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Abstract

Based on the Bezout approach we propose a simple algorithm to determine the gcd of two polynomials that don't need division, like the Euclidean algorithm, or 
determinant calculations, like the Sylvester matrix algorithm. The algorithm needs only n steps for polynomials of degree n. Formal manipulations give the discriminant or 
the resultant for any degree without needing division or determinant calculation. 
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Introduction

There exist different approaches to determining the 

greatest common divisor (gcd) for two polynomials, most 

of them are based on the Euclid algorithm [1] or matrix 

manipulation [2,3], or subresultant technics [4]. All these 

methods require long manipulations and calculations around 

O(n2) for polynomials of degree n. Bezout identity could be 

another approach. It ( )nP x  is a polynomial of degree n and 

Qn(x) is a polynomial of degree at least n, the Bezout identity 

says that ( ( ), ( ))= ( ) ( ) ( ) ( )n n n ngcd P x Q x s x P x t x Q x  where t(x) and 

s(x) are polynomials of degree less then n. Finding s(x) and t(x) 

requires also O(n2) manipulations. If we know that (0) 0nP   

we propose here another approach that uses only a linear 

combination of pn(x) and Qn(x) division by x to decrease the 

degree of both polynomials by 1.

Me thod

Let's take two polynomials ( )nP x  ( )nQ x : 

( ) ( )

=0 =0

( )= ; ( )=
n n

n k n k
n k n k

k k

P x p x Q x q x 

with ( )
0 0np   and ( ) 0n

np  . The corresponding list of 
coeffi cients is: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 1 0 1 1={ , , , , } ; ={ , , , , }n n n n n n n n

n n n n n np p p p p q q q q q  

Let's defi ne ( ) ( ) ( ) ( )
0 0= n n n n

n n nq p p q  . If 0n  , we can build two 

new polynomials of degree n-1 by canceling the lowest degree 
term and the highest degree term: 

 



 




( ) ( )
1 0 0

( ) ( )
1

( ) = 1 / ( ) ( )

( ) = ( ) ( )

n n
n n n

n n
n n n n n

P x x q P x p Q x

Q x q P x p Q x
                 (1)

If =0n  then we replace ( )nQ x  it by ( )nQ x : 

( ) ( )
0 0

( )= ( )

( )= ( ( ) ( ))
n n

n n
n n n

P x P x

Q x x p Q x q P x





                   (2)

This corresponds to the manipulation on the list of 
coeffi cients:

( 1) ( ) ( ) ( ) ( )
0 1 0 1

( 1) ( ) ( ) ( ) ( )

=
if 0 [0, 1]

=

n n n n n
k k k

n
n n n n n

k n k n k

p q p p q
k n

q q p p q


 



 


   
 

            (3)

Note also that ( 1) ( 1)
1 0= =n n

n np q 
    this will remains true at all 

iterations ending with (0) (0)
0 0 1= =p q  .

( )
0

( ) ( ) ( ) ( ) ( )
0 1 0 1

=0
if =0 [1, ]

=

n

n n n n n n
k k k

q
k n

q p q q p 

 





             (4)

Note that the new ( )
1 =0nq .
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In terms of list manipulation we have: 

1

1

= [ [ ] [ ] ,1]
if 0

= [ [ ] [ ] , 1]
n n n n n

n
n n n n n

p Drop First q p First p q
q Drop Last q p Last p q






 

 

where First[list] and Last[list] take the fi rst and the 
last element of the list respectively, while Drop[list,1] and 
Drop[list,-1] drop the fi rst and the last element of the list 

respectively. If =0n  then we know that ( ) ( ) ( ) ( )
0 0 =0n n n n

n np q q p  so 

the list ( ) ( )
0 0

n n
n np q q p  ends with 0 so the list manipulation is : 

= [ [ ] [ ] ]n n n n nq RotateRight First p q First q p

where RotateRight[list] rotate the list to the right 
(RotateRight[{a,b,c}]={c,a,b}).

So we have the same Bezout argument, they gcd(Pn (x),Qn (x)). 

must divide Pn-1 (x) and Qn-1 (x) or Pn (x) and ( )nQ x . Repeating k 

times the iteration, it must divide Pn-1 (x) and Qn-1 (x).

