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Kinetic equations, their algebraic structure and invariant reductions

Introduction

It is well known that the classical Bogolubov-Boltzmann kinetic equations under the condition of manyparticle correlations 
[1-12] at weak short range interaction potentials describe long waves in a dense gas medium. The same equation, called the Vlasov 
one, as it was shown by N. Bogolubov [5], describes also exact microscopic solutions of the infi nite Bogolubov chain [4] for the 
manyparticle distribution functions, which was widely studied making use of both classical approaches in [2,6,11,13-23] and in [24-
32], making use of the generating Bogolubov functional method and the related quantum current algebra representations. 

A.A. Vlasov proposed his kinetic equation [33] for electron-ion plasma, based on general physical reasonings, that in contrast 
to the short range interaction forces between neutral gas atoms, interaction forces between charged particles slowly decrease with 
distance, and therefore the motion of each such particle is determined not only by its pair-wise interaction with either particle, yet 
also by the interaction with the whole ensemble of charged particles. In this case the Bogolubov equation for distribution functions 
in a domain 3    

(2)1
1 2( )

( ; ) | ( ; ) = { ( , ; ), ( )} ,' ' '
x T

f z t p f z t dz f z z t V x x
t m  


    

 
                       (1.1)

Abstract

We study a special class of dynamical systems of Boltzmann-Bogolubov and Boltzmann-Vlasov type on infi nite dimensional functional manifolds modeling kinetic 
processes in manyparticle media. Based on geometric properties of the manyparticle phase space we succeded in dual analysing of the infi nite Bogolubov hierarchy of 
manyparticle distribution functions and their Hamiltonian structure. Moreover, we proposed a new approach to invariant reducing the Bogolubov hierarchy on a suitably 
chosen correlation function constraint and deducing the related modifi ed Boltzmann-Bogolubov kinetic equations on a fi nite set of multiparticle distribution functions. 
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where := ( , ) ( ),z x p T t
    is the temporal evolution parameter, 

( ){ , } m  denotes the canonical Poisson bracket [6,33,34] 
on the product ( ) , ,mT m    and ( ), , ,' 'V x x x x  is an interparticle interaction potential, - reduces to the Vlasov equation 
if to put in (1.1) 

2 1 1( , ; ) = ( ; ) ( ; ),' 'f z z t f z t f z t
             (1.2)

that is to assume that the two-particle correlation function [2,3,11,23] vanishes: 

2 2 1 1( , ; ) = ( , ; ) ( ; ) ( ; ) = 0' ' 'g z z t f z z t f z t f z t
           (1.3)

for all , ( )'z z T    and .t   Then one easily obtains from (1.1) that 

1 1
1 1( )

( ; ) ( ; )| ( ; ) = | ( ) ( ; )' ' '
x x T

f z t f z tp f z t dz V x x f z t
t m p  

 
       

  
       (1.4)

for all ( )z T    and .t   Remark here that the equation (1.4) is reversible under the time refl ection ,t t      thus it is 
obvious that it can not describe thermodynamically stable limiting states of the particle system in contrast to the classical Bogolubov-
Boltzmann kinetic equations [1,2,4,6,11,24,27], being a priori time nonreversible owing to the choice of boundary conditions in the 
correlation weakening form. This means that in spite of the Hamiltonicity of the Bogolubov chain for the distribution functions, the 
Bogolubov-Boltzmann equation a priori is not reversible. It is also evident that the condition (1.3) does not break the Hamiltonicity - 
the equation (1.4) is Hamiltonian with respect to the following Lie-Poisson-Vlasov bracket:

(1)

( )
{{ ( ), ( )}}:= ( ){ ( )( ), ( )( )} ,

T
a f b f dzf z grada f z gradb f z 

         (1.5)

where 1
( ) := ( ) / , ( ( )) := ,fgrad f f D T M       respectively 1

, ( )fa b D M  are smooth functionals on the functional manifold 

1
,fM  consisting of functions fast decreasing at the boundary   of the domain 3.    The statement above easily ensues from the 

following proposition. 

Proposition 1.1 Let M  denote a set of many-particle distribution functions. Then the classical Bogolubov-Poisson bracket [4,18,24,25] on 

the functional space ( )D M  reduces invariantly on the subspace 
1

( ) ( )fD M D M   to the Lie-Poisson-Vlasov bracket (1.5). 

