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Introduction

In the past few decades, global coral reefs have been 
threatened by a wide range of human activities such as 
accelerated industrialization, urbanization, agriculture, and 
natural phenomena including storms and biological stressors 
[1-4]. However, global warming-induced coral bleaching and 
mortalities due to fast increases in temperatures that pass coral 
species’ thermal tolerance have become the most prominent 
concern [5-7]. Such temperature anomalies have destroyed 
coral reefs worldwide, particularly during the four-year 
period from 2014 to 2017 [6-12]. For example, mass bleaching 
happened in the Great Barrier Reef, Australia, in 2016 and 2017 

[7,8] and in the central Indian Ocean in 2015 and 2016 [13] 
including the Persian Gulf [14-18].

As the warmest coral sea [19], the Persian Gulf has been 
known for its thermotolerant corals, which exhibit the highest 
thermal tolerance limits known globally [20] and has been 
frequently considered one of the coral reef refugia against global 
warming by the end of the century [21,22]. Despite that, coral 
reefs in the Persian Gulf have frequently encountered massive 
bleaching and mortality events, especially in the southern part 
[15,23,24], where temperatures exceeding 35°C for a few weeks 
initiate bleaching [25,26]. These high temperatures occur 
due to the shallow depth (mean < 30 m) of the Persian Gulf, 
restricted exchange with the Indian Ocean, and the hyper-arid 
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nature of its surrounding environment. Some coral reefs of the 
southern Persian Gulf have experienced three consecutive coral 
bleaching and mortality events during 2010–2012 [27]. Severe 
bleaching has led to mass mortality of the reef-building corals 
of the Persian Gulf [14,28,29]. In particular, reports from the 
southern Persian Gulf show post-bleaching mortality events 
with different intensities in the late 1970s, 1996, 1998, 2002, 
2010, 2011, 2012, and 2017 [15,24,27,30,31].

In the northern Persian Gulf, where bleaching threshold 
temperatures are at least 1.5℃ to 2.5℃ lower than the southern 
part, bleaching and mortality events were reported in 2012 [29], 
2007, and 2017, with severe long-term consequence [14,16,18]. 
Here, we report four back-to-back bleaching and mortality 
events at four sites on two Iranian islands, Hormuz and Larak 
Islands, during the period 2014–2017. This is to our knowledge 
the fi rst time in the history of modern coral reefs that some 
reefs have experienced four consecutive bleaching events.

Materials & methods

Study sites

Two major reef sites of Hormuz Island, located in the 
south (known as the Red Soil, H-RS; 27°01’N, 56°27’E) and 
in the east (H-E; 27°03’N, 56°30’E) and two sites on Larak 
Island, at the north of the island (L-N; 26°88’N, 56°35’E) and 
at the southwest (L-SW; 26°49’N, 56°18’E) were chosen. The 
2012 mass bleaching was previously studied and recorded at 
both the Hormuz Island and L-SW site of Larak Island [29]. 
The composition of coral taxa was different among sites and 
faced various stressors in the past [28,29,32,33]. Turbidity is 
a natural characteristic of all sites, particularly at the sites of 
Hormuz Island. The most turbid site is H-RS, where horizontal 
visibility declines to < 2 meters. In addition, water currents at 
the H-E site are very strong so that it even made it diffi cult for 
us to conduct this research. The depth of corals at all sites was 
less than 10 m.

Survey method

At each site in each year, eight belt transects of 20m*1 m 
were randomly selected and photographed/recorded. The coral 
colonies inside each transect were identifi ed to the genus level. 
Each colony was categorized based on its bleaching status as 
unbleached or Healthy (H) if there was no sign of bleaching, 
moderately bleached (M) if it was bleached < 50%, or severely 
bleached (S) if it was bleached for > 50%. Each coral colony was 
identifi ed based on its mortality status as one of the following 
categories: 1) 0%–20%; 2) 21%–40%; 3) 41%–60%; 4) 61%–
80%, and 5) 81%–100%. Mean abundance of coral colonies at 
each site was calculated based on the average number of coral 
colonies per transect (n= 8).

