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Abstract

Microbial enzymes can come from bacteria, actinomycetes, fungi, yeast, microalgae, and cyanobacteria. The class of extremophile microorganisms is a source 
of interesting enzymes that can overcome various technological problems. Globally, these enzymes are industrially produced by fermentation using two techniques: 
submerged fermentation (SmF) and Solid-State Fermentation (SSF). Currently, microbial enzymes are probably the most important sector in biotechnology. This fi eld 
fi nds different applications in various industrial sectors including chemical and pharmaceutical, food and animal feed, textile, agriculture, biodiesel, and so on. The present 
review surveys the microbial enzymes and their major characteristics, safety, chemical nature and classifi cation, microbial sources of enzymes, production aspects, 
biotechnological applications, commercial overview, and perspectives and future prospects.
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Introduction

In the pursuit of unveiling nature’s mysteries over the 
past decades, science has discovered several hidden natural 
resources, thereby providing a major market for manufacturing 
[1]. Among these enzymes are appropriate metabolic catalysts, 
which require the occurrence of different endogenous 
biochemical processes along a well-described pathway. 
Enzymes intensify different bioreactions critical for preserving 
human survival, reducing the energy of reaction initiation 
without irreversible alteration [2]. Enzymes are however light 
spot catchers because of their activity and specifi city with 
regard to their substrate and form of reactions [3]. The word 
“enzyme” is derived from the sense of the Greek term “]
μo” in leaven [4]. Wilhelm Friedrich Kuhne fi rst invented it 
in 1877, although the word enzyme and its use have also been 
commonly used since a long time ago [5]. On the other hand, 

microbes are the main source of enzymes since they can be 
cultivated in high amounts in a limited period of time and due 
to genetic modifi cations that may be conducted on bacterial 
cells to increase their production [6,7]. Microbial enzymes, 
as biocatalytic molecules, are ecologically effi cient and highly 
specifi c and can contribute to the improvement, at 105 to 108 
rates, of stereo and regio-chemically determined reaction 
products [5,8]. Diversifi cation in terms of biological, physical, 
and chemical properties of enzymes has made one type of 
microbe distinct from other, and also distinct, strains of the 
same species [3]. Moreover, there are more than 500 industrial 
products that can be produced with enzymes [9,10]. They are 
now among the main substances commonly used since the 
ancestral human civilization. As the population increases, 
enzymes tend to be one of the most signifi cant substances 
that have great impacts on all sectors, such as milk, industry, 
medicine, and agriculture [5]. The present review deals with 
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the different aspects related to microbial enzymes, production, 
commercial aspects, their biotechnological applications, and 
perspectives and future prospects.

Classifi cation and chemical nature

Chemical nature 

The molecular nature of enzymes and their modes of action 
are two of the most important concerns of biological chemistry 
[11]. It is conventionally accepted, however, that most enzymes 
except ribozymes are protein-like in nature [12]. Complex 
macromolecules composed of protein with or without a non-
protein cofactor group (metal ions or prosthetic or co-enzyme) 
are enzymes composing enzymes chemically [3]. Based on 
differences in chemical nature, enzymes may be grouped into 
four classes as described in Table 1 [13].

Classifi cation 

Based on the reactions they catalyze, the Nomenclature 
Committee of the International Union of Biochemistry and 
Molecular Biology (Nc-Iubmb) has categorized enzymes into 
six main groups. In manufacturing techniques, the class of 
enzymes, the categories of reactions, and the selection of 
enzymes include Hydrolases; Oxidoreductase; Transferases; 
Lyases; Ligases, and Isomerases [12]. A special subset grouping 
is set up within each main class. For instance, the classifi cation 
of microbial amylases is mainly based on enzyme catalytic 
properties, like substrate and product particularities. The 
three EC categories of these enzymes are: transferases (EC 2), 
hydrolases (EC 3), and isomerases (EC 5), and the majority of 
these enzymes are a part of the EC 3 category. They comprise: 
Oligo-1,6-glucosidase; Glucoamylase; Amylo-1,6-glucosidase; 
Pullulanase; -Amylase; -Amylase and many others [14]. 
Likewise, proteases are enzymes of class 3, the hydrolases, 
and subclass 3.4, the peptide hydrolases or peptidases. 
They are classifi ed into two different subcategories, namely 
endopeptidases and exopeptidases. Further, they are divided 
into four prominent classes, i.e. cysteine protease, aspartic 

protease, metalloprotease, and serine proteases according to 
their site of activity, and dependent on the active site function 
group [15,16].

Lipases: Lipases are the most signifi cant biocatalyst 
category for biotech technologies [17,18]. They are hydrolytic 
enzymes that operate to break fatty acids and glycerol on the 
carboxyl ester bonds of the triacyl glycerols. Lipases function at 
the interface of aqueous and non-aqueous media leading to low 
solutions for natural substrates triacylglycerols [19]. Specifi c 
lipase (triacylglycerol acyl hydrolase) enzymes catalyzed 
the reactions of hydrolysis, esterifi cation, and alcoholysis. 
Moreover, the use of microbial lipases has reached its highest 
effi ciency, thus, they are ideal for several reactions and the 
aroma of the immobilization processes needs to become better 
[20]. Lipases are widely distributed in the fl ora and fauna 
of the earth. However, in biotechnological processes, more 
consideration has been devoted to microbial fl ora including 
yeast, fungi, and bacteria [19]. Bacteria like P. fragi, Pseudomonas 
alcaligenes, P. fuorescens BJ-10, P. aeruginosa, B. nealsonii S2MT, 
Bacillus subtilis, and several fungi species such as Aspergillus niger, 
Penicillium expansum, Penicillium chrysogenum, and Trichoderma 
produce lipases in elevate amounts [21,22]. Especially, lipase 
from Aspergillus niger is one of the most commonly used lipase 
types, since it is economically and widely disseminated [23].

