
vv

193

Citation: Nardone P, Sonnino G (2022) A simple algorithm for GCD of polynomials. Ann Math Phys 5(2): 193-195 DOI: https://dx.doi.org/10.17352/amp.000065

https://dx.doi.org/10.17352/ampDOI:

M
A

T
H

E
M

A
T

IC
S

 A
N

D
P

H
Y

S
IC

S
 G

R
O

U
P

2689-7636ISSN:

Abstract

Based on the Bezout approach we propose a simple algorithm to determine the gcd of two polynomials that don't need division, like the Euclidean algorithm, or
determinant calculations, like the Sylvester matrix algorithm. The algorithm needs only n steps for polynomials of degree n. Formal manipulations give the discriminant or
the resultant for any degree without needing division or determinant calculation.

Research Article

A simple algorithm for GCD of

polynomials
Pasquale Nardone1* and Giorgio Sonnino2

1Physics Department, Free University of Brussels, 50 av F. D. Roosevelt, Brussels, 1050, Belgium

2Physics Department, International Solvay Institutes for Physics and Chemistry, Belgium

Received: 10 December, 2022
Accepted: 22 December, 2022
Published: 23 December, 2022

*Corresponding author: Pasquale Nardone, Physics
Department, Free University of Brussels, 50 av F. D.
Roosevelt, Brussels, 1050, Belgium, Tel: +32475840393;
E-mail:

Keywords: Bezout's identity; Polynomial remainder
sequence; Resultant; Discriminant

Copyright License: © 2022 Nardone P, et al. This
is an open-access article distributed under the
terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

https://www.peertechzpublications.com

Introduction

There exist different approaches to determining the

greatest common divisor (gcd) for two polynomials, most

of them are based on the Euclid algorithm [1] or matrix

manipulation [2,3], or subresultant technics [4]. All these

methods require long manipulations and calculations around

O(n2) for polynomials of degree n. Bezout identity could be

another approach. It ()nP x is a polynomial of degree n and

Qn(x) is a polynomial of degree at least n, the Bezout identity

says that ((), ())= () () () ()n n n ngcd P x Q x s x P x t x Q x where t(x) and

s(x) are polynomials of degree less then n. Finding s(x) and t(x)

requires also O(n2) manipulations. If we know that (0) 0nP

we propose here another approach that uses only a linear

combination of pn(x) and Qn(x) division by x to decrease the

degree of both polynomials by 1.

Me thod

Let's take two polynomials ()nP x ()nQ x :

() ()

=0 =0

()= ; ()=
n n

n k n k
n k n k

k k

P x p x Q x q x

with ()
0 0np and () 0n

np . The corresponding list of
coeffi cients is:

() () () () () () () ()
0 1 1 0 1 1={ , , , , } ; ={ , , , , }n n n n n n n n

n n n n n np p p p p q q q q q

Let's defi ne () () () ()
0 0= n n n n

n n nq p p q . If 0n , we can build two

new polynomials of degree n-1 by canceling the lowest degree
term and the highest degree term:

() ()
1 0 0

() ()
1

() = 1 / () ()

() = () ()

n n
n n n

n n
n n n n n

P x x q P x p Q x

Q x q P x p Q x
 (1)

If =0n then we replace ()nQ x it by ()nQ x :

() ()
0 0

()= ()

()= (() ())
n n

n n
n n n

P x P x

Q x x p Q x q P x

 (2)

This corresponds to the manipulation on the list of
coeffi cients:

(1) () () () ()
0 1 0 1

(1) () () () ()

=
if 0 [0, 1]

=

n n n n n
k k k

n
n n n n n

k n k n k

p q p p q
k n

q q p p q

 (3)

Note also that (1) (1)
1 0= =n n

n np q
 this will remains true at all

iterations ending with (0) (0)
0 0 1= =p q .

()
0

() () () () ()
0 1 0 1

=0
if =0 [1,]

=

n

n n n n n n
k k k

q
k n

q p q q p

 (4)

Note that the new ()
1 =0nq .

194

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics

Citation: Nardone P, Sonnino G (2022) A simple algorithm for GCD of polynomials. Ann Math Phys 5(2): 193-195 DOI: https://dx.doi.org/10.17352/amp.000065

In terms of list manipulation we have:

1

1

= [[] [] ,1]
if 0

= [[] [] , 1]
n n n n n

n
n n n n n

p Drop First q p First p q
q Drop Last q p Last p q

where First[list] and Last[list] take the fi rst and the
last element of the list respectively, while Drop[list,1] and
Drop[list,-1] drop the fi rst and the last element of the list

respectively. If =0n then we know that () () () ()
0 0 =0n n n n

n np q q p so

the list () ()
0 0

n n
n np q q p ends with 0 so the list manipulation is :

= [[] []]n n n n nq RotateRight First p q First q p

where RotateRight[list] rotate the list to the right
(RotateRight[{a,b,c}]={c,a,b}).