Statistical analysis

All statistical analysis were performed in RStudio software 
(RStudio, Boston, United States). Bleaching rate, mortality rate, 
and abundance of corals at the study sites in 2014–2017 were 
assessed using a three-way ANOVA. For all the aforementioned 
parameters, data were averaged per site (n = 8 transects). 
The normality of the residuals was verifi ed with a Shapiro–

Wilk’s test and the homogeneity of variances was tested using 
Levene’s test. A Tukey-adjusted pairwise comparison between 
years or between bleaching/mortality categories at each year 
at each site was applied as a post hoc test when the ANOVA 
analysis showed a signifi cant effect.

Results

There were signifi cant differences among the three 
bleaching categories in each year and for each bleaching 
category among years for each site (Table 1). There were 
four distinguishable bleaching patterns observed at the 
sites (Figure 1, Table 2). At site H-E, about 69% of the coral 
colonies were unbleached in 2014 while in 2017 the percent 
of unbleached coral colonies dropped to < 20%. In 2015, the 
percent of moderately bleached corals rose from < 20% in 2014 
to about 78% and remained almost constant in 2016 and 2017. 
However, the percent of severely bleached colonies, which was 
< 15% in the fi rst there years, signifi cantly increased in 2017. 
At site H-RS, in all four years, the percent of severely bleached 
colonies was signifi cantly higher than the other two categories 
and the percent of moderately bleached coral colonies was 
signifi cantly higher than that of healthy (unbleached) corals 
in 2015 and 2017, and numerically higher in 2014 and 2016. 
None of the bleaching categories showed a difference between 
years. At site L-N, the percent of unbleached coral colonies 
was about 5% in 2014 and reached 0 in the following years. In 
2014, there was no signifi cant difference between the percent 
of moderately and severely bleached corals (Table 1). However, 
in the following two years, moderately bleached corals reached 
a signifi cantly higher proportion and in 2017 the percent of 
severely bleached corals increased to about 78%, which was 
signifi cantly higher than the percent of moderately bleached 
corals. The bleaching pattern at L-SW was similar to that of 
L-N with one major difference: the differences between the 
proportion of moderately and severely bleached corals in 2014, 
2015, and 2016 were non-signifi cant. 

Bleaching intensity for the majority of coral genera under 
consecutive bleaching events signifi cantly increased in 2017 
compared to previous years so that coral genera that were 
mainly moderately bleached in the fi rst three years were 
severely bleached in 2017 (Figure S1). Dipsastraea at the site 
H-RS, whose whole population was severely bleached in the 
previous three years, showed a signifi cant reduction in the 
percent of severely bleached corals without any increase in the 
percent unbleached corals (Figure S1).

There were signifi cant differences among the mortality 
categories in each year and for each bleaching category among 
years for each site (Table 3). Mortality remained low at H-E 

Table 1: Three-way ANOVA analysis of coral bleaching at the study sites from 2014 
to 2017.

Df Sum Sq Mean Sq F value Pr(>F)

Bleaching categories 2 11.445 5.723 296.39 0.000 ***

Site : year 9 0 0 0 1.000

Site : bleaching categories 6 7.965 1.328 68.76 0.000 ***

Year : bleaching categories 6 4.861 0.81 41.96 0.000 ***

Year : bleaching categories: site 18 4.748 0.264 13.66 0.000 ***
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Figure 1: Bleaching patterns of corals at the study sites shown based on percent mean relative abundance. H = healthy (unbleached), M = moderately bleached, and S 
= severely bleached. Signifi cant differences in percent healthy, moderately, and severely bleached corals between years are shown with small letters, capital letters, and 
numbers, respectively. Similar letters/numbers mean no signifi cant difference. Wherever there are no letters/numbers, it means there was no signifi cant difference for 
that category between years (e.g., all bleaching categories at H-E). Bar values represent means and error bars represent the standard error of the mean. The signifi cant 
differences between bleaching categories are presented in Table 2.

Table 2: Pairwise comparisons between percent mean abundance three bleaching 
categories in each year at each studied site. H = healthy, M = moderately bleached, 
and S = severely bleached. Signifi cant differences are shown with asterisks.