Lipases can be used in a number of sectors, namely oil and 
fat production, dairy manufacturing, detergents, paper and 
pulp industries, oleochemicals, environmental mitigation, 
tea processing, diagnostic tools, biosensors, perfume and 
cosmetics, and medicine [24]. Moreover, emerging features 
are ester-bonding synthetic plastics, pesticides, insecticides, 
paraben, and other compound hydrolyses which can be used 
not only to counter global environmental contamination but 
also to minimize energy and to produce biological energy 
[25]. Lipases are part of a variety of other sectors, including 
medicines, agrochemicals, leather, and several environmental 
remediation [26]. For instance, fl avor development through 
the synthesis of short-chain acid esters and alcohols which 
are known fl avor and aroma compounds in the food industry 
has been used extensively to change the fl avor [27]. Microbial 
lipases are frequently used in various areas, including the 
production of fl avors for dairy products (alcoholic beverages, 
cheese, margarine, milk chocolate, butter, and sweets). Fat 
removal of fi sh or meat products is often performed also by 
lipases [28].

Proteases: In terms of their uses in both physiological and 
industrial fi elds, proteases are a single category of enzymes 
that play an important function. Proteolytic enzymes catalyze 
the cleavage of peptide bonds in other proteins. They are 
degrading enzymes that catalyze complete protein hydrolysis 
[29]. Proteases are categorized as alkaline, acid, and neutral 
proteases, based on the pH at which they are activated [30]. 
Mainly, in the biotechnological area, Bacillus sp. is the most 
dynamic and effective extracellular alkaline protease producer. 
Moreover, strains of Streptomyces are also a suitable source 
among actinomycetes [31,32]. Additionally, yeasts such as 
Candida sp were closely investigated as effective producers of 
alkaline protease [33]. 

Table 1: Chemical nature, classes, and characteristics of enzymes.

Enzyme 
class

Characteristics

Simple
Enzymes

-These enzymes are simplifi ed proteins, i.e., on hydrolysis, they yield 
amino acids solely

Conjugate 
Enzymes

-These enzymes consist of two components: a protein component 
called an apoenzyme and a non-protein component called a cofactor. 
-In some cases, the cofactor is a basic divalent metallic ion (e.£, Zn, 

Mg, Co, Ca, and many others), and in some cases an organic non-
protein component.

 -Holoenzyme is the complete conjugate enzyme made up of an 
apoenzyme and a cofactor.

Metallo-
enzymes

-The enzymatic co-factors are monovalent (K+) and divalent (Cu++, 
Mg++, Mn++) cations. 

-Co-factors can be loosely retained by an enzyme, or the molecule 
itself, as in some examples.

- The enzymes are called metalloenzymes if the substance is part of 
the protein, i.e. iron of hemoglobin or cytochrome.

Isoenzymes 
(Isozymes)

-A multiple molecular structure is referred to as isoenzymes or 
isozymes in an enzyme that exists in the same organism and has 

identical substrate activity.
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Proteases are one of the three biggest classes of industrial 
enzymes and their global demand grows signifi cantly per 
year [34]. Proteases constitute roughly 60% of the world’s 
overall enzyme sales [15,35]. Particularly, in various corporate 
industries, such as textiles, leather, feed and others microbial 
proteases are the most commonly used [34]. Furthermore, 
these enzymes are utilized for pharmaceutical products, 
detergent additives, food manufacturing, and silver extraction 
in the x-ray fi lm industry [36,37]. The pharmaceutical sector 
uses mainly proteases to prepare medicines, namely ointments 
[38,39]. One of the main uses of protease is in the laundry 
detergents and leather industries, where protein-based stains 
are extracted from garments and dehairing, respectively [40]. 
Further, the food industry commonly uses microbial proteases 
in cheese production, baking, soya hydrolyzed preparation and 
meat tenderizes [41,42]. Another promising area is its use in 
industrial and household waste management [43,44].

Amylases: Amylase is an extracellular enzyme that is 
active in the industry of starch production where it transforms 
starch into basic components of sugar. Starch is an integral 
part of the human diet and, for many economically important 
crops, is a signifi cant storage commodity, such as wheat, 
rice, corn, tapioca, and potato. Microbes establish two main 
types of amylase, namely alpha-amylase and glucoamylase. 
In addition, Plant-origin -amylase has also been recorded 
from a few microbial strains. These amylases are typically 
extracellular and are widespread in actinomycetes, fungi, and 
bacteria [45]. However, Microbial sources are the most common 
for large-scale manufacturing to meet industrial requirements 
[46]. For example, Bacillus licheniformis, Bacillus subtilis, Bacillus 
amyloliquefaciens, and Bacillus stearothermophilus are considered 
to be effective producers of thermostable amylase and have 
been commonly used for numerous applications in industrial 
processing [47]. Moreover, fungi belonging to the Aspergillus 
genus are widely used to produce -amylase [48,49].

Amylases constitute a group of industrial enzymes that 
account for about 25% of the global enzyme market and are 
among the most essential compounds in biotechnology [50,51]. 
In many manufacturing processes such as dairy, fermentation, 
and pharmaceutical industry, they have potential applications. 
For instance, the development of modifi ed starches, 
maltodextrin, and fructose syrups is based on amylases [52]. 
Also, amylases are employed to produce glucose/maltose 
syrups, decrease the viscosity of sugar syrups, clarify and shelf 
life of fruit juice, solubilize starch in the brewing industry, and 
prolong the stalling of bread and other baked products [53], and 
digestibility improvement of animal feeds [54,55]. In addition, 
amylases are utilized in detergent preparation, production of 
biofuel and waste management [56], paper making, digestive 
medicine preparation, textile desizing [57], and fi ne industry 
chemicals [58].