Concerning the general case when we are work with an innite Bogolubov chain of kinetic equations on the many-particle 
distribution functions and forced to break it at some place, numbered by some natural number N  N; the usual approaches always 
give rise to the resulting inconsistency [3,5] of the chain and, as a result, to the nonphysical solutions. The most successful approach 
to obtaining the Boltzmann kinetic equation for the one-particle distribution function was suggested still many years ago by N. 
Bogolubov [1,2], based on the e⁄ective application of the so called weak correlation condition. So far, to the regret, this approach, 
being conjugated with the complex problem of solving functional equations, also gives rise to the inconsistency of the higher order 
kinetic equations. Nonetheless, being inspired by former studies [6, 16, 11] of these problems, based on the geometrical interpretation 
of the Bogolubov kinetic equations chain, we devised a new functional analytic approach to constructing its compatible reduction a 
priori free of any unphysical consequences. We also succeeded in constructing a reduced set of kinetic equations, based on a suitably 
devised Dirac type invariant reduction scheme of the corresponding many-particle Lie-Poisson phase space. The approach to solving 
this problem and its di⁄erent consequences will be analyzed in more detail in sections to follow below.

The Lie-Poisson-Vlasov b racket: Lie-algebraic approach

The bracket expression (1.5) allows a slightly different Lie-algebraic interpretation, based on considering the functional space 

1
( )fD M  as a Poissonian manifold, related with the canonical symplectic structure on the diffeomorphism group ( )Diff   of the 

domain 3,    fi rst described [35,36] still in 1887 by Sophus Lie. Namely, the following classical theorem holds.

Theorem 1.2 The Lie-Poisson bracket at point ( ; ) ( ( ))T Diff     on the coadjoint space ( ( )), ( ),T Diff Diff      is equal to the 

expression

 
{ , }( ) = ( | [ ( ) / , ( ) / ])cf g g f       

        (1.6)

for any smooth right-invariant functionals , ( ( ( )); ).f g C T Diff
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Proof. By classical defi nition [33-37] of the Poisson bracket of smooth functions ( | ) , ( | )c ca b   

( ( ( )); ), , ( ) ( ( ))C T Diff a b diff T Diff 
        on the symplectic space ( ( )),T Diff

   it is easy to calculate that 

{ ( ), ( )}:= ( , ) =
= ( | ) ( | ) ( | [ , ]) ,

a b

a b c b a c a b c

a b X X
X X X X X X

  
   

         (1.7)

where := ( | ) / = ( ), := ( | ) / = ( ).a c b cX a a diff X b b diff          Since the expressions ( | ) = 0a b cX X  and 

( | ) = 0b a cX X  owing the right-invariance of the vector fi elds , ( ( )),a bX X T Diff   the Poisson bracket (1.7) transforms into 

{ ( | ) , ( | ) } = ( | [ , ]) =
= ( | [ , ]) = ( | [ ( | ) / , ( | ) / ])

c c a b c

c c c c

a b X X
b a b a
  

       


           (1.8)

for all ( ; )   ( ( )) ( ),T Diff diff
   and any , ( ).a b diff   The Poisson bracket (1.8) is easily generalized to 

{ , }( ) = ( | [ ( ) / , ( ) / ])cf g g f       
         (1.9)

for any smooth functionals , ( ( ); ),f g C diff     fi nishing the proof. 

Concerning our special problem of describing evolution equations for one-particle distribution functions, we will consider the 

one particle cotangent space ( )T    over a domain 3    and the canonical Poisson bracket (1){ , }:= { , }     on ( ),T    for which, by 

defi nition, for any 
1

, ff g M  

{ , }( ) := | | ,f g g ff g z
p x p x
   
    
               (1.10)

where = ( , ) ( ).z x p T    Denote now by 1
:= ( ;{ , })fM    the related functional Lie algebra and   its adjoint space with respect 

to the standard bilinear symmetric form 
1 1

( | ) : f fM M     on the product 1 1
,f fM M  where 

( )
( | ) := ( ) ( ) .