H-E

2014 H M S

H * *

M

2015 H M S

H *

M *

2016 H M S

H *

M *

2017 H M S

H * *

M *

H-RS

2014 H M S

H *

M *

2015 H M S

H * *

M *

2016 H M S

H *

M *

2017 H M S

H * *

M *

L-N

2014 H M S

H * *

M

2015 H M S

H *

M *

2016 H M S

H * *

M *

2017 H M S

H *

M *

L-SW

2014 H M S

H *

M

2015 H M S

H * *

M

2016 H M S

H * *

M

2017 H M S

H *

M *
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and H-RS with no signifi cant difference between mortality 
categories in each year or for each mortality category between 
years (Figure 2, Table 4). Similarly, mortality rates at L-N and 
L-SW were low with no signifi cant difference except in 2017, 
when abundance of colonies with 81–100% mortality was 
signifi cantly higher than the other categories (Table 4). 

The coral genera mainly showed limited mortality and 
many of them showed signs of mortality in just one year 
(Figure S2). For example, almost all Acropora colonies at the 
site L-N that were recorded with minimal mortality in the fi rst 
three years showed 81%-100% mortality in 2017. Acropora at 
the site L-SW and Porites at the site L-N showed signifi cant 
increases in percent coral colonies that were severely bleached 
from 2014 toward 2017 (Figure S2).

The abundance of coral colonies at none of the sites 
showed any signifi cant difference between years, except for 
L-N, where the abundance of corals signifi cantly declined in 
2017 compared to 2015 (Figure 3). The majority of coral genera 
did not show signifi cant changes. Those genera were mainly 
limited to < 5 colonies per transect per year at all sites (Figure 

S3). Favites from the site H-RS that comprised 15 colonies per 
transect in 2014 declined to almost 0 in 2017 (only 3 colonies 
in 8 transects; Figure S3). Porites at the site L-N declined 66% 
in 2017 compared to 2014. Acropora at the site L-N and Porites 
at the site L-SW showed signifi cant increases in 2015 and 
2016 compared to the previous years, respectively; however, 
they both declined by approximately 50% in the following year 
(signifi cantly for Acropora and non-signifi cantly for Porites; 
Figure S3). The abundance of Dipsastraea at the site L-SW 
showed signifi cant increases in 2015 and 2016 compared to 
previous years, but a non-signifi cant decline in 2017 (Figure 
S3).

Discussion

To the best of our knowledge, this is the fi rst time in the 
history of modern coral reefs that four consecutive bleaching 
events have been reported. It must be taken as a serious 
warning message for all the world’s coral reefs because fi rst, 
the Persian Gulf has been considered a coral reef refugium, 
where corals could survive climate change by 2100 [21,22]. 
Secondly, these corals are known to encompass some of 
the most thermotolerant reef-building corals [19,34] and 
associated endosymbiotic algae [35-38] and face the highest 
SST records in the world [14,39]. Third, seawater turbidity, 
which may reduce the severity of bleaching [40-45] is an 
intrinsic characteristic of the Persian Gulf including our study 
sites, particularly on Hormuz Island [28,29]. Fourth, strong 
water currents that were suggested to ameliorate the negative 
effects of thermal stress on corals [45-47], were present at the 
site H-E. Conversely, our data question such predictions and 
show that neither the thermotolerance of the corals and their 
symbionts nor the natural turbidity and strong water currents 
could protect coral reefs of the Persian Gulf. It was suggested 

Table 3: Three-way ANOVA analysis of coral mortality at the study sites from 2014 
to 2017.

