

Mini Review

A tractroid realization of a 2d black hole vacuum

Floyd L Williams*

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA. 01003, USA

Received: 11 July, 2022
Accepted: 30 July, 2022
Published: 01 August, 2022
*Corresponding author: Floyd L Williams, Department of Mathematics and Statistics, University of
Massachusetts, Amherst, MA. 01003, USA, Tel: 4135450111; E-mail: williams@math.umass.edu

Copyright License: © 2022 Williams FL. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
https://www.peertechzpublications.com

Check for updates

Abstract

The two-dimensional black hole vacuum obtained from a spatial slice of the BTZ black hole is mapped explicitly to a tractroid surface minus a bounding circle.

Introduction

At a fixed time τ (for example $\tau=0$) the 3d Euclidean BTZ black hole $B_{M}[1,2]$ of mass $M>0$ reduces to a $2 d$ spatial slice whose metric $d s_{0}^{2}$ is easily transformed to a Poincare metric on the upper half-plane

$$
\begin{equation*}
H^{+} \stackrel{\text { def } .}{=}\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\} . \tag{1}
\end{equation*}
$$

Moreover, the quotient $X_{\Gamma} \stackrel{\text { def }}{=} \Gamma \backslash H^{+}$of H^{+}by a subgroup Γ of $G=S L(2, \mathbb{R})$ generated by a parabolic element γ (ie. trace γ $= \pm 2$) has for $M=o$ the structure of a $2 d$ black hole vacuum [3]. We indicate a realization of this vacuum by way of an explicit bijection $\tilde{\Phi}: T_{a}^{+} \rightarrow X_{\Gamma}$, where T_{a}^{+}is a tractroid surface with a deleted boundary circle of radius a.

The spatial slice of B_{M}

B_{M}, with zero angular momentum, is given by the metric with periodicity in the Schwarzschild variable ϕ

$$
\begin{equation*}
d s^{2}=\left(\frac{r^{2}}{\ell^{2}}-M\right) d \tau^{2}+\left(\frac{r^{2}}{\ell^{2}}-M\right)^{-1} d r^{2}+r^{2} d \phi^{2} \tag{2}
\end{equation*}
$$

$d s^{2}$ solves the Einstein vacuum field equations

$$
\begin{equation*}
R_{i j}-\frac{1}{2} R g_{i j}-\Lambda g_{i j}=0 \tag{3}
\end{equation*}
$$

with negative cosmological constant $\Lambda \stackrel{\text { def }}{=}-1 / \ell^{2}$, where ℓ in (2) is a positive constant. By our sign convention, the Ricci scalar curvature R in (3) is given by $R=6 / \ell^{2} \cdot d s_{0}^{2}$ in the introduction is therefore given by

$$
\begin{equation*}
d s_{0}^{2} \stackrel{d e f}{=} \frac{d r^{2}}{\frac{r^{2}}{\ell^{2}}-M}+r^{2} d \phi^{2} \tag{4}
\end{equation*}
$$

which by way of the transformation of variables

$$
\begin{equation*}
x=\phi, y=\ell / r>0 \tag{5}
\end{equation*}
$$

in case $M=o$ reduces to the Poincare metric

$$
\begin{equation*}
d s_{P}^{2} \stackrel{d e f .}{=} \ell^{2}\left(\frac{d x^{2}+d y^{2}}{y^{2}}\right) \tag{6}
\end{equation*}
$$

on H^{+}in (1). Specially for X_{r}, we choose

$$
\Gamma \stackrel{\text { def }}{=} \cdot\left\{\left.\left[\begin{array}{cc}
1 & 2 \pi n \tag{7}\\
0 & 1
\end{array}\right] \right\rvert\, n \in \mathbb{Z}\right\}=\left\{\gamma^{n} \mid n \in \mathbb{Z}\right\}
$$

for $\mathbb{Z}=$ set of whole numbers, $\gamma \stackrel{\operatorname{def}}{=} \cdot\left[\begin{array}{cc}1 & 2 \pi \\ 0 & 1\end{array}\right]$, where the linear fractional action of $S L(2, \mathbb{R})$ on H^{+}is restricted to Γ :

$$
\left[\begin{array}{cc}
1 & 2 \pi n \tag{8}\\
0 & 1
\end{array}\right] \cdot(x, y) \stackrel{\text { def. }}{=}(x+2 \pi n, y), n \in \mathbb{Z}
$$

which by (5) is consistent with the above Schwarzschild periodicity: $(x, y) \sim(x+2 \pi n, y)$.

