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Abstract

Odontogenesis is a complex embryonic process originated by the interaction between two main 
embryonic components, dental epithelium and ectomesenchyme. This ectomesenchymal interaction 
is mediated by growth and transcription factors controlling the different aspects of tooth development 
such as tooth initiation, enamel knot formation and/or cell proliferation and differentiation. The aim of 
this review was to establish which factors are, how they interact and their functions in Odontogenesis. 
We have described several signaling pathways which are essential for correct tooth development and 
organized all available information. Our conclusion is that instead of large amount of information about 
tooth development, further studies are necessary to clear several essential mechanisms which still 
remain unknown and/or unclear.

The earliest marker of tooth position is Pixt2 appears in the 
stomatodeal and is progressively restricted to dental placode 
determining the request of Pixt2 for early specification of odontogenic 
epithelium [6]. Pax9 is another early marker of tooth position and 
its function might be necessary for establishing the competence of 
future tooth mesenchyme to respond to epithelial signals [7]. The 
same study proposes an alternative explanation about Pax9 function 
during initial stage suggesting that it plays a more direct role in the 
regulation of signaling molecules’ production by the mesenchyme 
[7]. Wnt7b and Shh act as early markers of tooth position and are 
expressed in oral ectoderm and dental epithelium, respectively, 
interacting to keep cell boundaries between oral ectoderm and dental 
epithelium from E9.5 until E11.5 [8]. 

In Table 1  [9-13] we can see which factors are implicated in 
molar and/or incisor formation such as Lhx6 and Lhx7 which control 
the acquisition of odontogenic potential by molar mesenchyme  
[14,15], in response to epithelial FGF-8 [15], or Dlx1 and Dlx2 which 
specify a subpopulation of neural crest derived mesenchymal cells as 
odontogenic for the upper molar region [10]. 

In Figure 1  [9,12,16-18], it has been shown interaction between 
some factors which determine tooth type and position.

Thickening of dental epithelium and mesenchymal 
condensation: Epithelial BMP-4 and FGF-8 are essential in control 
of target genes transcription at this stage. They interact, BMP-4 
as inhibitor and FGF-8 as inducer, and lead to different responses 
(Figure 2)  [7,16,19] controlling epithelial proliferation. 

Introduction
The embryonic process of odontogenesis is originated by two 

main embryonic tissues which are ectoderm and the underlying 
ectomesenchyme. The interaction between both two components 
leads tooth development throughout different phases known as 
initial stage, bud stage, cap stage, bell stage, appositional stage and 
root development [1].

Signal molecules, growth and transcription factors among other 
factors, are responsible of this interaction between epithelium and 
ectomesenchyme, and the communication in a one tissue layer [1]. 

Nowadays there are several researches which show the expression 
and functions of these factors during tooth development, but it is 
necessary to collect and organize this information improving the 
quality of the future studies. Therefore the aim of this review has been 
the collection and organization of all information about these factors 
during Odontogenesis. 

Discussion
Initial stage

The first morphological signal of tooth development is the 
formation of a serie of epithelial thickenings into ectomesenchyme at 
sites corresponding to the position of presumptive teeth [2].

In mice the number of thickenings which appear is fewer than 
human. Mice has only one incisor, which is continuously growing 
throughout their live, and three molars separated by a diastema 
region in each quadrant [3]. 

During this stage the cranial ectoderm produces the signals 
which initiate tooth development, until E12.5 the underlying 
ectomesenchyme has not yet been specified for tooth development 
[4,5].

Early markers of tooth position and tooth type: Prior to 
thickening of dental epithelium various factors are expressed in 
dental epithelium and mesenchyme determining the position and 
pattern of prospective tooth.
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Table 1: Factors implicated in the determination of tooth type. Here we show 
factors known which act in determination of tooth type [9–13].

Barx1 Msx1 Dlx1 Dlx2 dHAND2 Isl1 Lhx6 Lhx7 Activinβ

Upper Incisor - + - - - + - - +

Lower Incisor - + - - + + - - +

Upper Molar + - + + - - + + -

Lower Molar + - - - - - + + +
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About mesenchymal condensation during tooth initiation, 
Mammoto et al. (2011), show that this process is controlled 
mechanically and chemically. They explain that early dental ectoderm, 
at E11, produces Fgf-8 which is stored in basal membrane (interface 
between dental ectoderm and ectomesenchyme) and later it is 
released over time, until E13, inducing the migration and attraction of 
ectomesenchymal cells toward epithelial boundary. At the same time 
dental ectoderm also produces Sema3f which repulses the migrating 
cells causing them to pack at the mesenchymal interface and form the 
condensed mesenchyme by E13. As a result some critical odontogenic 
genes are induced (Pax9, Msx1, BMP-4) leading to subsequent tooth 
organ formation [20].

Transition to bud stage: The transition to bud stage in mice 

occurs from E11.5 until E12.5. There are only few researches which 
study this transition.

Activin-βA is believed to be essential in early mesenchymal 
signaling, between E11.5 until E12.5, inducing changes in the 
mesenchyme let the transition to bud stage [13]. Although Activin-
βA role in this transition still remains unknown [13].

Epithelial Fgf-8 has also a role in this process inducing the 
mesenchymal expression of Fgf-3 by Msx1-dependent pathway 
when the odontogenic potential moves to ectomesenchyme. But it is 
known that Msx1 is no sufficient for Fgf-3 expression [19] so future 
studies are necessary. Lhx6 and Lhx7 are also related to acquisition of 
odontogenic potential by dental mesenchyme [15]. 

BCL11B seems to be necessary for the proper timing of epithelial 
proliferation, invagination and down-regulation of epithelial Bmp-4 
[21]. And Shh affects epithelial cell proliferation to produce a tooth 
bud  [8,22,23]. Both processes are important for transition to bud 
stage in tooth development.

Bud stage
During this period the tooth bud appears in each arch for 

proliferative activity of basal cells of ectoderm [24] and the 
condensation of ectomesenchymal cells also continues [20,25]. The 
development dominance shifts from ectoderm to ectomesenchyme at 
early phase of this stage [26].