Df Sum Sq Mean Sq F value Pr(>F)

Site 3 5.4 1.793 7.896 0.000 ***

Year 3 16.8 5.587 24.601 0.000 ***

Mortality categories 4 11.7 2.927 12.887 0.000 ***

Site : Year 9 15.9 1.767 7.78 0.000 ***

Site : mortality categories 12 13 1.085 4.777 0.000 ***

Year : status 12 35.8 2.987 13.15 0.000 ***

Site : year : mortality categories 36 39.1 1.087 4.787 0.000 ***

Figure 2: Mortality patterns of corals at the study sites shown based on percent mean relative abundance (i.e., %). Bar values represent means and error bars represent the 
standard error of the mean. Signifi cant differences in each mortality category between years are shown with small letters. Similar letters mean no signifi cant difference. The 
signifi cant differences between mortality categories in each year are presented in Table 4.
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that the Persian Gulf will be the last place where coral reefs will 
face annual severe bleaching [21]. However, our study warns 
that the coral reefs of the Persian Gulf may be among the fi rst 
reefs in the world to disappear. Mass coral bleaching events 
have been frequently reported from the Persian Gulf in the past 
three decades [15,24,27,30,31]. Three back-to-back bleaching 
events have happened before this in the southern Persian 
Gulf in 2010, 2011, and 2012 [27]. However, it seems that the 
northern Persian Gulf is becoming a major bleaching hotspot.

The four consecutive bleaching events in the northern 
Persian Gulf happened just one year after the 2012 massive 
bleaching that resulted in the bleaching of 84% of the corals 
[29]. For example, 100% of the corals at H-E were to some 
degree bleached in 2012. On the other hand, in 2014, 69% of 

the corals at H-E did not show any sign of bleaching unlike the 
other three sites where at best <15% of their coral communities 
were unbleached. This suggests that reef-building corals at H-E 
(and likely other sites) managed to recover fast from the 2012 
bleaching. Fast recovery may be a characteristic of the Persian 
Gulf corals, particularly at Hormuz Island because despite four 
consecutive bleaching events, there was no increase in coral 
mortality intensity and decline in coral abundances at H-E 
and H-RS. Another reason may be that the intensities of the 
bleaching events were not much higher than the maximum 
monthly mean temperatures of the sites for a long enough time 
to kill the corals. This needs to be further studied. However, 
the back-to-back bleaching events from 2014 to 2017 left 
almost no unbleached coral colony at none of the study sites 
(except a few massive Porites colonies at H-E) by the end of 
the 2017 bleaching. In fact, at all sites, except H-E, 73%-86% 
of the coral colonies were severely bleached. Even the percent 
of severely bleached corals signifi cantly increased at H-E in 
2017. The corals at the L-N and L-SW sites, which did not show 
mortality in the fi rst three years, showed signifi cant increases 
in percent of coral colonies with 81–100% mortality in 2017. 
This confi rms previous studies that suggested consecutive 
bleaching events can lead to coral reef degradation because 
they do not give the bleached corals enough time to recover 
and produce larvae in order to return the reefs to their original, 
pre-bleached state [27,48]. Bleaching events may have long-
term dramatic impacts on coral reef ecosystems and services 
that can be observed years later [14,49-51].

The bleaching pattern observed at H-E was different from 
the other study sites. The corals at H-E survived the bleaching 
in 2014 so that only 31% of the corals were bleached and by the 
end of the 2017, only 34% of the corals were severely bleached 

Table 4: Pairwise comparisons between percent mean abundance of fi ve mortality 
categories in 2017 at L-N and L-SW. Signifi cant differences are shown with asterisks. 
There was no signifi cant difference at H-E and H-RS in any year or at L-N and L-SW in 
2014, 2015, and 2016.