Cellulases: Cellulose is a fi brous, rigid, crystalline, and 
water-insoluble, biocarbon source, the primary ubiquitous 
polysaccharides that are part of the plant cell wall. In order to 
generate biotechnologically signifi cant monomeric subunits, 
hydrolysis of b-1,4-cellulose linkages is performed via the 

synergetic effect of several enzymes, the most prevalent of 
which are cellulases [59]. However, cellulase does not comprise 
a single enzyme. It is an enzyme group consisting predominantly 
of exoglucanases and endoglucanase, comprising -glucosidase 
and cellobiohydrolases. A diverse variety of microbes, namely 
actinomycetes, bacteria, and fungi, synthesize this complicated 
group of enzymes [60]; living in a wide variety of environments 
that include soil, ruminant rumen, termite/insect guts, severe 
habitats, and saline or aquatic environments [61]. Particularly, 
many of the cellulases used for industrial uses come from fungi 
like Humicola, Fusarium, Trichoderma, Phanerochaete, Penicillium, 
and many others, in which a signifi cant number of cellulases 
are described [62,63]. For instance, Penicillium janthinellum 
FS22A and Trichoderma virens FS5A were established to be 
effective in the co-production of laboratory-scale cellulolytic 
enzymes [64]. Cellulolytic bacteria may be found to contain 
many distinct physiological classes as seen through the prism of 
microbial physiology: fermentative anaerobes, usually Gram-
positive (Caldicellulosiruptor, Ruminococcus, and Clostridium) but 
regrouping a small number of Gram-negative bacteria; aerobic 
Gram-positive bacteria such as Thermobifi da and Cellulomonas; 
and aerobic gliding bacteria such as Sporocytophaga and 
Cytophaga [65].

The overall demand for cellulase enzymes in 2019 is roughly 
US$ 1500 million, which is forecast to hit US$ 2320 million in 
2024 [66]. For industrial applications, the implementation of 
the same situation is identifi ed as an emerging fi eld of study. 
Production of biofuels, polishing and fi nishing of textiles, the 
pulp industry and lifestyle farming [60], cotton manufacturing; 
paper recycling, detergent enzymes, and animal feed additives, 
in juice extraction are among the main fi elds in which cellulase 
enzyme reveals a wider capacity for processing [67], as well 
as in single-cell protein research and production [68,69], 
recombinant DNA technology, pharmaceutical industry, and 
waste treatment [70]. Cellulase was widely regarded as an 
important solution to the antibiotics available for the treatment 
of Pseudomonas-produced biofi lms. The ability of cellulases to 
combat antibiotic-tolerant bacteria is also a promising trend 
that will solve healthcare sector concerns [71].

Pectinases: The degradation of pectin compounds is the 
functional property of microbial enzymes (pectinases) [72]. 
However, by transforming pectinases into short polysaccharide 
particles, pectinases digest pectin [73]. They are an enzyme 
category that hydrolyzes the breakdown of pectic substances 
by deesterifi cation processes (esterases) and depolymerization 
(lyases and hydrolases) [74]. Pectinases in higher plants and 
microbes are broadly spread. Actually, they are one of the 
industrial sector’s upcoming enzymes. Microbes including 
actinomycetes, bacteria, yeast, and fungi may synthesize 
microbial pectinases [75]. For example, fungi such as 
Trichoderma viride, Aspergillus awamori, Mucor piriformis and 
Yarrowia lipolytica, Aspergillus niger, and Penicillium restrictum 
[76]. Especially, the most widely used fungal species for the 
industrial processing of pectinolytic enzymes is Aspergillus 
niger [75]. Several bacteria (Aeromonascavi, Bacillus licheniformis, 
Lactobacillus, and so on), yeasts such as Candida, Saccharomyces, 
and Actinomycetes like Streptomycetes are also employed [76].
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Microbial pectinases are projected to account for 25% of 
global sales of food enzymes [75]. Pectinases have been used 
in many typical manufacturing processes over the years, such 
as the harvesting of plant fabrics, the handling of industrial 
wastewater containing pectinous material, and many others 
[77]. They are used for improved production effi ciency in the 
fruit processing industry to improve clarifi cation/liquidity 
by reducing viscosity and fi ltering of juices and enzymatic 
extraction/ maceration of plant cells to release a fl avor, 
vitamins, carbohydrates, nutrients, and proteins [78-80]. Since 
the 1960s, pectinases have also been used in the manufacture 
of wine [81], textile manufacturing and bio-scouring of 
cotton fabrics, fermentation of coffee and tea, paper and 
pulp industries, animal feed, plant virus purifi cation, and oil 
extraction [77]. Other essential applications were pectic enzyme 
utilization in the hydrolyzed pectin product preparation [82,83] 
and preservation of wood [84,85].

Other enzymes: Other microbial enzymes of industrial 
interest include a large variety like lactase (-galactosidase), 
esterases, phospholipases, lipoxygenases (LOX), xylanases, 
glucose oxidase, laccase, catalase, peroxidase, asparaginase, 
debittering enzymes–naringinase, -acetolactate 
decarboxylase [86], pullulanase, limoninase, maltogenic, 
tyrosinase [35], keratinases and ligninase [87]. 