Epithelial cell proliferation: Several factors are implicated 
in epithelial cell proliferation at this stage; an important one is 
mesenchymal BMP-4 that acts as a paracrine molecule inducing or 
keeping the gene expression of Shh and Bmp-2. One study shows 
BMP-4 regulates Bmp-2 expression throughout Shh regulated by 
BMP-4 concentration-dependent manner [27]. Another study shows 
a relationship among Wnt/β-catenin signaling, Bmp-4, Msx1 and 
Msx2 expression. They propose a model where Bmp-4 mediates Msx 
expression downstream of Wnt controlling epithelial cell proliferation 
[28]. Recently, one study proposes an orchestration of non-canonical 
BMP and Wnt/β-catenin signaling in controlling of cell epithelial 
proliferation and fate [29]. Non-canonical BMP signaling induces 
epithelial p38 and ERK1/2 which control cyclin D1 expression in 
dental epithelial cell proliferation [29] and Wnt/β-catenin signaling 
sustains Pixt2 epithelial expression determining cell fate of dental 
epithelium. Wnt/β-catenin signaling also regulates epithelial cell 
proliferation synergistically together with BMP signaling [29]. 

Other studies support the importance of Shh in epithelial cell 
proliferation to produce tooth bud [22] and suggest Shh down-
regulates, acting as a proliferative factor, at early bud stage and re-
initiates in cells at the tip of the late bud, maintaining survival of 
these cells [23]. Tβ4 is suggested to be involved in the proliferation of 
oral epithelial cells during bud and cap stage, but further studies are 
needed to know its role in this cell proliferation [30].

Mesenchymal cell proliferation and condensation: Pax9 may 
be important in pattern of developing tooth ectomesenchyme since 
this factor seems to take part in the activation of mesenchymal 
odontogenic factors leading tooth morphogenesis from the early bud 
stage [31] and in the maintenance of Osr2 expression to restrict Msx1-

Figure 1: Diagram of pathways implicated in tooth type determination: Incisor 
tissues are shown in green (dental ectoderm) and blue (ectomesenchyme) 
and molar tissues are shown in pink (dental ectoderm) and orange 
(ectomesenchyme). BMP-4 and FGF-8 are main factors which are expressed 
in dental epithelium of presumptive incisor and molar, respectively and 
form part of a negative feedback loop [12]. Epithelial BMP-4 creates a 
positive feedback loop with Isl1 [12], induces Msx1 expression in future 
incisor ectomesenchyme [9,18] but represses Pixt1 and Barx1 expression 
in presumptive molar ectomesenchyme [17]. However, epithelial FGF-8 
induces Pixt1 expression in ectomesenchyme of presumptive molar and 
consequently it also induces Barx1 expression [16]. DE (Dental epithelium); 
EM (Ectomesenchyme).

Figure 2: Pathways related to cell proliferation at initial stage: FGF-8 and 
BMP-4 are two key factors for cell proliferation at initial stage throughout the 
regulation of genes expression. These two factors control, FGF-8 as activator 
and BMP-4 as inhibitor, the regulation of Pixt1, Pixt2 [16] and Pax9 expression 
[7]. In addition, BMP-4 and FGF-8 act through Msx1-dependent pathway 
to produce the expression of their own family downstream genes (Fgf-3 
by FGF-8 and mesenchymal BMP-4 by BMP-4) in ectomesenchyme [19]. 
Ectomesenchymal expression of Dlx1 and Dlx2 are also regulated by FGF-8 
[19]. BMP-4 also regulates Dlx2 and Msx2 expression in ectomesenchymal 
[19]. DE (dental epithelium); EM (ectomesenchyme).
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mediated propagation of mesenchymal odontogenic program lingual 
along the tooth development field [26,31–34]. Pax9 acts genetically 
upstream of both Msx1 and Osr2, Osr2 suppresses the mesenchymal 
odontogenic program through physical interactions with Msx1 and 
Pax9 proteins [31]. 

It is suggested Msx1 is essential for regulation of CNC (cranial 
neural crest) cell proliferation, differentiation [25] and for specification 
the fates of these progenitors during tooth morphogenesis [25,35]. 
p19INK4d expression is inhibited by Msx1 facilitating the formation 
of the cyclinD/CDK complex and phosphorylation of Rb protein, thus 
Msx1 permits the cell cycle transcription factor E2F which regulates 
the cell cycle genes expression and progression of the cell cycle [25]. 
Mxs1 mesenchymal expression is controlled by Smad1/5/8 which 
transduce BMP signal independently of Smad4, known as atypical 
canonical BMP signaling pathway since Smad4 is not essential for 
BMP/Smad signaling [35].

In section “Thickening of dental epithelium and mesenchymal 
condensation” we explain the role of Semf3a and Fgf-8 which act 
physically and chemically in mesenchymal condensation during 
initial and bud stage [20].

Transition to cap stage: The transition to cap stage is the 
beginning of morphologic differences between the different tooth 
types [2]. 

Msx1 takes part in transition to cap stage throughout 
ectomesenchyme proliferation and condensation, how we explain 
in section “Thickening of dental epithelium and mesenchymal 
condensation”. A well-condensed ectomesenchyme is essential for 
this transition since cell mass acts upon dental epithelium stimulating 
cell proliferation and preventing apoptosis [25]. 

PDGF-A and its receptor, PDGFR-α, are associated with the 
cranial neural crest-derived mesenchyme cells since PDGF-A induces 
DNA synthesis to increase the cell proliferative activity within enamel 
organ epithelium contributing the transition to cap stage [36]. Runx2 
may be also implicated in this transition to cap stage, but further 
studies are necessary to explain its role [37].

In Figure 3 we can see other pathways which are related with the 
enamel knot formation and induction [38-40]. 

Cap stage
During this stage epithelial cells increase their proliferative 

activity and the deep surface of buds invaginate producing dental 
germs. In this moment each dental germs are formed by enamel 
organ, dental papilla and dental follicle [2,24]. 

Enamel organ is formed by four different layers: outer enamel 
epithelium, stellate reticulum, stratum intermedium and inner enamel 
epithelium. The ectomesenchyme surrounded by the invagination is 
known as dental papilla and will develop originating dentin-pulpar 
complex. And the dental follicle will form supporting structures 
(periodontal ligament, cementum and alveolar bone) [2,24].