T
f g f z g z dz 

            (1.11)

The constructed Lie algebra   with respect to the bilinear symmetric form (1.11) proves to be metrized, that is    and 

({ , } | ) = ( |{ | })f g h f g h
            (1.12)

for any ,f g  and .h  If  ( )D    is a smooth functional on ,  its gradient ( )grad f   at point f   is naturally 

defi ned via the limiting expression 

=0

( | ( )) := ( )dg grad f f g
d 

  



           (1.13)

for arbitrary element .g   Defi ne now the Poisson structure {{ , }}:        by means of the standard Lie-Poisson [9,33,34-

36,38,39] expression:

{{ , }}:= ( |{ ( ), ( )})f grad f grad f   
          (1.14)

for arbitrary functionals , ( ).D     It is evident that the expression (1.14) identically coincides with the Poisson bracket (1.5).

Consider a functional ( )D    and the related coadjoint action of the element ( )grad f   at a fi xed element 1:= :f f 
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1 ( ) 11
/ := ,grad ff t ad f

              (1.15)

where t  is the corresponding evolution parameter. It is easy observe that 

1 1/ = {{ , }}f t f 
              (1.16)

is a Hamiltonian equation with the functional ( )D    taken as its Hamiltonian, being simultaneously equivalent to the following 

canonical Hamiltonian fl ow:

1 1 1/ = { , ( )},f t f grad f 
            (1.17)

if to choose as a Hamiltonian the following functional 

2
1

1 1 1 1 1 2 1 2 1 1 1 22( ) ( )

1( ) := ( ) ( ) ( ) ( ),
2 2T T

pf dz f z dz dz V x x f z f z
m

   
  

       (1.18)

where 1 2( )V x x  is a two-particle interaction potential, 1 2, .x x   It is easy to observe here that the Hamiltonian (1.18) is obtained 

from the corresponding classical Bogolubov Hamiltonian expression 

2
1

1 1 1 1 2 1 2 2 1 22( ) ( )

1( ) := ( ) ( ) ( , ),
2 2T T

pdz f z dz dz V x x f z z
m  

   
       (1.19)

where 1, 2= ( ,...)f f M  denotes an infi nite vector from the space := f jj
M M


   of multiparticle distribution functions, and if 

to impose on it the constraint (1.2). Thus we have stated the following proposition.

Proposition 1.3 The Boltzmann-Vlasov kinetic equation (1.4) is a Hamiltonian system on the functional manifold = ( ;{ , })fM
     

with respect to the canonical Lie-Poisson structure (1.14) with Hamiltonian (1.18). As a consequence, the fl ow (1.4) is time reversible. 

Boltzmann-Vlasov kinetic equations and microscopic exact solutions

Proposition 1.1, stat ed above, claims that the Boltzmann-Vlasov equation (1.4) is a suitable reduction of the whole Bogolubov chain 

upon the invariant functional subspace 
1

.fM M   Moreover, this invariance in no way should be compatible a priori [5,19,21,24,25,27] 

with the other kinetic equations from the Bogolubov chain, and can be even contradictory. Nonetheless, as it was stated [5] by N. 

Bogolubov, namely owing to this invariance of the subspace 1f
M M   the Boltzmann-Vlasov equation (1.4) in the case of the 

Boltzmann-Enskog hard sphere approximation of the inter-particle potential possesses exact microscopical solutions which are 
compatible with the whole hierarchy of the Bogolubob kinetic equations. The latter is, obviously, equivalent to its Hamiltonicity on 

the manifold 1f
M  with respect to the Lie-Poisson bracket (1.14). The Boltzmann-Enskog kinetic equation [3,5,11,12,23] equals 

1
1

2
2 22 3

( ; ) | ( ; ) =

,

= | | ( , ; , ; ) ( , ; , ; )

x

'
' ' ' '

f z t p f z t
t m

pa dn dp p n n f x p x an p t f x p x an p t
m


   



        
  

 
    (1.20)

where := | , := | , > 0' ' 'p p n p p n p p n p p n a           a particle diameter, 2n    a unit vector, | = 1,n n   and, by 

defi nition, 2 ( , ; ) = 0'f z z t  for all , ( ),'z z T    ,t  satisfying the condition || ||< .'z z a  The equation (1.20) easily reduces to 

the Vlasov-Enskog equation 
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1
1

2
2 3

1 1 1 1

( ; ) | ( ; ) = ( ),

( ) = | |

( , ; ) ( , ; ) ( , ; ) ( , ; )

x V E

'
' '