If we reach a constant: (0)
0 0( )=P x p  and (0) (0)

0 0 0( )= =Q x q p  

then ( ( ), ( ))=1n ngcd P x Q x . If we reach, some stage j of iteration, 

( )=0n jP x  or ( )=0n jQ x  then the previous stage j-1 contains 
the gcd.

Repeating these steps decrease the degree of polynomials. 
Reversing the process enables us to fi nd a combination of Pn 

(x) and Qn (x) which gives a monomial xk and the polynomials 
are co-prime, or we reach a 0-polynomial before reaching the 
constant and Pn (x), Qn (x) have a nontrivial gcd.

Results

When dealing with numbe rs the recurrence could give 
large numbers so we can normalize the polynomials by some 
constant 

 
 

( ) ( )
1 1 0 0

( ) ( )
1

( )= ( ) ( )

( )= ( ) ( )

n n
n n n n

n n
n n n n n n

P x x q P x p Q x

Q x q P x p Q x





 






             (5)

Choosing for example  and  such that the sum of the 
absolute value of the coeffi cients of Pn-1 (x) and Qn-1 (x) are 1 : 

11 ( 1)
1 =0
=

n n
n kk

p  
    , 

11 ( 1)
1 =0
=

n n
n kk

q  
    , or that the maximum of 

the coeffi cients is always 1 : 1 ( 1)
1 = ( )n

n kmax p  
 , 1 ( 1)

1 = ( )n
n kmax q  
 .

For example 

8 6 5 4 3 2
8

8 7 4 3 2
8

8

8

( )= 4 4 29 20 24 16 48
( )= 3 7 21 6 18

={48,16,24,20, 29,4, 4,0,1}
={0, 18, 6, 21, 7,0,0,3,1}

P x x x x x x x x
Q x x x x x x x

p
q

       


    
  
    

(6)

and let's use the ``max" normalization. The fi rst iteration 
says that gcd  must divide P7 (x) and Q7 (x): 

7 8 7 8 8( )= 121 ( ) and ( )=148( ( ) ( ))P x xQ x Q x P x Q x 

7 6 3
2

7

7 6 5 4 3 2

7

2 6( )=
21 7 3 7 7

11 41 5 17( )= 1
16 12 12 24 48 8 24

x x x xP x x

x x x x x x xQ x


     


        

then gcd divide 

6 5 4 3 2

6

6 5 4 2
3

6

2 2 11 67 9( )=
78 13 13 13 78 13

11 33 4 3( )=
4 5 10 20 5 10

x x x x xP x x

x x x x xQ x x


     


      

then gcd divide 

5 4 3
2

5

5 4 3 2

5

22 8 31 115 11( )=
57 19 19 57 19
32 19 155 151 12( )=
187 187 187 187 17

x x x xP x x

x x x xQ x x


    


      

etc.. fi nally gcd divide 

3 2
3

3
2

3

( )= 3 3

( )= 1
3 3

P x x x x

x xQ x x

   



  


the next step will give 2( )=0Q x  ( 3 33 ( ) ( )=0Q x P x ), with 
the last step: 

2 8 4 3 2

3 2
8 5 4 3 2

2 8 83 4 2

88 50 229 143( )= ( )
37863 63 378

704 400 164 100 143( ) = 3 3
378189 189 189 189

6 1 16 8 4( )= ( ) ( ) 3 =0

P x P x
xx x x

Q x x x x
xx x x x

Q x P x x Q x x
x xx x x

  
     

 
             

 
    
           
    

so we have 3 2
8 8( ( ), ( ))= 3 3gcd P x Q x x x x  

Doing the algorithm on formal polynomials gives 
automatically the resultant or the discriminant of Pn (x) and Qn 

(x).