Finally an important structure appears during this stage in dental 
epithelium, the primary enamel knot. It is a transitory structure which 
defines crown shape [41]. The enamel knot controls the formation of 

tooth cusps [42]. In multicuspid teeth will appear secondary enamel 
knots at bell stage [43]. 

Primary Enamel Knot (PEK): It is suggested tooth cusp 
formation is regulated by a balance between cell apoptosis in enamel 
knot and cell proliferation in dental epithelium [44]. In Figure 4 
[42,45-47], it is shown some pathways implicated in the control of 
cell proliferation by enamel knot.

Several factors are related to enamel knot. Shh is a well-known 
factor but its function in enamel knot is still unknown, although it is 
suggested dental papilla is a target for Shh. But they finally conclude 
Shh and Bmp2 expression in the enamel knot could be dispensable 
for tooth patterning since the observation of cell apoptosis in enamel 
knot and cell proliferation in dental epithelium remain unaltered in 
Msx1-Bmp-4 transgenic mice [44]. Another study suggests that Shh 
signals directly to lingual cells of enamel knot producing an ingrowth 
of the lingual epithelial invagination because of Ptch expression, a Shh 
receptor, has been observed in the lingual epithelial invagination [48]. 
Shh has also been related to Fgf-4 to co-ordinate the surrounding cells 
of enamel knots [42,49] and it seems these factors may functionally 
interact with c-Myb inducing its expression in the underlying 
mesenchyme of enamel knots [50].

Apoptosis is an important part in enamel knot development. 
Various factors are known to regulate cell death, such as Bmp2, 
Bmp4 and Bmp7 which seem to act as autocrine signals within the 
enamel knot cells [44,51]. Jernvall J, et al., determine that the role of 
mesenchymal Bmp-4 is the stimulation of p21 expression in enamel 
knot at early cap stage ceasiting the proliferation in enamel knot [51]. 
p38α MAPK pathway also controls p21 expression in response to 
BMP2/7 [52]. BMP-4 is necessary for expression of Zeb1 and Zeb2 in 
the enamel knot too [53]. FGF-4 and FGF-9 are involved in apoptosis, 
but in prevention of untimely apoptosis of enamel knot cells [54,55]. 
Enamel knot cells seem not to express FGF receptors and they remain 
non-proliferative undergoing apoptosis in the distal part of enamel 
knot [51]. Recently, Wnt5a also seems to be implicated in cell death 
but in dental non-regions, although in dental regions Wnt5a acts as 
a direct or indirect regulator of Fgf-10, Bmp-4 and Shh, which are 
involved in cell proliferation, cusp formation and the determination 
of tooth size [56]. p63 gene has also related to the enamel knot 
apoptosis [51,57]

TGF-β2 has been related to secondary and primary enamel knots 
but it has not already known its role in theses transitory structures 
[58].

Cell proliferation: In Figure 4 [42,45–47] we describe some 
important pathways in cell proliferation in different tissues during 
cap stage. 

Epithelial cell proliferation FGF-4 and FGF-9 stimulate epithelial 
cell proliferation, but no in enamel knot because FGFs receptors lack 
this stimulation [42,46,54,59,60]. Other factors that have effect on 
cell proliferation in enamel organ are HGF [61], Sp6 [62], Tβ4 [30], 
YAP [63] and EGF, the last one seems to stimulate the DNA synthesis 
increasing the cell number within the enamel organ epithelia [64]. In 
case of YAP, the overexpression of this factor in dental epithelium 
may affect cell movement and/or cell polarization producing the 
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Figure 4: Pathways related to cell proliferation during cap stage: Blue factors are expressed in enamel knot, purple ones are expressed in dental epithelium and 
orange ones are expressed in dental papilla. Eda activates its receptor Edar in the enamel knot resulting in NF-κB activation and Fgf-20 transcription [45]. Fgf-
20 [45], together with Fgf-4 [42,45] and Fgf-9, move from enamel knot to dental papilla inducing the transcription of Runx2 and Fgf-3, and stimulating epithelial 
proliferation [45]. Mesenchymal Fgf-3 and Fgf-10 signal epithelium stimulating its cell proliferation too[45,46]. Enamel knot Fgf-20 controls its own activation of 
Fgf signaling in dental papilla and dental epithelium via the induction of Spry4 and Spry2 expression, which act as inhibitor of Fgf signaling in dental papilla and 
epithelium, respectively [45]. Cervical loop cell proliferation is controlled by Tbx1 which activates Fgf signaling pathway in dental epithelium and/or attenuates Pixt2 
activation of p21 expression [47]. EK: Enamel knot; EO: Enamel organ; DP: Dental papilla.

Figure 3: Pathways related to enamel knot formation at transition to cap stage: In dental epithelium, Wnt10, through Lef-1 and β-catenin, mediates transcriptional 
activation of epithelial Fgf-4 [39,40]. FGF-4 signals to subjacent mesenchyme inducing Runx2 via Msx1. Runx2 is required for Fgf-3 mesenchymal expression 
[39] and for other unkown mesenchymal signals (presumably including BMP-4) [40] regulation which together with FGF-3 induce Shh expression in enamel 
knot epithelium [39,40]. Finally, it has been also described a feedback loop where epithelial Bmp-4 induces Tbx2 and Msx1 expression in dental mesenchyme. 
Then mesenchymal Tbx2 and Msx1 antagonistically regulate enamel knot formation and mesenchymal Bmp-4 expression, acting Tbx2 as inhibitor and Msx1 as 
inducer[38]. DE (dental epithelium); EM (ectomesenchyme); EK (enamel knot).

enamel knot fail to move to the tip of the enamel organ [63]. Sp6 
function is mediated by phosphorylation of pRb releasing E2F from a 
pRB-E2F complex to activate cell proliferation [65,66].

Msx2 takes part in the formation of stratum intermedium through 
the regulation of its cell proliferation [67]. 

Mesenchymal cell proliferation In addition to the factors shown 
in Figure 4 [42,45-47], HGF has an indirect effect on cell proliferation 
in dental papilla since HGF-stimulated inner dental epithelium 
increases proliferation activity and begins or improves an unknown 
factor synthesis which regulates cell proliferation in dental papilla 
[61]. Msx1 promotes dental mesenchyme proliferation too, regulates 
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the cell cycle of dental mesenchymal cells and prevents odontoblast 
differentiation by inhibition of Bmp-2 and Bmp-4 expression during 
cap stage [68]. 