Microbial enzyme sources

Many microorganisms, such as actinomycetes, bacteria, 
yeast, and fungi generate a category of versatile and desirable 
intracellularly or extracellularly enzymes with a wide range of 
structures and commercial uses [53]. In addition, cyanobacteria 
and microalgae are crucial origins of biotechnological enzymes 
[88,89]. They are also a very important source of enzymes of 
extreme stability under conditions considered incompatible 
with biological materials coming from extremophile microbes 

due to their capacity to survive in environments of ultimate 
circumstances, whether physical as temperature, pressure, or 
radiation, and geochemical like pH and salinity [90]. Globally, 
50% of industrial enzymes are produced from yeast and fungi, 
35% from bacteria, and the remaining 15% from plants [76]. 
Table 2 illustrates some examples of enzymes, microorganism 
sources, and their biotechnological applications

Microbial enzyme safety and characteristics

The strong character of microbial enzymes such as 
thermostability, multifunctionality, and pH stability are 
potential candidates in varied physiochemical conditions 
for effective bioprocesses [12]. In their molecular structure, 
polypeptide chain number, glycosylation degree, and isoelectric 
point, the enzymes themselves vary. Although the synthetic 
pattern has been infl uenced by all the variations, the basic 
mechanisms for the enzyme synthesis are suffi ciently similar 
to allow global mechanism treatment [91]. Additionally, the 
wide range of effective uses, niche products, environment 
friendly, and decreased chemical usage and activity are 
key factors driving the global hydrolytic enzyme market. 
Nevertheless, some of the common barriers that impede the 
enzyme market’s increase are several considerations like raw 
material competitiveness, enzyme protection, handling, lack of 
stability under severe conditions, and price volatility [66]. 

A rigorous successful implementation of microbial enzymes 
is usually appropriate before market entry with European and 
other global regulators, even needing toxicological assessment 
for microbial enzyme certifi cation [92]. In addition, the 
attributes and safety reports of each of the donor species adding 
genetic material to the production strain are tested when it 
includes recombinant DNA [5]. Except for the possible irritating 
consequences of such proteases on the skin and eyes and the 
well-documented potential for pulmonary sensitization in the 

Table 2: Examples of enzymes, microorganism sources, and their biotechnological applications.

Microorganisms Enzymes Industrial applications References

Streptomyces hyalurolyticus Hyaluronidase Pharmaceutical (ophthalmic treatments) Schuler and Schuler 2005 [193]

Populus canescens Pectin lyase
Food industry (production of cranberry juice and clarifi cation 

of apple)
Semenova, et al. 2006 [81]

Bacillus spp Alpha amylase Food waste biodegradation
Msarah, et al. 2020 [194]

Bacillus licheniformis Keratinase
Feed (increase body weight, feed conversion, and breast yield 

of broiler Chickens)
Wang, et al. 2006 [195]

Bacillus subtilis 168 E6-5 Protease Textile (improvements in the physical properties of wool fabric) Demirkan, et al. 2020 [196]

Streptomyces phaeochromogenes, 
Streptomyces setonii, Nocardia 

corynebacterioides, Nocardia asteroides 
and Arthrobacter oxydans

Phosphotriesterases

Bioremediation of water and soils, decontamination of 
particular foods, and as poisoning antidote Degradation of 
organophosphorus compounds employed as pesticides, 

plasticizers, and petroleum additives 

Santillan, et al. 2020 [197]

Trichoderma reesei, Aspergillus niger Cellulase
Biofuel (hydrolysis process of corncobs for producing 

bioethanol)
Winarsih and Siskawardani 2020 

[198]

Bacillus megaterium Xylanase Pulp (improve bleaching) Sindhu, et al. 2006 [163]

Candida antarctica Lipase A, Lipase B Chemical (asymmetric synthesis of amino acids/amino esters)
Dominguez de Maria, et al. 2005 

[199]

Bacillus sp, Bacillus halodurans Laccase, Xylanase Paper (deinking of waste paper) Gupta, et al. 2015 [200]

Bacillus subtilis NZYM-CK L-asparagine amidohydrolase Food enzyme preparation
EFSA CEP Panel, et al. 2023 

[201]

Penicillium roqueforti Food industry (milk clotting) Nogueira, et al. 2022 [202]
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substrate material and its availability. Particulate size and 
moisture levels are further considerations [98]. The only 
organism that may be used for SSF is generally fungi rather 
than bacterial species, provided that fungi are more likely to 
accept a low abundance of water [99]. It provides many benefi ts 
over submerged fermentation such as high-end product levels, 
fewer effl uent production and convenient process equipment 
[100], easy and economical substrates, removal of the need 
for nutrient solubilization from solid substrates, elimination 
of the need for stringent monitoring of many fermentation 
parameters, higher product yields, lower energy needs, less 
wastewater processing, no foam emission and relatively easy 
recovery of end products [101].

Submerged fermentation (SmF): Commercially, submerged 
fermentation is used as an effi cient enzyme synthesis 
processing technology. This method involves the growth 
of microorganisms in a closed liquid medium composed of 
different nutrients dissolved either for the suspension of 
particulate solids or in most cases inside a shake fl ask containing 
a commercial medium [102]. The fermenting medium 
sterilizes renewable nutrients including soya, sugar, and corn. 
In order to optimize the fermentation process parameters 
including pH, temperature, carbon dioxide formation, and 
oxygen consumption are measured and regulated [98]. Both 
molds and various bacterial species are part of the variety of 
organisms that can be used in SMF [99]. For instance, a strain 
of Bacillus subtilis was isolated and used for the development of 
protease under ordinary sources and LED lights by submerged 
fermentation with various agro-wastes as substrates [103]. 
The benefi ts of SMF comprise strong environmental criteria 
monitoring, decreased work costs, lower space, and low scale-
up demands compared to SSF [104]. The submerged liquid 
conditions are often favored in industrial enzyme processing 
relative to solid-substrate fermentation because the yields 
are better in the submerged culture methods and the risks of 
contamination are fewer [98].

Recovery and formulation

Purifi cation techniques are implemented to ensure 
enzymes with suffi cient ability, economy, and purity. Enzymes 
may be intracellular and involve various methodologies of cell 
destruction. In fermented broth, extracellular hormones are 
released and exposed to centrifugation or fi ltration processes. 
There can be no implementation of a single purifi cation 
procedure as enzymes are heterogeneous [100]. The recovery of 
products is based on solvent extraction using Dimethylsulfoxide 
(DMSO), methanol, ethanol, and water in the case of Solid-
State Fermentation (SSF) [105]. Enzymes are purifi ed with 
various chromatographic methods in case of submerged 
fermentation (SmF). This approach includes UFPLC, HPLC, and 
column chromatography, supplemented by gel electrophoresis 
for the purpose of studying the enzyme homogeneity and 
purity [99]. The procedure is primarily infl uenced by the low 
concentration of the fi nished product in broth contributing to 
further purifi cation steps and cost increases [100].