Construction of the map $\tilde{\Phi}: T_{\mathrm{a}}^{+} \rightarrow X_{\Gamma}$; the main observation

The tractroid T_{a} of radius $a>o$ of interest is the surface of revolution about the y-axis of the tractrix curve parametrized as follows:

$$
\begin{equation*}
x(t) \stackrel{d e f .}{=} a e^{-t / a}, y(t) \stackrel{\operatorname{def} .}{=} a \log \left(e^{t / a}+\sqrt{e^{2 t / a}-1}\right)-a e^{-t / a} \sqrt{e^{2 t / a}-1} \tag{9}
\end{equation*}
$$

for $t \geq o . T_{a}$ is therefore the set of points $S(u, v)$ in \mathbb{R}^{3} given by
$S(u, v) \stackrel{\text { def. }}{=}(x(u) \cos v, x(u) \sin v, y(u)) \stackrel{\text { def. }}{=}\left(a e^{-u / a} \cos v, a e^{-u / a} \sin v, S(u)\right)$,
$S(u) \quad \stackrel{\text { def. }}{=} \mathrm{y}(\mathrm{u}) \stackrel{\text { def. }}{=} \operatorname{alog}\left(\mathrm{e}^{\frac{u}{a}}+\sqrt{\mathrm{e}^{2 w^{\prime} /}-1}\right)-\mathrm{ae}^{-\mathrm{w} / \mathrm{a}} \sqrt{\mathrm{e}^{2 \mathrm{w}^{\prime} /}-1}$
for $(u, v) \in \mathbb{R}^{2}$. Since $S(0, v)=(a \cos v, a \sin v, 0)$ (as $\left.S(0)=0\right)$,

$$
\begin{equation*}
T_{a}^{+} \stackrel{\text { def. }}{=}\left\{S(u, v) \in T_{a} \mid u>0\right\} \tag{11}
\end{equation*}
$$

is T_{a} minus points on the boundary circle $S(o, v)$, as mentioned in the introduction.

$S(0, v)$
Let $q: H^{+} \rightarrow X_{\Gamma}$ denote the quotient map that takes (x, y) to its Γ-orbit (x, y) in (8) and define $\Phi: H^{+} \rightarrow T_{a}^{+}$by

$$
\begin{equation*}
\Phi(x, y) \stackrel{\operatorname{def}}{=} S\left(\log \left(\frac{y}{a}+1\right), x\right) \tag{12}
\end{equation*}
$$

where we note that since $y, a>0, u=\log \left(\frac{y}{a}+1\right)>0 \Rightarrow$ indeed
$\Phi(x, y) \in T_{a}^{+}$by (11). Then $\tilde{\Phi}: T_{a}^{+} \rightarrow X_{\Gamma}$ is defined by the commutativity of the diagram

$$
\begin{equation*}
{ }_{q}^{+} \xrightarrow[X_{\Gamma}]{\Phi} T_{a}^{+} \text {that is } \tilde{\Phi} S((u, v)) \stackrel{\text { def. }}{=} \mathrm{q}\left(v, a\left(e^{u}-1\right)\right) \tag{13}
\end{equation*}
$$

for $u>0$. For $\tilde{(x, y)}=q(x, y)$ in X_{Γ} and $u=\log \left(\frac{y}{a}+1\right)>0$ again, $\quad a\left(e^{u}-1\right)=a\left(\frac{y}{a}+1-1\right)=y \Rightarrow p=S(u, x) \in T_{a}^{+} \quad$ such that $\tilde{\Phi}(p) \stackrel{\text { def }}{=} q(x, y)$, which shows that $\tilde{\Phi}$ is surjective. Finally, $\widetilde{\Phi}$ is also injective and thus indeed is a bijection. Namely, if $\quad p_{j}=S\left(u_{j}, v_{j}\right) \in T_{a}^{+}, j=1,2, \quad$ such that $\tilde{\Phi}\left(p_{1}\right)=\tilde{\Phi}\left(p_{2}\right)-$ ie. $\quad q\left(v_{1}, a\left(e^{u_{1}}-1\right)\right)=q\left(v_{2}, a\left(e^{u_{2}}-1\right)\right)$
(13)), then $v_{1}=v_{2}+2 \pi n, \quad a\left(e^{u_{1}}-1\right)=a\left(e^{u_{2}}-1\right)$ for some $n \in \mathbb{Z}(b y(8)) \Rightarrow u_{1}=u_{2}, \cos v_{1}=\cos v_{2}, \sin v_{1}=\sin v_{2} \Rightarrow S\left(u_{1}, v_{1}\right)=S\left(u_{2}, v_{2}\right)$ (by (10)); ie. $p_{1}=p_{2}$.