L-N

2017 1%-20% 21%-40% 41%-60% 61%-80% 81%-100%

1%-20% *

21%-40% *

41%-60% *

61%-80% *

L-SW

2017 1%-20% 21%-40% 41%-60% 61%-80% 81%-100%

1%-20% *

21%-40% *

41%-60% *

61%-80% *

Figure 3: Mean abundance of coral colonies at the study sites. Signifi cant differences between years are shown with small letters. Wherever there are no letters, it means 
there was no signifi cant difference for that category between years. Similar letters mean no signifi cant difference. Bar values represent means and error bars represent the 
standard error of the mean.
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(against 73%-86% at other sites). One reason could be the fact 
that the dominant coral genus at H-E is the massive Porites, 
which accounted for > 85% of the coral cover [28]. In other sites, 
massive Porites was not the dominant genus. Massive Porites 
species are among the most tolerant reef-building coral species 
against elevated temperatures [52,53]. Some studies suggested 
that bleaching events may increase the thermotolerance 
capacity of the corals via acclimation/adaptation [54-56]. 
However, that seems to be very unlikely here (Figure 1) perhaps 
due to the limited capacity of tolerant corals to extreme heat 
stress [57]. In 2012, an elevated temperature-related White Mat 
Disease infected 96% all the Porites colonies and killed 58% of 
all Porites tissues at H-E [28]. By 2017, bleaching severity had 
increased; the most likely reason behind less severe bleaching 
at H-E compared to other sites is that the majority of the coral 
colonies that were vulnerable to global warming-induced 
bleaching died and the most tolerant colonies survived. Such 
huge intercolonial differences in given coral populations facing 
thermal stress are abundant [58,59]. 

No coral genus was a winner against bleaching. However, 
Dipsastraea at the site H-RS showed signifi cant decline in 
percent severely bleached colonies by 2017. This did not lead 
to an increase of unbleached corals, but as there was no 
signifi cant reduction in the population of Dipsastraea, it may 
be a sign of acclimation/adaptation induced by previous 
bleaching events. However, changes in coral populations can 
happen years later after bleaching. Interestingly, Dipsastraea at 
the site L-SW showed signifi cant increases in its population 
in 2015 and 2016 compared to previous years. In both years, 
about 75% of Dipsastraea colonies were moderately bleached. 
Increases in abundance despite being bleached may suggest 
that the bleached colonies managed to reproduce larvae as 
did other genera around the world [60-62]. However, > 90% 
of fully bleached colonies showed a non-signifi cant  27% 
reduction in the abundance of Dipsastraea in 2017, which may 
suggest limitations in the physiological capabilities of strong 
coral taxa under repeated bleaching events [57,62-64]; this 
was observed for the same species at the site L-N with 65% 
of colonies showing 81–100% mortality in 2017, whereas they 
were mortality-free in previous years. Similarly, signifi cant 
increases in the abundance of Acropora at the site L-N and Porites 
at the site L-SW in 2015 and 2016 compared to the previous 
years, respectively, suggest either tolerance to thermal stress 
and successful reproduction, or fragmentation. However, 
their following decline shows their limitations as well. Such 
limitation under consecutive bleaching led to a 66% decline 
in Porites population at the site L-N and almost 100% decline 
of Favites at the site H-RS. Experimental studies showed that 
under two consecutive bleaching events, some species may 
manage to recover and survive while others may not [57,65]. 
Even short-term winners may become losers over time [52]. 
Therefore, although some tolerant colonies may survive even 
four back-to-back bleaching events, by increasing the number 
of severe bleaching events all coral taxa may be losers.

Conclusion 

In conclusion, our study shows that even the most 
thermotolerant coral reefs of the world can face back-to-back 

bleaching events that lead to increased coral mortality and 
reduction in coral abundance at some sites. The signifi cant 
increases in the frequency of Acropora coral colonies with 81%-
100% mortality at the sites of Larak Island in 2017 despite 
being constantly minimal in the fi rst three years highlights 
the fact that we cannot rely on the physiological acclimation/
adaptation of corals or natural phenomena such seawater 
turbidity to save coral reefs. The repeated bleaching events 
did not seem to lead to increased tolerance of the corals of the 
study sites, except for Dipsastraea at the southwest of Larak 
Island that managed to signifi cantly increase its population in 
2015 and 2016. However, the non-signifi cant 27% reduction in 
its abundance in 2017, when almost all colonies were severely 
bleached suggest that these results must be interpreted with 
caution. In particular that, for Dipsastraea at the north of 
Larak Island that managed to survive in the fi rst three years, 
> 66% of its colonies showed 81%–100% mortality in 2017. 
Unfortunately, there is no effective management strategy to 
protect global coral reefs from climate change-induced thermal 
stress [7]. Therefore, as previously suggested, it seems the only 
way to prevent reef-building corals from reaching extinction 
is to substantially reduce greenhouse gas emissions, including 
carbon dioxide.
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