Commercial enzyme supplies typically come from aqueous 
solutions that are sold as liquids or converted into dry 

situation of exposition to the workplace, enzymes usually do 
not cause acute toxicity, cutaneous sensitization, genotoxicity 
or repetitive oral dose toxic effect. For enzymes carcinogenicity, 
reproduction, chronic toxicity, and acute inhalation are not 
also relevant [92]. The safety assessment criteria are focused 
on the potential involvement of harmful substances in the 
formulation of commercial enzymes [93]. Given the general 
availability of scientifi c evidence supporting enzyme safety 
and the widely accepted (peer-reviewed) methods and decision 
trees for determining the safety of microbial enzymes used in 
food production and in animal feed, respectively, the Generally 
Recognized as Safe (GRAS) process is well adapted for enzymes 
[94].

Production of microbial enzymes

Microbial enzymes are the preferable source of industrial 
enzymes as they can be obtained in huge amounts in a short 
time duration and have lesser generation times [6]. The 
processing of microbe enzymes effectively brings numerous 
benefi ts, like simple handling, fast multiplication under 
regulated conditions, easy genetic modifi cation, high yields, 
and so on. In addition, due to their catalytic action, specifi city, 
stability, non-toxicity, environmentally friendly design, 
economic effi ciency, ease of processing, and many others, 
the industrial use of microbial enzymes often receives more 
attention [2]. The advances in biotechnology, such as controlled 
evolution and protein engineering, further revolutionized the 
commercial production of industrial essential enzymes. This 
progress in biotechnology is offering various kinds of enzymes 
showing new activities, and adaptability to new environments 
contributing to their increased usage for industrial purposes 
[5].

Fermentation methods

Since ancient times, microbes have been used in food 
fermentation, and fermentation methods are still used 
in the processing of several food items [95]. Due to their 
environmental and economic benefi ts, fermentation techniques 
have gained immense signifi cance over the years. In order to 
maximize productivity, ancient techniques have been further 
refi ned and modifi ed. The innovation of new machinery and 
procedures was also involved. As a consequence of this rapid 
growth, two broad fermentation methods have emerged: Solid 
State Fermentation (SSF) and Submerged Fermentation (SmF) 
[96]. Microbial enzymes can also be produced with less time 
and space required cost-effectively through those fermentation 
methods, and process modifi cation, and optimization may be 
done very easily due to their high consistency [5].

Solid-state fermentation (SSF): Solid-state fermentation 
is a technology for cultivating microbes on a solid and low 
moisture substrate. Solid substrates are substances that 
typically contain agro-industrial by-products such as rice 
bran, sugar cane bagasse, wheat bran, fruit and plant waste, 
and many others [97]. Other mediums may be used for the 
processing of enzymes through SSF. These comprise rice bran, 
corn fl our, and sugar beet pulp. Substrate choice depends on 
numerous parameters, primarily related to the cost of the 
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products, called microgranulates or granules. With the fi nal 
implementation in mind, liquid and dry formulations are 
formulated [5]. Many commercial enzymes are very stable in 
their dry state, but others need stabilizers and stimulators to 
be available to achieve optimum performance and stability 
[106]. Some applications require solid enzyme products to 
make the basic powder enzyme granules more suitable for use. 
Often liquid formulas are chosen because, unlike other liquid 
ingredients, they can be conveniently treated and dosed [107].

Boosting microbial enzyme production

Natural enzymes have defi ciencies such as poor catalytic 
potency, operation, and stability, in particular in industrial 
environments [108]. Thus, the production of resistance 
enzymes is of vital importance for improved industrial 
effi ciency due to harsh environmental conditions such as 
high temperatures, moderate/low pH, elevated pressure, 
oxidative conditions, high shears, or short delays [109,110]. 
Thus, customized biotechnological enzyme catalysts should 
have special characteristics including thermostability, high 
stereo and chemo specifi city, multifunctionality, stability 
pH, and other characteristics [12]. A signifi cant number of 
microbes and their enzymes with a special function are now 
widely identifi ed by intensive screening. In combination with 
existing biotechnologies, such as genetic engineering, protein 
engineering (including guided and spontaneous mutagenesis), 
metabolic engineering, and so on, the selection of such enzymes 
would bring more exciting prospects for the commercial use of 
microbial enzymes [111]. Triggered by current revelations in the 
use of additives and immobilization, all these approaches can 
facilitate improved development of enzymes with better yields 
[112]. Furthermore, in a post-translational method, innovative 
strategies such as genetic fusion of coding open reading 
frames or protein connection are utilized to generate the fused 
industrialized enzymes with the combined characteristics of 
their parental substances [113].

Genetic engineering strategies

Genetic engineering is the method of transferring or 
changing genes into an entity to delete or incorporate a desired 
function or feature of particular genes between organisms 
[114]. This method ultimately involves taking the related gene 
of the microbe generating a specifi c enzyme (donor) naturally 
into a separate microbe that more effectively synthesizes the 
enzyme (host) [5]. Genetic changes are very signifi cant and the 
development of recombinant DNA technologies has increased 
100-fold [67]. Many bacteria and fungi used for the processing 
of industrial enzymes were genetically engineered to greatly 
overproduce them [115,116]. For instance, changes at different 
stages, like genetic sequences (site-directed mutagenesis), 
transcriptional factors, promoters, number of gene copies, 
leader peptides, chaperones, codons, and at structural 
levels, like glycosylation and enzyme folding, have led to the 
production of vigorous strains generating cellulose [117,118]. 