V E

' '

f z t p f z t J f
t m

pJ f a dn dp p n n
m

f x p t f x an p t f x p t f x an p t






   



   

     

 


 

 

        (1.21)

for all ( ; ) ( )z t T    owing to its Hamiltonicity on the space 1
.fM M   If in addition there exists a nontrivial interparticle 

potential, the equation above is naturally generalized to the kinetic equation 

1
1

(2)
1 1( )

( ; ) | ( ; ) = ( )

{ ( ; ) ( ; ), ( )} ,

x V E

' ' '

T

f z t p f z t J f
t m

dz f z t f z t V x x



 


    



 
         (1.22)

which remains to be Hamiltonian on 
1f

M  and possesses, in particular, the following exact singular solution: 

1
=1,

( ; ) = ( ( )),j
j N

f z t z z t 
           (1.23)

where ( ) ( ), = 1, ,jz t T j N   - phase space coordinates in ( )NT    of N   interacting particles in the domain 
3.    Specifi ed 

above the Hamiltonicity problem and the existence of exact solutions to the Botzmann-Vlasov kinetic equation (1.22) is deeply related 
to that of describing correlation functions [2,11,23], suitably breaking the infi nite Bogolubov chain [2,4,11,24,30,31] of manyparticle 
distribution functions. Namely, if to introduce manyparticle correlation functions [2,11,23] for related Bogolubov distribution 
functions as 

1 1 2 1 2 2 1 2 1 1 1 2( ) = 0, ( , ) = ( , ) ( ) ( ),g z g z z f z z f z f z
        (1.24)

3 1 2 3 3 1 2 3 1 1 1 2 1 3 1 1 2 2 3( , , ) = ( , , ) ( ) ( ) ( ) ( ) ( , )g z z z f z z z f z f z f z f z g z z  

1 2 2 3 1 1 3 2 1 2( ) ( , ) ( ) ( , ),...,f z g z z f z g z z 

where ( ), ,jz T j N    then the Vlasov equation (1.22) is obtained from the Bogolubov hierarchy at =1n  and 2 1 2( , ) = 0g z z  for all 

1 2, ( ).z z T  

As it was mentioned above, the constraint imposed on the infi nite Bogolubov hierarchy is compatible with its Hamiltonicity. Yet 
in many practical cases this closedness procedure by means of imposing the conditions like 

1 1 2 1( , ,.., ) = 0m mg z z z             (1.25)

for all ( ), = 1, 1sz T s m   at some fi xed 2m   gives rise to some serious dynamical problems related with its mathematical 

correctness. Namely, if to close this way the infi nite Bogolubov chain of kinetic equations on manyparticle distribution functions, 
one easily checks that the imposed constraint (1.25) does not persists in time subject to the evolution of the distribution functions 

1 2( , ,.., ), ( ), = 1, .j j jf z z z z T j m   This menas that these naively reduced kinetic equations are written down somehow incorrectly, 

as the reduced functional submanifold 
( )

1:= { : = 0}m
mM M g    should remain invariant in time. To dissolve this problem we 

are forced to consider the whole Bogolubov hierarchy of kinetic equationas on multiparticle distribution functions as a Hamiltonian 
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system on the functional manifold M  and correctly reduce it on the constructed above functional submanifoild 
( )mM M   via the 

classical Dirac type [1, 3, 6, 19, 36] procedure. The kinetic equations obtained this way by means of the reduced Lie-Poisson-Bogolubov 

structure will evidently differ from those naively obtained by means of the direct substitution of the imposed constraint (1.25) into 

the Bogolubov chain of kinetic equations, and in due course will conserve the functional submanifold ( )mM M   invariant.

The invariant reduction of the Bogolubov distribution functions chain

Consider the constructed before Hamiltonian functional  ( ) ( )D M    (1.19) 

2
1

1 1 1 1 2 1 2 2 1 22( ) ( )

1( ) = ( ) ( ) ( , )
2 2T T

pdz f z dz dz V x x f z z
m  

   
      (1.26)

and calculate the evolution of the distribution functions vector M   under the simplest constraint (1.25) at =1,m  that is 

2 1 2 2 1 2 1 1 1 2( , ) = ( , ) ( ) ( ) = 0g z z f z z f z f z
         (1.27)

for all 1 2, ( ).z z T    To perform this reduction on 
(1)M M   we need [39-43] to constraint the  -extended Hamiltonian 

expression 

 1 2 1 2 2 1 2 1 1 1 22( )