PDGF-BB and PDGFRβ signalling might be important for 
mesenchymal proliferation [69] and c-Myb induces the proliferation 
of underlying mesenchyme of enamel knot [50].

Cervical loops cell proliferation FGF-10 and possibly FGF-3 (the 
study can’t ensure completely) stimulate epithelial cell proliferation 
in the cervical loops [46] since the expression of tyrosine receptors 
for FGF-10 and FGF-3, FGFR1b and FGFR2b, are restricted to the 
dental epithelium [54]. Lhx6 also takes part in the control of cell 
proliferation in cervical loop [70].

Transition to bell stage: There is no very much information 
about this process. It seems that three FGF receptors (FGFR2b, 
FGFR1b and FGFR1c) expressed in the cervical loops stimulate cell 
proliferation contributing to the transition [46]. Canonical Wnt/β-
catenin signaling also seems to be implicated in transition to bell stage 
through enhancement of dental papilla cell proliferation [71]. Future 
studies are necessary to clear this mechanism. 

Bell stage
During bell stage the invagination of inner dental epithelium 

increases acquiring a bell shape and histochemical changes occur in 
enamel organ, dental papilla and dental follicle [24]. 

Stratum intermedium appears in enamel organ between stellate 
reticulum and inner dental epithelium. This new cell layer is larger in 
sites of presumptive cusp and incisor edge [24]. 

Odontoblast and ameloblast differentiation from dental papilla 
and inner dental epithelium, respectively, are important processes at 
this stage. A basal membrane is separating these cell layers [24]. When 
odontoblasts start to secrete dentin matrix, the basal membrane breaks 
up and degrades, allowing direct interaction between preameloblasts 
and predentin [72].

Crown shape will be defined at this stage through specific signal 
of dental papilla in inner dental epithelium, these signals fold this cell 
layer determining the shape, number and position of cusp [24]. Later, 
inner dental epithelium exerts its inductive capacity above dental 
papilla leading to odontoblast differentiation. Then, the inner dental 
epithelium cells begin to differentiate in ameloblast [24]. Although 
one study is against this theory and suggests that ameloblast 
differentiation might be independent of functional odontoblast 
differentiation since the mineralized tissue, bone-like tissue, is 
sufficient for ameloblast differentiation [73].

Finally, secondary enamel knots (SEK) are transitory structures 
which appear in enamel organ of multicuspid teeth during this stage 
of tooth development [43].

Secondary enamel knots (SEK): Various studies have been 
suggested that role of factors could be different in primary and 
secondary enamel knots. For example, Fgf-4 and Shh expression in 
primary and secondary enamel knots coordinate proliferation in 
surrounding cells [42,49]. Both factors functionally interact with 
c-Myb and induce its expression only in the underlying mesenchyme 

of secondary enamel knots [50]. Another factor which seems to have 
different roles in PEK and SEK is TGF-β2 since its immunoreactive 
locations show some differences in PEK and SEK. In PEK, this factor 
is expressed in cells adjacent to and away from basement membrane 
and in SEK only appears in cells away from the basement membrane 
[58]. Fgf-4 and also Fgf-9 shift from the PEK to the forming SEK  [54]. 

Wnt signaling is important in molar cusps development [28]. 
Liu Fei et al. induced ectopic expression of Dkk1, an inbitor of Wnt 
signaling, at early bell stage producing dull defects in cusp phenotype. 
At molecular level, Wnt inhibition down-regulates enamel knot 
marker p21 in dental epithelium, Bmp-4 is slightly affected and 
regulator of cusp development Eda is reduced. Together, these data 
suggest Wnt/β- catenin signaling is required for maintenance of the 
enamel knots and determination of tooth shape [28]. 

The position of secondary enamel knots are defined by a signal 
from primary enamel knot [74]. Two studies suggest the importance 
of Eda in this process. Liu Fei et al. propose a competition between Eda 
and Wnt in the establishment of enamel knots boundaries in molar 
[28]. However, Laurikkala Johanna et al. determine Eda expression, 
which is stimulated by BMP-2, BMP-4 and BMP-7, around enamel 
knot establishes the locations of SEK. This stimulation is cointeracted 
by enamel knot factors Shh and FGF resulting in an ectodin-negative 
area around the enamel knot which determines the target field of 
BMP signaling [75].

Other molecules seem to be implicated in SEKs such as Wnt10a 
[76] and FHL2 [77].

Odontoblast: It is known many different factors are implicated in 
odontoblast differentiation and its maturation. 

Runx2 and Runx3 co-operate regulating Osterix expression 
during odontoblast differentiation [78]. FHL2 interacts with Runx2 
and β-catenin inducing odontoblast , ameloblast differentiation and 
dentin formation [77]. 

Klf10 induces odontoblast differentiation through the up-
regulation of odontoblastic differentiation markers in the dental 
papilla cells(Dmp1 and Dspp genes) [79]. 

Shh signaling is necessary for the elongation of the odontoblasts 
[48] and c-Myb regulates the calcium level in odontoblasts and 
ameloblasts and contributes to the mineralization of dentin and 
enamel during its production [50].

There are two factors related to stem cell population. Rb1 
expression in dental mesenchymal stem cell populations is lower 
to prevent its differentiation, however its expression is upregulated 
in differentiating cells (odontoblast and ameloblast) [80]. Oct-4A 
is also implicated in stem cell niche formation, which regulates 
differentiation into ameloblast and odontoblast [81]. Another 
study shows that Oct4/3A regulates apoptotic genes to control the 
balance between apoptosis and cytodifferentiation and it seems to be 
important in the maintenance of odontoblast characteristics [82].

FGF signaling takes part in odontoblast life. FGF-2 plays a 
role in the formation of enamel and dentine through regulation of 
proliferation and differentiation during cap and bell stage [83], and is 
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also implicated in odontoblast polarization [84]. Down-regulation of 
Fgf-3 and Fgf-10 expression is necessary for odontoblast maturation 
[46]. Twist1 seems to regulate FGF signaling in dental mesenchyme, 
being required for terminal differentiation of dental mesenchymal 
cells into odontoblast [85].