High-level expression 

Metabolic engineering methods can be utilized through 
genetic manipulation approaches such as gene destruction and 

over expression [119,120]. If the gene has been detected, one 
of the techniques introduced to maximize the output of the 
enzyme is to induce over-expression of this gene in the initial 
producer or another microbial host [121]. Over expression of 
the genes of Fatty Acid Synthase (FAS) resulted in a maximum 
rise in the amount of fatty acids that was 2.8 times greater 
than that of the wild strain [122]. On the other hand, enzyme 
contribution in recombinant output pathways in elevated gene 
expression is a benefi cial characteristic of cell factories in the 
kingdom of life. The use of powerful promoters to improve 
gene transcription and mRNA levels is usually targeted at high 
levels of enzymes [123]. For example, in Pichia pastoris, a GAP 
promoter-regulated gene XynA from Thermomyces lanuginosus 
has been established. On the medium without zeocine, after 
56 hours of fermentation, Pichia pastoris expressed higher 
xylanase levels (160 IU/ml). The effi ciency of this enzyme 
was proven in bagasse pulp bio-bleaching [124]. If the genes 
concerned are identifi ed, the metabolic engineering technique 
often improves their expression [125,126]. If the genes required 
for the synthesis of an enzyme of concern are unidentifi ed, 
the production improvement is increased by adding random 
mutations through ultraviolet (UV) irradiation or treatment 
with mutagens into the chromosomes of the synthesizing 
microorganism [127]. In addition, cultural conditions have 
been optimized to further improve development [128].

Biotechnological applications of microbial 
enzymes

In designing industrial bioprocesses, microbial enzymes are 
of considerable signifi cance. Present applications rely on a wide 
variety of sectors, including leather, detergents and textiles, 
chemicals, pulp and paper, food and drinks, pharmaceuticals, 
animal feed and personal care, and biofuels, among others 
[90]. Biotechnological applications of microbial enzymes are 
summarized in Figure 1.

Microbial enzymes as detergent additives

The detergent industry needs more enzymes and 
accounts for nearly 60% of global manufacturing [129]. The 
most important area of use for enzymes (such as cellulose, 
protease, cutinase, amylase, and lipase) is the incorporation 
in detergents, primarily used for washing up, laundry, and 
industrial and organizational cleaning purposes [12]. In the 
manufacturing of detergents after proteases, amylases take 
2nd position and makeup approximately 30% of the overall 
sales of enzymes [130]. All of these enzymes are hydrolases 
that are applied to detergents in order to improve the effi cacy 
of washing. Proteases, lipases, and amylases were then used 
to extract protein, oily, and starchy color from the cloth 
substrates, respectively [131]. For instance, the enzyme 
protease synthesized from alkaliphilic Bacillus sp. strain 
KSMKP43, Bacillus clausii KP-43, and strain KSM-K16 have 
been integrated into laundry detergents. Subtilisin-like serine 
proteases affi liated to subtilase super family A have been used 
for cleaning and washing up in detergent additives [132]. The 
preference for alkaline yeasts is that they can be used at lower 
temperatures than bacterial and fungal lipases [133,134].
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Textile industry

Textiles use costly and corrosive chemicals which 
constitute a major threat to public health and environmental 
quality. Thus, enzymes represent a sustainable solution to the 
already harsh harmful chemicals in textile production [135]. 
Oxidoreductases and hydrolases in the textile industry are used 
mostly for different applications. These microbial enzymes 
are helpful in terms of their origins more often than plants or 
animals [136,137]. Likewise, other enzymes are mainly used in 
a number of utilizations such as amylases, lipases, proteases, 
and cellulases [138]. Most textile enzyme uses are limited 
to the production of cotton: elimination of contaminants 
(bleaching, scouring, desizing); bio-fi nishing to enhance the 
appearance and eliminate fabric fuzz from the surface; bio-
stoning or ‘stonewashing’ of denim to achieve the trendy aged 
look; bleaching cleaning to eliminate excess H2O2 before dyeing 
[139]. Signifi cant microbes which produce textile enzymes 
importance include fungi such as Aspergillus niger, Trichoderma, 
Rhizopus, and bacteria like Bacillus coagulans, Bacilllus subtilis, 
and many others [140].

Feed and food processing

An age-old technology is the use of enzymes or microbes 
in food preparations. New enzymes with a wide variety of uses 
and specifi cities have been introduced with the development 
of science and new use fi elds are also being investigated. In 
different food preparations, microbes such as fungi and yeast, 
bacteria, and their enzymes are commonly used to enhance 
fl avor and texture and give tremendous economic advantages 
to industries [86]. The implementation of enzymes (esterases, 
proteases, lipases, catalase, and lactase) is well-known in milk 

technology. Rennet (rennin) is used in the fi rst step of cheese 
manufacture for the coagulation of milk. Proteases of different 
forms shall be used to speed up cheese maturement, adjust the 
functional characteristics, and alter milk proteins to decrease 
the allergic characteristics of cow milk infant formula. Lipases 
are utilized specifi cally for the development of lipolytic fl avors 
in cheese maturation. Lactase is employed as a digestive aid for 
hydrolyzing lactose to galactose and glucose and to increase 
sweetness and solubility in different processed foods [53]. 
Enzymes and microbes have also been used in the process of 
making bread, cheese, and wine for decades [141]. Exogenous 
enzymes are used in the fi sh and meat industries for a number 
of purposes [142], and procedures of starch transformation 
[143,144]. Moreover, enzymes may play a major role in the 
preparation and processing of numerous fruit and vegetable 
juices, like carrots, apples, pineapples, bananas, grapefruit, 
lemons, and many others [53].