So we have the same Bezout argument, they gcd(Pn (x),Qn (x)).

must divide Pn-1 (x) and Qn-1 (x) or Pn (x) and ()nQ x . Repeating k

times the iteration, it must divide Pn-1 (x) and Qn-1 (x).

If we reach a constant: (0)
0 0()=P x p and (0) (0)

0 0 0()= =Q x q p

then ((), ())=1n ngcd P x Q x . If we reach, some stage j of iteration,

()=0n jP x or ()=0n jQ x then the previous stage j-1 contains
the gcd.

Repeating these steps decrease the degree of polynomials.
Reversing the process enables us to fi nd a combination of Pn

(x) and Qn (x) which gives a monomial xk and the polynomials
are co-prime, or we reach a 0-polynomial before reaching the
constant and Pn (x), Qn (x) have a nontrivial gcd.

Results

When dealing with numbe rs the recurrence could give
large numbers so we can normalize the polynomials by some
constant

() ()
1 1 0 0

() ()
1

()= () ()

()= () ()

n n
n n n n

n n
n n n n n n

P x x q P x p Q x

Q x q P x p Q x

 (5)

Choosing for example and such that the sum of the
absolute value of the coeffi cients of Pn-1 (x) and Qn-1 (x) are 1 :

11 (1)
1 =0
=

n n
n kk

p
 ,

11 (1)
1 =0
=

n n
n kk

q
 , or that the maximum of

the coeffi cients is always 1 : 1 (1)
1 = ()n

n kmax p
 , 1 (1)

1 = ()n
n kmax q
 .

For example

8 6 5 4 3 2
8

8 7 4 3 2
8

8

8

()= 4 4 29 20 24 16 48
()= 3 7 21 6 18

={48,16,24,20, 29,4, 4,0,1}
={0, 18, 6, 21, 7,0,0,3,1}

P x x x x x x x x
Q x x x x x x x

p
q

(6)

and let's use the ``max" normalization. The fi rst iteration
says that gcd must divide P7 (x) and Q7 (x):

7 8 7 8 8()= 121 () and ()=148(() ())P x xQ x Q x P x Q x

7 6 3
2

7

7 6 5 4 3 2

7

2 6()=
21 7 3 7 7

11 41 5 17()= 1
16 12 12 24 48 8 24

x x x xP x x

x x x x x x xQ x

then gcd divide

6 5 4 3 2

6

6 5 4 2
3

6

2 2 11 67 9()=
78 13 13 13 78 13

11 33 4 3()=
4 5 10 20 5 10

x x x x xP x x

x x x x xQ x x

then gcd divide

5 4 3
2

5

5 4 3 2

5

22 8 31 115 11()=
57 19 19 57 19
32 19 155 151 12()=
187 187 187 187 17

x x x xP x x

x x x xQ x x

etc.. fi nally gcd divide

3 2
3

3
2

3

()= 3 3

()= 1
3 3

P x x x x

x xQ x x

the next step will give 2()=0Q x (3 33 () ()=0Q x P x), with
the last step:

2 8 4 3 2

3 2
8 5 4 3 2

2 8 83 4 2

88 50 229 143()= ()
37863 63 378

704 400 164 100 143() = 3 3
378189 189 189 189

6 1 16 8 4()= () () 3 =0

P x P x
xx x x

Q x x x x
xx x x x

Q x P x x Q x x
x xx x x

so we have 3 2
8 8((), ())= 3 3gcd P x Q x x x x

Doing the algorithm on formal polynomials gives
automatically the resultant or the discriminant of Pn (x) and Qn

(x).