1( ) := ( ) ( , ) ( , ) ( ) ( )
2 T

dz dz z z f z z f z f z  
    

     (1.28)

for some smooth function 2( ( ) )D T    and next to determine it from the submanifold (1)M  invariance condition 

2 1 2
2 1 2

2 1 2 1 1 1 2
1 2 1 1

( , ) = {{ ( ), ( , )}} =

( , ) ( ) ( )= ( ) ( ) = 0

g z z g z z
t

f z z f z f zf z f z
t t t






  
 

  

 

        (1.29)

for all 1 2, ( )z z T    and .t  To calculate effectively the condition (1.29) let us fi rst calculate the evolutions for distribution 

functions 1f  and 2 :f M 

(1)

1 1
1 1 1 1

1 1

( )( ) = {{ ( ), ( )}} = ( ),
( )

f z f z f z
t f z







 
   

 
 

       (1.30)

(1)

2 2 1 2( )
2 1 2

( )( , ), ,
( , )T

dz f z z
f z z


 

 
  

 


 

and

(2)

2 1 2
2 1 2 2 1 2

1 1 1 2

(2)(2)

2 1 2 3 3 1 2 3( )
2 1 2 2 1 3 2 2 3

( ) ( )( , ) = {{ ( ), ( , )}} = ( , ),
( ) ( )

( ) ( ) ( )( , ), ( , , ), ,
( , ) ( , ) ( , )T

f z z f z z f z z
t f z f z

f z z dz f z z z
f z z f z z f z z

 


  

 
 

  
   

 
    

  
     
   



   
 

     

   (1.31)

which can be rewritten equivalently as follows:
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1 1 1 1 1 2
2 1 2( )

1 1

( ) ( ) ( , )= | ( )
T

f z f z z zdz f z
t p x


 

  
 

  
        (1.32)

1 1 2 1 1
2 1 2( )

1 1

( , ) ( )( ) |
T

p z z f zdz f z
m p x


 

 
   

 

2 1 2
2 1 2 1 2( )

1 1

( , )1 [ ( ) ( , )] |
2 T

f z zdz V x x z z
x p

 


     

 

1 2 2 1 2
2( )

1 1

( , ) ( , )1 |
2 T

z z f z zdz
p x


 

 
  

 

and 

2 1 2 2 1 2 1 2
2 1 2( )

1 1

( , ) ( , ) ( , )= | ( )
T

f z z f z z z zdz f z
t p x


 

  
  

  
       (1.33)

2 1 2 1 2
1 1 1( )

2 2

( , ) ( , )| ( )
T

f z z z zdz f z
p x


 

 
  

 

2 1 2 1 1 2
2 1 2( )

1 1

( , ) ( , )| ( )
T

f z z p z zdz f z
x m p


 

 
   

 

2 1 2 2 1 2
1 1 1( )

2 2

( , ) ( , )| ( )
T

f z z p z zdz f z
x m p


 

 
   

 

2 1 2
1 2 1 2

1 1

( , )1 | [ ( ) ( , )]
2

f z z V x x z z
p x

 
     

 

2 1 2
1 2 1 2

2 2

( , )1 | [ ( ) ( , )]
2

f z z V x x z z
p x

 
     

 

2 1 2 1 2 2 1 2 1 2

1 1 2 2

( , ) ( , ) ( , ) ( , )1 1| |
2 2

f z z z z f z z z z
x p x p

    
       

   

3 1 2 3
3 1 3 1 3( )

1 1

( , , )1 | [ ( ) ( , )]
2 T

f z z zdz V x x z z
p x

 

 
     

 

3 1 2 3
3 2 3 2 3( )

2 2

( , , )1 | [ ( ) ( , )]
2 T

f z z zdz V x x z z
p x

 

 
     

 

3 1 2 3 3 1 2 31 2 1 2
3 3( ) ( )

1 1 2 2

( , , ) ( , , )( , ) ( , )1 1| |
2 2T T

f z z z f z z zz z z zdz dz
x p x p

 
  

  
     

    

Having now substituted temporal derivatives (1.32) and (1.33) into the equality (1.29) in their explicit form, one obtains the 
following functional relationship:
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1 1
1 2 1 2 1 2