A worldwide enzyme sales report attributed 6% to feed 
enzymes [145]. Natural feed additives like enzymes are 
becoming more important in helping animals sustain proper 
digestion of feed [146]. Carbohydrases and proteases are 
among the numerous items in the animal feed industry 
[147]. Mainly, xylanase is a prime illustration of an industrial 
enzyme that must be stable and active at elevated pH and 
temperatures, when used as an ingredient for feed products 
[148]. Furthermore, B-glucanase and phytase from Aspergillus 
niger are employed in hydrolyzing phytic acid in animal feed 
for the release of phosphorus and digestive improvement 
[35]. Thus, feed enzymes can improve nutrient digestibility, 
contributing to greater productivity in the use of feed. Also, 
they could decompose undesirable feed components that are 
either toxic or of little or no benefi t [149].

Figure 1: Biotechnological applications of microbial enzymes.
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Pharmaceutical and chemical processes

In the pharmaceutical and diagnostic industry, enzymes play 
several essential functions. These are commonly used in health 
conditions relating to enzymatic dysfunction and digestive 
diseases as preventive medications and in medical procedures 
such as ELISA and diabetes monitoring kits [150]. Enzymes are 
used for the prevention of enzyme dysfunction and metabolic 
diseases and the replacement of dead skin as medicinal 
drugs [12]. Also, these chemicals and medications are used to 
cure common human diseases. That includes obesity, prion 
diseases, malaria, diabetes, acne, ulcers, and even alumina in 
patients with kidney dialysis (but not limited to) [151]. For the 
development of water-soluble intermediates, intermediates 
for aspartame, semi-synthetic antibiotics, and biosynthetic 
human insulin, microbial enzymes such as glutaric acid acylase, 
nitrile hydratase, D-amino acid oxidase, penicillin G acylase, 
penicillin acylase, humulin, and ammonia lyase may be used 
[152]. For example, in the pharmaceutical and chemical sectors, 
lipases ensure a signifi cant function [6,153]. Also, proteases 
might be used for drug use, like digestive medications, and 
anti-infl ammatory medicines [154,155]. In addition, microbial 
enzymes may be used as biodegradable polymers for synthetic 
chemistry. In vitro, polymer-catalyzed enzyme synthesis is an 
environmentally friendly procedure with many benefi ts over 
traditional chemical processes [156,157]. For instance, 130 
g/L of L-tyrosin was produced with continuously substration 
feeding in 30 h at the end of the enzyme transformation of 
pyruvate, phenol, ammonium chloride, and pyridox phosphate 
to L-tyrosine using a thermostable and chemostable tyrosine 
lyase. The enzyme was released by Symbiobacterium toebiii [158].

Pulp and paper industries

Initially, the use of pulp and paper enzymes was 
not theoretically and commercially practical since these 
biocatalysts were not readily available [159]. Whereas, later 
the utilization of enzymes in the paper and pulp industry was 
eventually adopted in 1986. The most important enzymes that 
may be used in paper and pulp operations are lipase, laccase, 
xylanase, and cellulose [160]. Microbial enzymes are allowing 
new technology for manufacturing fi bers and pulps. Xylanases 
decrease the number of chemicals needed for bleaching, lipases 
decrease pitch, improve drainage cellulases smooth fi bers, 
and stimulate the extraction of ink enzymes that degrade and 
remove lignin from pulps [161]. Although the formation of 
xylanase is described by different microbes, Cellulosimicrobium 
sp has rarely been recorded. C. Cellulans CKMX1 isolated from 
mushroom compost develops xylanase with marginal cellulase 
and has properties ideal for biobleaching of pulp [162]. Also, 
the Bacillus megaterium xylanase producer demonstrated an 
8.12% and 1.16% increase in brightness and viscosity, a 13.67% 
reduction in KN, and a 31% decline in chlorine intake [163].

Researchers discovered many decades ago that microbial 
enzymes and microbes may be helpful in paper manufacturing 
because it is made of natural polymers like lignin, hemicellulose, 
and cellulose [161]. For example, the Nippon paper industry 
uses Candida rugosa lipase to extract up to 90% of these 
contaminants [164]. On the other hand, Fillat, et al. [165] in 

printed paper on the recycling of enzyme laccases formed in 
the presence of synthetic mediators by the three main fungi 
belonging to the basidiomycetes group (Pycnoporus coccineus, 
Coriolopsis rigida, Trametes villosa) and other fungi belonging to 
the ascomycetes group (Myceliopthora thermophila) the deinking 
mechanism has been demonstrated.

Biofuels industry

Because of the dependence on petrochemical products, 
increasing oil prices, and emissions from use, the world expects 
alternative renewable energy supplies from multiple sources 
[166]. Biofuels are an effective alternative and are primarily 
composed of live material called “biomass”. Biofuels are divided 
generally into four groups (designed generations) related to 
the substrate used for biofuel processing. These comprise the 
fi rst, second, third, and fourth generations [167]. Microbial and 
enzymatic fuel cells are among the primary groups of biofuels. 
Microbial fuel cells are systems in which organic matter 
microbes develop and produce electrical currents. However, 
to accomplish the same function, enzymatic fuel cells use 
cell-free enzymes as electrodes [168]. A critical component of 
bioprocessing confi gurations designed to turn lignocellulosic 
biomass into biofuels is enzyme cocktails that hydrolyze plant 
cell wall polysaccharides [169]. Bio-oil, cellulosic ethanol, 
biomass-based diesel, biobutanol, renewable gasoline, and 
bio-based jet fuel are now getting closer and nearer to the era 
of advanced biofuels [166]. A great deal has been researched 
for alcohol-based biofuel development with the usefulness of 
amylases and now monooxygenases, xyllanasas, and cellulases 
[170].