Another factor which has been implicated in prevention of 
odontoblast differentiation is MSX1 that realizes its role through 
the inhibition of Bmp-2 and Bmp-4 expression at the cap stage 
during tooth development [68]. Bmp-2 is known to act during 
odontoblast differentiation since this factor activates DSPP [86,87] 

via NF-Y signaling [86]. DMP1 and ATF6 are regulated by BMP-2 in 
odontoblast differentiation [87]. Bmp-2 is also related to pulp blood 
vessels and associated pericytes since Bmp-2 establishes a relationship 
with Vegf-A which are implicated in blood vessel and associated 
pericytes development [88]. The lack of Bmp-2 results in a decrease 
of dentin quantity and quality because of a failure in odontoblast 
differentiation and production of necessary terminal products such as 
collagen type I and Dspp expression [88]. Ang1 and Tie2 are related 
to blood vessels development at odontogenesis, since Ang1 and Tie2 
are expressed in odontoblast and endothelial cells, respectively, at 
the onset of odontoblast differentiation suggesting a role of Ang1 in 
capillaries invasion into odontoblast layer [89].

Wnt signaling is also implicated in odontoblast differentiation. 
Wnt10 is related to cell matrix interactions which regulate odontoblast 
differentiation, since cell-matrix interaction is essential for induction 
of Dspp expression that is downstream molecule for Wnt10a [76]. 
Wnt5 is suggested to take part in odontoblast differentiation being 
mediated by Ror2 [90]. 

Lef1 controls odontoblast differentiation [91–93] through 
the regulation of different important genes for this process. Lef1 
regulates the terminal odontoblast differentiation through regulation 
of DSPP, osteocalcin and ALP mRNA expression [92]. It has been 
also shown a relationship between the expression pattern of Lef1 
and Dspp, P21(necessary in early phases of differentiation since P21 
expression is attenuated in mature odontoblast), Hsp25 and HSP25 
in differentiation of odontoblasts in two contexts, dentinogenesis 
in continuously growing incisor and the crown and root dentin 
formation of molar with limited growth [94]. 

TGF-β1 induces odontoblast differentiation through Smad 
signaling pathway at early odontoblast differentiation but NFI-C 
modulates late odontoblast differentiation and mineralization [95]. 
At the onset of odontoblast differentiation TGF-β1 signaling induces 
p-Smad2/3 increasing the binding of NFI-C in the cytoplasm [95]. 
Additionally, MAPK is activated by TGF-β1 signaling resulting in the 
increase of interaction between phosphorylated NFI-C and Smurf1/2 
[95]. Taken together, activation of TGF-β1 and MAPK enhance the 
interaction and formation of Smad2/3-NFI-C-Smurf1/2 complex 
which results in the NFI-C degradation. However at late odontoblast 
differentiation and mineralization, NFI-C signaling stimulates 
dephosphorylation of p-Smad2/3 [95].

TGF-β and BMP signaling pathways work together to control 
odontoblast differentiation [73,96] during dentinogenesis since 

Smad4, the common mediator for the canonical TGF-β/BMP signaling 
pathways [73], is essential for odontoblast differentiation [73]. The 
lack of Smad in a mutant produces morphological and functional 
defects in odontoblast during dentinogenesis [73]. In addition, this 
study provides the first evidence that TGF-β/BMP and Wnt signaling 
work together to ensure proper cell fate determination during 
postmigratory neural crest cell development and organogenesis 
[73] since they found that the ablation of mesenchyme Smad4 
results in ectopic bone-like structure formation in the dentin region 
and enhances Wnt pathway and when they suppress upregulated 
canonical Wnt pathway in mutant dental mesenchyme partially 
rescues the CNC cell fate change [73]. Taken together, TGF-β/
BMP signaling depends on Smad4 to regulate Wnt signaling during 
dentinogenesis through control of Wnt inhibitors, Dkk1 and SFRP1 
expressed in dental mesenchyme and odontoblast [73].

It seems that Wnt-BMP signaling operates in odontoblast and 
ameloblast differentiation where Sp6 acts as activator of Wnt/β-
catenin signaling in dental mesenchymal preodontoblastic cells [62]. 
This role of Sp6 in control of Wnt-BMP signaling is supported by 
Aurrekoetxea et al. 2012, [71]. 

Some factors need further investigations to find out their role in 
these processes. For instance Midkine gene [97], Fgf-9 [54], KLF4 
[98], OASIS [99], Pax6 [100], NGF [101], Tβ4 [30,102], PDGFBB 
[69] and its receptor, PDGFRβ [69], Nanog [81], FGF-1 [84], Runx2 
[37,103], GEP [104], FAM20C [105], Bcor [106], HGF [61], Trps1 
[107], Sp6 [65] and Bcl-2  [108]. 

Ameloblast: Several molecules have been shown to take part 
in ameloblast and odontoblast life for example Oct3/4A how we 
explain in section “Odontoblast” [81,82] or role of FHL2 in these 
cells differentiation which have been also described in “Odontoblast” 
[77]. Interaction between Wnt-BMP signaling regulated by Sp6 
takes also part in ameloblast differentiation and it is suggested that 
disturbed Wnt-BMP signaling at bell stage producing a blockade 
of amelogenesis and an absence of preameloblastic Shh expression 
[62]. Since Shh is essential for preameloblast growth, polarization 
and proliferation, this last one throughout cell promotion of cyclin 
D1 transcription controlling cell cycle transition [109], and BMP is 
required for development and polarization of preameloblast [110]. 

BMP and Shh signaling also control ameloblast differentiation 
but through the modulation of important genes in ameloblast 
differentiation. BMP-2 controls expression levels of p75Ngfr and 
amelogenin, the well-known ameloblast differentiation markers 
and decreasing Hes1, a marker for stratum intermedium. Ectodin is 
also induced by BMP-2 forming a negative feedback loop to control 
ameloblast differentiation [111]. And Shh up-regulates amelogenin 
and ameloblastin expression directly [112]. 

Other molecules implicated in control of genes related to 
ameloblast differentiation are PDGF-AA which controls ameloblastin 
expression, a marker of differentiated ameloblast too [69], and Sp6 
which activates mRNA expression for ameloblastin, an important 
regulator to maintain the differentiation state of ameloblasts [65]. 

