUT1, which has a higher sugar affi nity, and it is thought that 
blood glucose easily promotes tumor growth [18]. Although 
tumor suppressive effects of carbohydrate restriction have 
been reported [19], it has been reported glucose restriction 
suppresses skeletal muscle differentiation and results in 
muscle atrophy [20]. Therefore, it is considered that the 
carbohydrate restriction on the tumor inhibits the energy 
production of skeletal muscle and exacerbates skeletal muscle 
atrophy. However, there are few reports that simultaneously 
examined the effects of carbohydrate loading on tumors 
and skeletal muscle in cancer-bearing bodies. Therefore, we 
investigated the effects of carbohydrate loading on tumors 
and skeletal muscle in a mouse tumor-bearing model [21]. 
We inoculated subcutaneously on the back of BALB/c mice 
with CT26 cells, a syngeneic mouse colon cancer cell line, 
and allowed them to freely drink sugar water (0% 10% 50% 
glucose) for 2 weeks to analyze tumors and skeletal muscle. 
As a result, the subcutaneous tumor diameter increased in 
a glucose concentration-dependent manner. In addition, 
a signifi cant negative correlation was confi rmed between 
the tumor diameter and blood glucose level. Muscle weight 
was signifi cantly low in the tumor group; however, SDS-
soluble myosin light chain 1 (SDS-MLC1), which indicates the 
functional maturity of skeletal muscle, showed a signifi cantly 
high value in a glucose concentration-dependent manner. At 
50% sugar concentration, improvement was observed to a level 
equivalent to that of the control group (non-cancer-bearing 
mice) [22]. From the above, it was clarifi ed that the glucose load 
in the tumor-bearing body promotes the increase in tumors, 
while increasing the functional maturity of skeletal muscle and 
improving skeletal muscle atrophy. Therefore, it is necessary 
to carefully consider the administration of carbohydrates to 
cancer-bearing bodies.

Effects of medium-chain fatty acids on tumors and ske-
letal muscle

Intake of medium-chain fatty acids has been shown to 
improve metabolic syndrome [22] and induction of apoptosis in 
cancer cells has also been reported [23]. We have also reported 
the antitumor effect of medium-chain fatty acids and ketones 
[24]. After fatty acid undergoes -oxidation in mitochondria, 
the acetyl CoA produced is metabolized in the TCA cycle, and 
ATP is produced by oxidative phosphorylation. Since long-chain 
fatty acids are used for energy production, intracellular uptake 
by transporters such as CD36 and fatty acid binding proteins 
and translocation into the mitochondria by carnitine shuttle 
are required [25,26]. In contrast, Medium-chain fatty acids 
are taken into mitochondria without carnitine shuttle, undergo 
-oxidation, and are used for oxidative phosphorylation in the 
TCA cycle [27]. Thus medium-chain fatty acids are rapidly 
utilized in mitochondria in equilibrium with changes in blood 
concentration [28]. Intake of medium-chain fatty acids is 
expected to forcefully promote mitochondrial metabolism in 
cells. Mitochondria have been reported to have dysfunction and 

poor quality control in tumor cells [29,30], and we have found 
that forced metabolism induces excessive oxidative stress 
production and apoptosis [24]. On the other hand, medium 
chain fatty acids in skeletal muscle have been reported to lead to 
improvement of mitochondrial energy metabolism in skeletal 
muscle via GPR84 [31]. In addition, normal mitochondria can 
produce ATP much more effi ciently than glycolysis, and thus 
may promote skeletal muscle growth.

Based on these fi ndings, we investigated the effect of 
oral intake of medium-chain fatty acids on skeletal muscle 
hypertrophy in a mouse model [21]. A LAA diet containing 
lauric acid (LAA, C12: 0, 0%, 2%, 5% w/w) added to a control 
diet was orally ingested for 2 weeks. As a result, skeletal muscle 
wet weight was signifi cantly increased in the 2% LAA diet, but 
signifi cantly decreased in the 5% LAA diet. From these results, 
it was confi rmed that medium-chain fatty acids act to promote 
skeletal muscle growth at an appropriate concentration. On the 
other hand, it was shown that at high concentration, excessive 
mitochondrial activation also causes oxidative stress in skeletal 
muscle and induces muscle atrophy. Muscle atrophy due to 
excessive oxidative stress production by LAA is also observed 
in myocardium [32]. 

Based on these results, we used a 2% LAA diet, which 
is considered to be an appropriate concentration for the 
murine cachexia model, and orally ingested it for 2 weeks 
[21]. In our cachexia model, male BALB/c mice are inoculated 
intraperitoneally with syngeneic CT26 colon cancer cells, and 
cachexia phenotypes such as ascites retention, weight loss, 
and skeletal muscle atrophy are induced in about 10 days [21]. 
When a 2% LAA diet was orally administered to the cachexia 
group, an increase in skeletal muscle mass and an increase in 
skeletal muscle SDS-MLC1 were confi rmed. On the other hand, 
in tumors, a 2% LAA diet resulted in a decrease in tumor weight 
and a decrease in ascites retention [21]. Thus, oral ingestion 
of medium-chain fatty acids is suggested to improve skeletal 
muscle atrophy and suppress tumors in cancer cachexia model, 
and medium-chain fatty acids are important in nutritional 
intervention for cancer sarcopenia. Was considered to be a 
nutrient.

Effect of combined intake of medium-chain fatty acid 
and carbohydrate on tumor and skeletal muscle

As described above, glucose and medium-chain fatty acids 
are the same energy source, but are metabolized by different 
pathways in intracellular metabolism. Therefore, simultaneous 
ingestion of both may improve skeletal muscle atrophy without 
promoting tumor growth. Therefore, in two types of mouse 
cachexia models of CT26 mouse colon cancer cells and HT29 
human colon cancer cells, 10% glucose drinking water, 2% 
lauric acid diet alone, or the effect of the combined use, after 
oral ingestion for 2 weeks, The tumor and skeletal muscle 
were removed and examined [21]. As shown in Table 1, the 
weight of skeletal muscle decreased in the cachexia group, but 
signifi cantly increased with the combined intake, and improved 
to the same level as the non-tumor bearing mice. In addition, 
there was no signifi cant difference in tumor weight between 
the combination group and the control diet group. 
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Glucose is an important nutrient for the prevention of 
skeletal muscle atrophy; however, administration alone 
promoted tumor growth. In contrast, the simultaneous 
ingestion of lauric acid into glucose offsets the tumor-growing 
effect of carbohydrates in tumors by the antitumor effect of 
lauric acid, and the synergistic effect of carbohydrates and 
lauric acid on skeletal muscle suppressed sarcopenia. In 
nutritional intervention in cancer patients, combined intake 
of carbohydrates and medium-chain fatty acids was found 
to suppress skeletal muscle atrophy without causing tumor 
growth, and is useful for improving or preventing cancer 
sarcopenia. 

Conclusion

Nutritional interventions in cancerous sarcopenia require 
simultaneous consideration of their effects on tumor growth 
and skeletal muscle atrophy. Co-administration of medium-
chain fatty acids and glucose suppressed cancerous sarcopenia 
without increasing tumors. It is considered that the combined 
use of glucose and medium-chain fatty acids is effective for the 
prevention of cancerous sarcopenia. Future clinical applications 
are strongly expected.
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