Agricultural applications

Enzymes, especially since produced, accumulated, 
inactivated, and decomposed in soil constantly, ensure a vital 
function in agriculture and nutrient cycling [171]. Soil enzymes 
may help facilitate many biological processes that result in 
organic matter degradation and inorganic nutrient release 
for nutrient cycling and plant development [172]. Likewise, 
the utilization of enzymes in several developed countries 
has the ability to improve production, reliability, and quality 
of manufacturing in agro-industrial processing operations 
[173]. Endophytes obtained from Brazilian mangrove plants 
displayed strong enzymatic activity; Bacillus sp (MCR2.56) 
showed especially high amylase and esterase activity among 
these isolates; six Bacillus isolates (MBR2.4, MCA2.42, 
MCR2.51, MBA2.4, MCA2.51 and MBA2.33) demonstrated 
greater endocellulolytic activity, while the actinobacteria 
Microbacterium sp. (MCA2.54) and Curtobacterium sp. (MBR2.20) 
demonstrated elevated activity of endoglucanase and protease, 
respectively [174]. Additionally, the use of microbial enzymes 
in nanofertilizer biosynthesis is gaining quick traction in nano-
biological formulas due to its high performance and economic 
effi ciency [175]. Further, certain kinds of enzymes are capable 
of helping to suppress crop pests and can contribute to cell 
wall destruction of pathogens [176,177]. In the synthesis of 
these enzymes, numerous microbes are implicated, namely 
chitinase, pectinase, -1,3-glucanase, lipase, protease, and 
many others [178].
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Commercial aspects

Global enzyme market scenarios

Approximately 12 main manufacturers and 400 small 
suppliers serve the world’s enzyme market. Three top enzyme 
fi rms, namely Denmark-based Novozymes, US-based DuPont 
(through the purchase of Denmark-based Danisco in May 
2011), and Switzerland-based Roche, manufacture almost 75 
% of the total enzymes. The industry is intensely competitive, 
with limited margins for profi t and high technology [179]. In 
2015, the global demand for industrial enzymes was valued 
at around $4.6 billion, expanding by $6.3 billion in 2021 at a 
compound annual growth rate of 4.7% for 2016 - 2021 [180]. 
Currently, more than 500 commercial products for a wide 
variety of biotechnological uses have been synthesized using 
enzymes [10,181]. Europe and North America are the world’s 
main users of industrial enzymes, but the developing nations 
of the regions of the Asia Pacifi c, the Middle East, and Africa, 
among others, are beginning to emerge as the most promising 
industrial enzyme markets, representing the scale and power 
of the economies of these nations. High use in developing 
regions was associated with knowledge of green technology 
solving environmental problems, increased competitiveness, 
and improved product value, leading to an increase in the 
Innovation fi eld and in enzyme-using industries [182]. For 
instance, the lipase industry scope approached $590.5 million 
during 2015 and 2020 worldwide, at a CAGR of 6.5 % by 2020. 
The Asia-Pacifi c market in 2014 was the main lipase consumer 
[183,184].

Market progress and evolution

The worldwide demand for industrial enzymes is growing 
from year to year, representing the largest commodity category 
in the worldwide sales of industrial enzymes in different 
industries such as detergent, leather, clothing, diagnostics, 
pharmaceutical, silver recovery, and waste management [40]. 
A Compound Annual Growth Rate (CAGR) of 7.1% from 2020 
to 2027 is projected to rise in the global enzyme market [185]. 
The key reason for the steady growth in microbial enzyme 
sales is the growth in demand for consumer products and 
biofuels [186]. Particularly, proteases are the largest product 
group in the industry with a market share of approximately 
60 % [187]. Lipases, phytases, and carbohydrases are another 
fast-growing fi eld, with proteases covering about 70 % of 
the industry [182]. Enzymes are being used more and more 
to improve cleaner technologies in textile and paper and 
manufacturing and increasing the use of raw materials and 
waste generation [188]. A pectate lyase has recently been used 
as an alternative enzymatic method in the processing of cotton 
[189]. These market forecasts have been largely driven by 
process developments in the production of enzymatic biofuels 
which provide good opportunities for immobilized biocatalysts 
to scale up [190,191].

Perspectives and future prospects

The factories are also in search of new microbial strains to 
generate various enzymes to satisfy enzyme needs [6]. Substrates 
are often artifi cial compounds in industrial processes, and 

enzymes that are established to catalyze the necessary reactions 
for such procedures remain unknown. Therefore, screening is 
continually needed for novel enzymes that may catalyze new 
reactions [111,192]. Sometimes, because of either lower enzyme 
yield or other primary catalytic properties, microbial enzymes 
are not appropriate for biocatalytic operations. Thus, to satisfy 
these criteria tailoring or designing the enzyme is therefore 
necessary. The advancement of microbial enzymes and the 
discovery of new microbial enzymes have been encouraged by 
recent developments in metagenomics, genomics, proteomics, 
successful expression mechanisms, and rDNA technology [2]. 
Additionally, the development of novel microbial enzymes has 
resulted in many new and easy routes for synthetic processes 
by comprehensive and continuous screening [111]. In order 
to establish modern, sustainable, and economically viable 
production methods, more new, enhanced, and/or more 
fl exible enzymes are required today. The discovery of new 
microbial enzymes whose catalytic characteristics could be 
modifi ed/enhanced by various strategies focused on semi-
rational, rational, and randomly guided evolution is based on 
microbial diversity and current molecular methods such as 
metagenomics and genomics [90].

Conclusion

The fi eld of microbial enzymes utilization in biotechnology 
seems to be still relevant given their importance in various 
industries and the ever-increasing needs of the global market. 
On the other hand, technological and environmental constraints, 
environmental pollution and the current trend towards the use 
of green energy, the great diversity of unexploited microbial 
species, and the need for new enzymes, as well as innovative 
techniques (metagenomic, genetic engineering, and many 
others) leave this fi eld of research in constant evolution. Also, 
the use of immobilized enzymes emerges as a very promising 
strategy in terms of basic and fi rst-rate techniques for 
improving enzyme yield. Other aspects such as optimization 
of technological processes, reduction of production costs, and 
application of microbial enzymes in new technologies remain 
to be exploited.
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