Msx2 controls ameloblast differentiation since this factor acts 
as a transcriptional repressor of mouse amelogenin gene in a dose-
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dependent manner through inhibition of DNA binding C/EBPα 
activity, a transcriptional activator of amelogenin promoter [113]. 
Msx2 is also related to terminal ameloblast differentiation and enamel 
formation controlling the maintenance of cell adhesion complexes 
between ameloblast through the regulation of laminin5α3 expression 
[67].

Recently some studies are suggesting that ameloblast 
determination occurs during bud stage in early progenitor, a small 
proportion of dental epithelial cells [114], which express Tbx1 in 
dental epithelium at E12.5 (bud stage). Progressively Tbx1 expression 
is restricted to inner dental epithelium where this factor regulates 
directly or indirectly amelogenin expression in dental epithelial cells. 
Tbx1 expression in dental epithelium is activated/maintained by FGF 
molecules forming a regulatory loop. Tbx1, in dental epithelium 
with amelogenin induction, and FGFs in dental papilla, control the 
proliferation and survival of the ameloblast precursors [114]. A later 
study supports this theory and adds that cells of the stem cell niche 
at the cervical loop of the rodent incisors express Tbx1, develop into 
ameloblasts and synthetize enamel [115].

Finally many other factors participate in ameloblast differentiation 
such as KLF5 [98], Klf10 [79], OASIS [99], FGF-9 [54], Pax7 [100], 
Rb1 [80], Krox-25 [116], GEP [104], TGF-β2 [58], c-Myb [50], FGF-2 
[83],  HGF [61], HGF [117], Six1 [118], Six4 [118] and Nanog [81], 
although their roles have not been described. KLF4 [98], is known to 
take part in primary differentiation of ameloblast and these others, 
FAM20C [105,119], Runx2 [103] and the down-regulation of Fgf-3 
and Fgf-10 [46] in terminal differentiation of these cells. MMP20 is 
necessary for ameloblast cell movement [120]. 

Appositional stage
During this stage odontoblast and ameloblast are going to secrete 

and mineralize the dentine and enamel matrix [24]. Ameloblast and 
odontoblast life is divided into secretory, transitional and mature 
phases according to their activity [30]. 

Dentinogenesis: The dentinogenesis mechanism has been 
widely studied. During this process there are two important parts: 
dentin matrix secretion and mineralization of dentin. In Table 2 
[50,77,79,81,83,84,92,94,98,100,107,121-124], it has been classified 
different factors according to if its role has effect on dentin secretion 
and/or mineralization, although this classification is not definitive, 
further studies could change it. 

Trps1 has a context-dependent role in dentine mineralization 
[107]. Trps1 is necessary for the matrix vesicles dependent initiation 
of mineralization through supporting expression of two phosphatases 
involved in hydroxyapatite formation (Alpl, Phospho1) and for 
transcription factors expression required for this process (Runx2, 
Sp7). At later stages of dentine mineralization, Trps1 acts as inhibitor 
by the suppression gene expression related to mineral propagation 
within extracellular matrix (Vdr, Phex) [107].

In section “Odontoblast” it has been described a relationship 
between TGF-β/BMP and Wnt signaling which is important for 
odontoblast differentiation and for dentinogenesis too [73]. TGF-β 
family is clearly implicated in dentinogenesis [96,125] since TGF-β2 

overexpression by odontoblast alters dentine formation affecting its 
elastic modulus in male mice [125]. 

Once again we have to make an allusion to section “Odontoblast” 
where it has been explained the Bmp-2 lack from odontoblast effects 
in dentin resulting in a decrease of dentin quality and quantity [88].

In Table 3 [76,79,88,92,94,104,121–124,126], it is related growth 
or transcription factors to a or several proteins and genes which are 
important for dentine formation. For example, TGF-β3 controls the 
induction of collagen type I and osteocalcin providing an organic 
framework for deposition of inorganic components such as calcium 
[121]. c-Myb has also influence in calcium level in odontoblast 
controlling the mineralization of dentin matrix [50]. TGF-β1 
mediates dspp expression [121,122] but decreasing it during dentin 
mineralization [122]. And Klf10 induces mineralization of dentin 
formation via upregulation Runx2, Dmp1 and Dspp [79].

Finally other factors have been related to dentinogenesis but 
further studies are necessary to determine their specific roles. These 
factors are FAM20C [105], TGF-β2 [58,127], p63 [57], Ang1 [89], 
Tie2 [89], IGF-I [126], FGF-2 [83] and Bcl-2 is related to prevention of 
dentinogenesis partially via inhibition of odontoblast differentiation 
[108]. 

Amelogenesis: Similar to dentinogenesis, in amelogenesis 
many different factors have also effects on enamel secretion and/or 
mineralization, thus we design again a Table where the factors are 
classified according to its role in secretion and/or mineralization 
(Table 4)  [50,52,67,77,83,98,100,103,119,126,128-134].

At secretory stage of amelogenesis, Runx2 and ODAM cooperate 
to active transcriptionally MMP-20. Runx2 regulates ODAM protein 

Table 2: Expression of transcription and growth factors during dentin formation. 
Here, we relate transcription and growth factors to secretion and/or mineralization 
of dentin matrix. [50,77,79,81,83,84,92,94,98,100,107,121–124].

Secretion Mineralization

Pax6 X

Oct-3/4 X

FGF-1 X

FGF-2 X X

Tβ-4 X

FHL2 X

Runx2 X

β-catenin X

Lef-1 X X

Dlx3 X X

KLF-5 X

TGF-β1 X

TGF-β3 X

c-Myb X

Klf10 X

Trps1 X
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expression which in turn regulates MMP-20 promoter activity [129]. 
During this period Msx2 also controls laminin5α3 expression leading 
ameloblast terminal differentiation, although it is not known how 
these two molecules are integrated in a pathway [67]. 

TGF-β2 overexpression by odontoblast may affect enamel 
development since dental mesenchyme has influence on enamel 
formation resulting in more porous and weaker to caries enamel [125]. 
However one study has suggested that ameloblast differentiation does 
not depend on functional odontoblast [73], so further studies are 
necessary for determining the influence of functional odontoblast on 
enamel development.