For example for the gcd of Pn (x) and ( )nP x   for formal 
polynomials (we always cancel the term xm-1 by translation) we 
have: 

3 2
3 3 3( )= ( )= ( ) =3P x x p x q Q x P x x p  

gives after 3 iterations the well-known discriminant 
3 2(4 27 )p q , and the Bezout expression is: 

2 2 3 2 2 3 2 3
3 3

3 2 2
3 3

(9 2 ) ( ) (3 (2 9 ) 2 ) ( )= (4 27 )

3 (2 3 ) ( ) ( 3 )(2 3 ) ( )=(4 27 )

p qx p P x pqx p q x p q Q x p q x

p px q P x px q px q Q x p q x

      

    

For the general polynomial of degree 4 : 

4 2 3
4 4( )= ( )=4 2P x x p x q x r Q x x p x q    

in 5 iterations we have the discriminant is [5] 

3 2 2 2 4 4 3 2=256 128 144 27 16 4disc r p r pq r q p r p q    

A more formal case [5] is: 

  1( )= ; ( )= ( ) =m m
m m mP x x a x b Q x P x m x a

so we have successively: 

( ) ( )
0 1 0 1[0, ]: = and =m k k k m k k

k m k mk m p b a q a m          (7)

so 
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( ) ( ) ( ) ( )
0 0

( 1) 2
0 2 1

( 1)
0 1

= ; =1 ; = ; =0; =

=
[0, 1]

=

m m m m
m m m

m k k k
k m m

m k k
k m

p b p q a q a

p a mb a
k m

q a m
  

 


 




 

    
 

             (8)

then 

( 1) 2 ( 1) ( 1) ( 1) 2
0 1 0 1 1

( 2) 2
3 2

( 2) 2 2
0 2

= ; = ; = ; = ; = ( 1)

= ( 1)
[0, 2]

= ( 1)

m m m m
m m m

m k k
k m m

m k k
k m

p a p a q a q m m a

p mab m a
k m

q m a m b

 

 

   
  


 




    

    
  

  (9)

this structure will repeat, indeed, if 

( )
1

( )
0

=
[0, ]

=

m j k k
k j m j j m j

m j k k
k j j m j

p A B
k m j

q B C

 

 


  




   
 

           (10)

then ( )
0 =0m jp  , ( ) =m j

m j jp B
 , ( )

0 =m j
jq B  , ( ) =m j

m j jq C
 , then 

2=m j jB  and the next coeffi cients are: 

( 1) 2
2 1

( 1) 2
0 1

=
[0, 1]

=

m j k k
k j j m j j m j

m j k k
k j j j m j

p B A B
k m j

q B C A

 

 

 
   

 
 

     


            (11)

so we have the recurrence 1 =j j jA B A  , 2
1 =j jB B   and 

1 =j j jC C A  from =2j  (with 2 =A mab , 2
2 =( 1)B m a , 2

2 =C m b ) 

up to = 2j m  . At = 1j m   we arrive then to: 

(1)
1 0 1 1

(1)
1 0 1 1

=
[0,1]

=

k k
k m m

k k
k m m

p A B
k

q B C
 
 

 

 

  
 

             (12)

with (1)
0 1= mp A  , (1)

1 1= mp B  , (1)
1 1= mq C   and (1)

0 1= mq B   so 
2

1 1 1 1= m m mC A B     and the last iteration gives the constant: 

(0) 2
0 1 1 1
(0) 2
0 1 1 1

=
=

m m m

m m m

p B A C
q C A B

  

  

  



                (13)

the recurrence on jB , jA  and jC  gives ( 2j  ) 

   
2 22 1 22 2= ( 1) ; = ( 1)

j j

j jB m a A m a b m a
  

  

 
221 2=( 1) ( 1)

j jj j j
jC m m a b m a

  

so the fi nal constant term is 

 2 12 1 2 1 1( 1) ( 1)
m mm m m m m mm a m b m p
        

we can factorize the constant and the discriminant is then 
[5]. 

1 1( 1)m m m mm b m a                 (14)

Discussion

The algorithm developed here could be used for formal 
or numerical calculation o f the gcd of two polynomials, or 
the discriminant and the resultant. It doesn't use matrix 
manipulation nor determinant calculations and for polynomials 
of order n, it takes n steps to achieve the goal. It provide also 
the two polynomials needed for Bezout identity.

Supplementary information

Data sharing is not applicable to this article as no datasets 
wer e generated or analyzed during the current study.
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