1 1

3 1 3 1 3 1 3( )

1 2
1 1 2 1 2 1

2 2

3 1 3 2 3 2 3( )

( )1 ( ) | ( ) ( , )
2

( )[ ( ) ( , )]

( )1 ( ) | ( ) ( , )
2

( )[ ( ) ( , )] = 0,

T

T

f zf z V x x z z
p x

dz f z V x x z z

f zf z V x x z z
p x

dz f z V x x z z









 

 

 
   

 

    

 
    

 

   




        (1.34)

which is satisfi ed iff 

1 2 1 2( , ) = ( )z z V x x  
           (1.35)

for all 1 2, ( ).z z T    Taking into account the result (1.35), one easily obtains from the equation (1.32) the invariantly reduced on 

the submanifold 
(1)M M   kinetic equation on the one-particle distribution function:

1 1 1 1 1 1
1 2 1 2 1 2( )

1 1 1

( ) ( ) ( )/ | = | ( ) ( ) ,
T

f z f z f zp m dz f z V x x
t x p x  

   
     

    
     (1.36)

which can be rewritten in the following compact form:

(1)

1 1
1 1

1 1

( ) ( )= ( ), ,
( )

f z f z
t f z




 
   

 

          (1.37)

where we put, by defi nition, 

2
1

1 1 1 1 2 1 2 1 1 1 22( ) ( )

1( ) := ( ) ( ) ( ) ( ).
2 2T T

pdz f z dz dz V x x f z f z
m  

   
     (1.38)

The kinetic equation (1.36) naturally coincides exactly with that obtained before from the naively reduced evolution equation 

1 1
1 1 (1)

( ) = {{ ( ), ( )}} |
M

f z f z
t


 

 
          (1.39)

on the submanifold 
(1) ,M M   as it is globally invariant [18,24] with respect to the classical Lie-Poisson-Bogolubov structure 

on .M

The obtained result can be formulated as the following proposition.

Proposition 1.4 The fi rst coorelation function Dirac type reduction on the functional submanifold 
(1) ,M M   formed by relationships 

(1.27), reduces the corresponding Bogolubov chain of many-particle kinetic equations to the well known classical Vlasov kinetic equation. 

Remark 1.5 It is worth to mention here that the well known classical Bogolubov approximation of the many-particle distribution functions 

as 
1 2 1 2 1( , ,..., ) := ( , ,..., ; ), ( ), = 2, ,n n n jf z z z z z z f z T j n    with mapping 

1
: (...) , \{1},n fM n      presenting smooth 

nonlinear functionals, independent of the temporal parameter ,t   defi ne a suitably diff erent functional submanifold 
(1) ,M M
   upon 

which the reduced evolution fl ow 
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f z f z
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gives rise to a new Boltzmann type kinetic equation, being compatible with evolution equations for higher distribution functions, 
free of evolution inconsistencies and completely different from that derived before by Bogolubov [4]. 

The same way as above one can explicitly construct the system of invariantly reduced kinetic equations 

1 1 2 1 2
1 1 (2) 2 1 2 (2)

( ) ( , )= {{ ( ), ( )}} | , = {{ ( ), ( , )}} |
M M

f z f z zf z f z z
t t

 
  

   
     (1.41)

on the submanifold 
(2) ,M M   which already is not a priori globally invariant with respect to the Hamiltonian evolution fl ows on 

M  and whose detail structure and analysis are postponed to another place. This cae

Conclusion

We studied a well known classical problem of constructing a compatible nite-particle reduction of the Bogolubov chain of many-
particle distribution functions and analyzed a special class of the related dynamical systems of BoltzmannBogolubov and Boltzmann 
Vlasov type on innite dimensional functional manifolds, modeling kinetic processes in many-particle media. Based on the geometric 
approach, e⁄ectively devised to studying the corresponding many-particle Lie-Poisson functional phase space, we succeeded in dual 
analysis of the innite Bogolubov hierarchy of many-particle distribution functions and their Hamiltonian structure. Moreover, we 
proposed a new an e⁄ective approach to invariant Dirac type reduction of the Bogolubov hierarchy upon a suitably chosen invariant 
Poisson subspace endowed and deduced the related modied BoltzmannBogolubov kinetic equations on a nite set of multi-particle 

distribution functions.
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