Sp6 has also effect on amelogenesis through Wnt/β-catenin 
signaling activation in mesenchymal preodontoblastic cells [62]. 
Other studies have related Sp6 to amelogenesis via down-regulation 
of follistatin gene expression [135], which may function in BMPs 
antagonism in ameloblast [110,135,136]. RhoA-MKK6-p38α signaling 
axis is crucial for enamel secretion since they induce p21, amelogenin 
and ameloblastin genes and p21 transcriptional activation by BMP-
2/7 [52]. 

In Table 5 [52,69,104,111,126,128,131–133,137–141] we related 
factors to different proteins and genes of enamel formation. For 
example, C/EBP-α and YY1 interact co-operatively which seem to 
contribute to the down-modulation of amelogenin gene expression 
[141]. Another example is the hierarchical interaction represented in 
Figure 5 [139]. Tβ4 regulates Runx2 mRNA expression which also 
controls some component of enamel matrices (Table 5) [123]. And 
amelogenin expression by DLX2 could be mediated by MSX2 [133]. 

Finally other factors have been demonstrated to take part in 
enamel formation, but there are necessary further studies to find 
out its role during this process. This factors are STAT-l, -2, -3 and -4 
[142], p63 [57], Krox-25 [116], Bmp-2 [143] and Xbp1 [144].

Root development
Tooth root development is initiated when crown morphogenesis 

ends at the end of appositional stage [145,146]. During this stage 
dentin-pulp complex and supporting structures are derived from 
ectomesenchyme and dental follicle [24]. Bcor and FHL2 might be 
involved in root development but their roles still remain unknown 
[77,106].

Transition to root development: During root development, the 
transition from dental cervical loop to HERS is generally regarded as 
the beginning of root formation [147–149]. However, the functional 
mechanism of HERS in guiding root development is still unclear 
[147,148,150,151]. It has been considered three mechanisms for 
this transition to root formation; first the cessation of IEE growth 
becoming differentiated ameloblast, then the formation of HERS 
with the fusion between IEE and OEE below the level of the crown 
cervical crown and finally the fragmentation of dental epithelium 
[152]. Respect formation of HERS, it has been demonstrated that 
OEE proliferates more actively than IEE so they hypothesize that OEE 
elongates downwards below the crown cervical margin producing a 
bilayered epithelial sheath, HERS [152,153]. IGF regulates this un-
balanced proliferation activity between OEE and IEE in autocrine 

Table 3: Transcription and growth factors related to molecules implicated in 
dentin formation. Here, we related different growth and transcription factors 
to expression of some essential proteins for dentin formation. DSPP (Dentin 
sialophosphoprotein), COL I (collagen type I), OCN (osteocalcin), DMP1 
(Dentin matrix acidic phosphoprotein 1) and ALP (Alkaline phosphatase)  

[76,79,88,92,94,104,121–124,126].
Dspp COLI OCN DPM1 ALP

Lef-1 X X X
Wnt10a X

TGF-β1 X

TGF-β3 X X X
GEP X X X
Runx2 X X
Bmp-2 X X
Dlx3 X
IGFs X
Klf10 X X

Table 4: Expression of transcription and growth factors during enamel 
formation. Here, we relate transcription and growth factors to secretion and/or 
mineralization of enamel matrix [50,52,67,77,83,98,100,103,119,126,128–134].

Secretion Mineralization
IGF-I X
IGF-II X
Sp3 X
FGF-2 X X
Tβ-4 X
FHL2 X
Runx2 X X
Wnt/β-catenin X
FAM20C X
Bcl11b X X
KLF-5 X
Pax6 X
c-Myb X
Msx2 X X
ODAM X
MMP-20 X
PRICKLE2 X
PRICKLE1 X
VANGL1 X
Laminin5α3 X
Dlx1 X
Dlx2 X
FoxO1 X
Smad3 X
p-38α X

and paracrine manner favouring root elongation [153]. BMP-4 also 
has influence in HERS cell proliferation through the control of HERS 
length [154].

Various factors have been related to these processes. Egf 
promotes the proliferation and maintenance of enamel organ so its 
disappearance is very important to initiate HERS formation [149]. 
The disappearance of Fgf-10 is also important to cessation of crown 
formation and the beginning of root development [152], and it 
seems that TGF-β/BMP signaling in epithelial cells are inhibiting 
mesenchymal expression of Fgf-10 [155], there are other studies 
which support the idea of TGF-β/BMP signaling role at initiation 
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of root development [59,156–158]. However, the presence of HGF 
induces the proliferation of HERS cells and its formation [159]. It has 
been suggested Bmi-1 regulates self-renewal in the HERS proliferative 
region by inhibition of apoptosis and cytodifferentiation and by 
promotion of the cell cycle [160]. Oct3/4A enables the precursor cells 
to maintain the balance between amelogenesis and root elongation 
throughout control of its cellular localization [160]. However, 
the cross-talk among Oct3/4, Bmi-1, apoptosis, proliferation and 
cytodifferentiation pathways is still largely unknown so further 
studies are needed [160].

Odontoblast and dentinogenesis at root development: 
HERS controls odontoblast differentiation, dentin formation and 
the subsequent periodontal tissues formation through epithelial-
mesenchymal interactions [161,162]. The mechanism which occurs 
during dentin crown and root formation are different [163–165]. 

In Table 6 [76,88,92,94,103,105,154,159,163,165-176], we can see 
which factors are implicated in odontoblast differentiation and/or 
dentin development. 

TGF-β/BMP signaling role in root dentin formation has been 
widely studied [88,96,154,155,166]. The ablation of Smad4 results in 
altered odontoblast polarity, a decrease of Dspp expression and in a 
mineral dentin apposition rate suggesting intracellular Smad4 takes 
part in a positive feedback loop in TGF-β/BMP signaling pathway in 
terminal odontoblast differentiation [166]. Another study increases 
the knowledge about TGF-β/BMP signaling role in root dentin 
development proposing a Smad4-Shh-Gli1-Nfic signaling pathway, 
since epithelial Smad4 is necessary for Shh expression, then Shh 
releases from dental epithelium, acts through Gli1, and induces 
mesenchymal expression of Nfic controlling interaction between 
HERS and dental mesenchyme [155]. The idea of relationship between 

TGF-β/BMP signaling and Nfic at root dentin formation is also 
supported by other studies where it is determined Nfic plays a role in 
differentiation of terminal odontoblast from preodontoblast and its 
function [163,167,177]. Nfic has been related to intercellular junction 
formation through regulation of junction component expression and 
to odontoblast apoptosis in a cell-specific manner but this mechanism 
still remains unknown [167]. The role of BMPs has also supported 
by other studies where BMP-4 has also been demonstrated to act as 
stimulant for odontoblast differentiation at root development [154] 
and deletion of Bmp-2 gene in early odontoblast results in a more 
pronounced effect on root dentin than effects explain at section 
“Odontoblast” [88].