For example for the gcd of Pn (x) and ()nP x for formal
polynomials (we always cancel the term xm-1 by translation) we
have:

3 2
3 3 3()= ()= () =3P x x p x q Q x P x x p

gives after 3 iterations the well-known discriminant
3 2(4 27)p q , and the Bezout expression is:

2 2 3 2 2 3 2 3
3 3

3 2 2
3 3

(9 2) () (3 (2 9) 2) ()= (4 27)

3 (2 3) () (3)(2 3) ()=(4 27)

p qx p P x pqx p q x p q Q x p q x

p px q P x px q px q Q x p q x

For the general polynomial of degree 4 :

4 2 3
4 4()= ()=4 2P x x p x q x r Q x x p x q

in 5 iterations we have the discriminant is [5]

3 2 2 2 4 4 3 2=256 128 144 27 16 4disc r p r pq r q p r p q

A more formal case [5] is:

 1()= ; ()= () =m m
m m mP x x a x b Q x P x m x a

so we have successively:

() ()
0 1 0 1[0,]: = and =m k k k m k k

k m k mk m p b a q a m (7)

so

195

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics

Citation: Nardone P, Sonnino G (2022) A simple algorithm for GCD of polynomials. Ann Math Phys 5(2): 193-195 DOI: https://dx.doi.org/10.17352/amp.000065

() () () ()
0 0

(1) 2
0 2 1

(1)
0 1

= ; =1 ; = ; =0; =

=
[0, 1]

=

m m m m
m m m

m k k k
k m m

m k k
k m

p b p q a q a

p a mb a
k m

q a m

 (8)

then

(1) 2 (1) (1) (1) 2
0 1 0 1 1

(2) 2
3 2

(2) 2 2
0 2

= ; = ; = ; = ; = (1)

= (1)
[0, 2]

= (1)

m m m m
m m m

m k k
k m m

m k k
k m

p a p a q a q m m a

p mab m a
k m

q m a m b

 (9)

this structure will repeat, indeed, if

()
1

()
0

=
[0,]

=

m j k k
k j m j j m j

m j k k
k j j m j

p A B
k m j

q B C

 (10)

then ()
0 =0m jp , () =m j

m j jp B
 , ()

0 =m j
jq B , () =m j

m j jq C
 , then

2=m j jB and the next coeffi cients are:

(1) 2
2 1

(1) 2
0 1

=
[0, 1]

=

m j k k
k j j m j j m j

m j k k
k j j j m j

p B A B
k m j

q B C A

 (11)

so we have the recurrence 1 =j j jA B A , 2
1 =j jB B and

1 =j j jC C A from =2j (with 2 =A mab , 2
2 =(1)B m a , 2

2 =C m b)

up to = 2j m . At = 1j m we arrive then to:

(1)
1 0 1 1

(1)
1 0 1 1

=
[0,1]

=

k k
k m m

k k
k m m

p A B
k

q B C

 (12)

with (1)
0 1= mp A , (1)

1 1= mp B , (1)
1 1= mq C and (1)

0 1= mq B so
2

1 1 1 1= m m mC A B and the last iteration gives the constant:

(0) 2
0 1 1 1
(0) 2
0 1 1 1

=
=

m m m

m m m

p B A C
q C A B

 (13)

the recurrence on jB , jA and jC gives (2j)

2 22 1 22 2= (1) ; = (1)

j j

j jB m a A m a b m a

221 2=(1) (1)

j jj j j
jC m m a b m a

so the fi nal constant term is

 2 12 1 2 1 1(1) (1)
m mm m m m m mm a m b m p

we can factorize the constant and the discriminant is then
[5].

1 1(1)m m m mm b m a (14)

Discussion

The algorithm developed here could be used for formal
or numerical calculation o f the gcd of two polynomials, or
the discriminant and the resultant. It doesn't use matrix
manipulation nor determinant calculations and for polynomials
of order n, it takes n steps to achieve the goal. It provide also
the two polynomials needed for Bezout identity.

Supplementary information

Data sharing is not applicable to this article as no datasets
wer e generated or analyzed during the current study.

(Appendix)

References
1. Knuth DE. The Art of Computer Programming. Addison-Wesley, Reading,

Mass. 1969; 2.

2. Bini DA, Boito P. Structured matrix-based methods for polynomial
-gcd: analysis and comparisons. In Proceedings of the 2007 international
symposium on Symbolic and algebraic computation (ISSAC '07). Association
for Computing Machinery, New York, NY. USA. 9-16. 2007. DOI: https://doi.
org/10.1145/1277548.1277551

3. Fazzi A, Guglielmi N, Markovsky I. Generalized algorithms for the
approximate matrix polynomial GCD of reducing data uncertainties with
application to MIMO system and control. Journal of Computational and
Applied Mathematics. 2021; 393: 113499. https://doi.org/10.1016/j.
cam.2021.113499

4. Brown WS, Traub JF. On Euclid's Algorithm and the Theory of Subresultants.
J ACM. 1971; 18: 505-514. DOI:https://doi.org/10.1145/321662.321665

5. http://www2.math.uu.se/ svante/papers/sjN5.pdf

https://www.peertechzpublications.com/articles/Appendix-AMP-5-165.docx