Discussion

The BTZ vacuum (or ground state) X_{Γ} has a single parabolic generator γ in (7). In [4], for example, a BTZ vacuum with two parabolic generators is considered - in addition to other QFT matters. It would be interesting to find, also, a concrete geometric realization of the latter vacuum - or that of higher dimensional BTZ black hole vacua. One could also discuss the naked singularity case where $M<0$.

Conclusion

The map Φ in (13) provides for a concrete, geometric, tractroid representation (or model) of the Euclidean BTZ vacuum X_{Γ} with Poincare metric in (6); Γ is given by (7). This result is the best possible in the sense that a general result of D.Hilbert [5] prevents the full mapping of all of T_{a} onto X_{Γ}. Our discussion proceeded at a fixed time $\tau=0$, in which case the black hole metric (2) was reduced to the 2 d spatial slice (4). One could also consider the 2d metric obtained by fixing the Schwarzschild variable ϕ in (2), and study the false vacuum decay for this 2 d black hole background. Compare the interesting references [6-8], for example, where the studies therein are of a quite different focus since the word "vacuum" here simply means that we take the black hole mass $\mathrm{M}=0$ in (2). In [6], for example, the effective potential is considered for various values of the black hole mass. Also here, we need the Schwarzschild variable ϕ to be non-fixed in order to derive the Poincare metric version (6) of (4) in case $M=0$, where (6) can actually be transformed to a metric on the tractroid. Thus issues regarding expectation values of quantum fluctuations and mass spectra, for example, do not arise in the present
context, where in fact the periodicity of ϕ, moreover, which leads to equation (8), is crucial for the main construction of the bijection Φ.

In addition to the 2 d vacuum black hole-tractroid correspondence that we have constructed, there is also a 2 d wormhole-catenoid correspondence. In the reference [9] a 2-dimensional section of a 3-dimensional wormhole is realized as a catenoid surface - the section is obtained by fixing a spherical polar coordinate value: $\theta=\pi / 2$.

Acknowledgment

Many thanks to Yaping Yuan for her careful and excellent assistance (as usual) in preparing this manuscript.

References

1. Bañados M , Teitelboim C , Zanelli J. Black hole in three-dimensional spacetime. Phys Rev Lett. 1992 Sep 28;69(13):1849-1851. doi: 10.1103/ PhysRevLett.69.1849. PMID: 10046331.
2. Carlip S, Teitelboim C. Aspects of black hole quantum mechanics and thermodynamics in 2+1 dimensions. Phys Rev D Part Fields. 1995 Jan

15;51(2):622-631. doi: 10.1103/physrevd.51.622. PMID: 10018515

3. Williams F. Remarks on the Patterson-Selberg zeta function, black hole vacua, and extremal CFT partition functions. Journal of Physics A: Math. and Theoretical. 2012; 45: 1-19.
4. Binosi D, Moretti V, Vanzo L, Zerbini S. Quantum scalar field on the massless (2+1) - dimensional black hole background. Phys Rev. 1999; 59: 104017.
5. Hilbert D. Ueber Flachen von Constanter Gaussscher Krummung. Trans Am Math Soc.1901; 2: 87-99.
6. Miyachi T, Soda J, False vacuum decay in a two-dimensional black hole spacetime. Phys Rev D. 2021; 103(8): 085009.
7. Shkerin A, Sibiryakov S. Black hole induced false vacuum decay from first principles. Journal of High Energy Physics. 2021; 11(197): 1-69.
8. He GG, Fan XY, Zhang FL, Robust violation of a multipartite Bell inequality from the perspective of a single-system game, Modern Physics Letters A. 2022; 37(12): 2250082.
9. Dandoloff R, Saxena A, Jensen B, Geometry induced potential on a 2d-section of a wormhole: Catenoid, Physical Rev A. 2010; 87: 014102.

Discover a bigger Impact and Visibility of your article publication with Peertechz Publications

```
Highlights
* Signatory publisher of ORCID
* Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
* Articles archived in worlds' renowned service providers such as Portico, CNKI, AGRIS,
    TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc
* Journals indexed in ICMJE, SHERPA/ROMEO, Google Scholar etc.
* OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
* Dedicated Editorial Board for every journal
* Accurate and rapid peer-review process
* Increased citations of published articles through promotions
* Reduced timeline for article publication
Submit your articles and experience a new surge in publication services
(https://www.peertechz.com/submission)
```