A recent study has also related Nfic to odontoblast differentiation 
[174]. They propose the Nfic-Klf4-Dmp1-Dspp cascade where 
Nfic directly binds to Klf4 promoter transactivating its expression 
[174]. Klf4 promotes odontoblast differentiation by up-regulation 
of Dmp1 binding its promoter and consequently Dmp1 induces 
Dspp expression during odontoblast differentiation [174,178-181]. 
They also propose another cascade Nfic-Klf4-E-cadherin, which is 
important for regulation of odontoblast differentiation as well as their 
functional implication in dentin formation, but further studies are 
necessary [174].

Wnt/β-catenin signaling is another pathway which has been 
determined to take part in root dentin formation. Wnt/β-catenin 
signaling roles at root dentin formation depend on differentiation 
stage [168], since overexpression or suppression of Lef-1, a nuclear 
effector of Wnt/β-catenin signaling, in dental pulp cells might 
accelerate and inhibit odontoblast differentiation and mineralization, 
respectively [92]. Lef-1 is also implicated in the regulation of 
odontoblast differentiation through the control of Dspp expression 
[94]. Based on temporospatial regulation of Wnt/β-catenin signaling, 

Table 5: Transcription and growth factors related to molecules implicated in enamel formation. Here, we related different growth and transcription factors to expression 
of some essential proteins for enamel formation. AMEL (amelogenin), ENAM (enamelin), COLI (collagen type I), AMBN (ameloblastin), AMNT (amelotin) and OCN 
(osteocalcin). [52,69,104,111,126,128,131–133,137–141]

AMEL ENAM COL I Tuftelin AMBN AMTN Rock1 OCN p75Ngfr Klk4
MMP-9 X
IGFs X X X
Sp3 X X X X
Sp6 X X
Bcl11b X
Tβ4 X X
Runx2 X X
GEP X X X
FoxO1/Smad3 complex X X X
Dlx1 X X
Dlx2 X X
Msx2 X
FoxJ1 X
Pixt2 X
Bmp-2 X X
PDGF-AA X
PERP X X X
YY1 X
C/EBP-α X
p-38α X X
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it is known the inhibition of this signaling is required for dentin and 
cementum mineralization [168], but its activation is necessary for 
odontoblast and cementoblast differentiation [168,169]. Other studies 
support this role of Wnt/β-catenin signaling in dentin formation 
at root development, such as co-expression of Wnt10a with DSPP 
in odontoblast regulation DSPP transcription [76], regulation of 
secretion and/or mineralization of dentin matrix by Wnt/β-catenin 
signaling in part via FGF-18 expressed by odontoblast and sub-
odontoblastic layer cells [170]. FGF signaling is also related to Wnt/β-
catenin signaling through β-catenin inhibition by activation of PI3K/
Akt pathway regulation subcellular localization of active GSK3β in 
mesenchymal cells, so FGF signaling controls proper fate of dental 
mesenchyme [171].

Finally it has been related TGF-β/BMP signaling with Wnt/β-
catenin signaling. A loss of SMAD4 leads to up-regulation of Wnt/

β-catenin signaling, via down-regulation of Dkk-1 and secreted 
frizzed-related protein. On the contrary constitutive stabilization 
of β-catenin in odontoblast induces up-regulation of SMAD4. So 
it seems SMAD4 is required for Wnt inhibitors up-regulation to 
compensate the persistent Wnt/β-catenin signaling activation in 
odontoblast controlling terminal odontoblast differentiation and 
dentin matrix formation at root development [165].

Tooth supporting structures and their cells: The supporting 
structures of tooth are cementum, alveolar bone and periodontal 
ligament and derive from dental follicle. HERS takes part in 
development of periodontal tissues throughout epithelial-
mesenchymal interaction [161,162]. 

In Table 6 [76,88,92,94,103,105,154,159,163,165-176], we can see 
the factors, which take part in supporting structures development, 
related to cells and matrix where they act. 

HGF stimulates periodontal tissues development in an indirect 
manner through the growth of HERS [159]. 

Various researches have studied the role of Wnt-βcatenin 
signaling in dental follicle and show that Wnt-βcatenin signaling 
has an important role in the control of cementoblast differentiation 
[168,169,182] and cementum mineralization [168,182]. It is 
suggested Wnt-βcatenin signaling is required for Npp1 expression 
in cementoblast to keep the cementum and periodontium integrity, 
although further studies are necessary [165]. An in vitro study 
proposes that Wnt3 inhibits cementoblast differentiation through 
the inhibition of Runx2 expression, which together with Osterix 
control expression levels of ALP, BSP and OCN in cementoblast 
and osteoblast differentiation, but enhances cell proliferation [175]. 
Another research shows a feedback mechanism between canonical and 
noncanonical Wnt signaling during dental follicle cells differentiation 
[182]. It seems that Wnt5 acts as a negative regulator of canonical 
Wnt3a-mediated ALP dental follicle cells expression and does not 
affect the nuclear translocation of β-catenin as well as β-catenin-
mediated transcriptional activation of Tcf caused by Wnt3a so Wnt5a 
inhibits the downstream part of β-catenin-Tcf pathway [182].

Conclusion
We can conclude that Odontogenesis is a complex embryonic 

process where many factors could have influence during its 
development so the study of these factors is very important. We can 
find a large amount of available information about different pathways 
and/or presence of the different growth and transcription factors 
during Odontogenesis, but this information must be compiled and 
classified to improve the quality of future studies. Instead of this all 
information further studies are still necessary to find out the roles of 
many key factors but we are in the right way.
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