
Journal of Cardiovascular Medicine and Cardiology eertechz

Citation: Vallez LJ, Sun B, Plourde BD, Abraham JP, Staniloae CS (2015) Numerical Analysis of Arterial Plaque Thickness and its Impact on Artery Wall 
Compliance. J Cardiovasc Med Cardiol 2(2): 026-034. DOI: 10.17352/2455-2976.000019

026

Research Article

Numerical Analysis of Arterial 
Plaque Thickness and its Impact on 
Artery Wall Compliance

LJ Vallez1, B Sun1, BD Plourde1, JP 
Abraham1* and CS Staniloae2

1University of St. Thomas School of Engineering, 
2115 Summit Ave, St. Paul, MN 55105-1079, USA
2NYU Langone Medical Center, 333 East 38th St. 
New York, NY 10016, USA

Dates: Received: 03 December, 2015; Accepted: 
08 December, 2015; Published: 12 December, 2015

*Corresponding author: J.P. Abraham, University of 
St. Thomas School of Engineering, 2115 Summit Ave, 
St. Paul, MN 55105-1079, E-mail: 

www.peertechz.com 

Keywords: Artery compliance; Cardiovascular 
disease; Atherectomy; Heart disease; Blood flow; 
Hemodynamics

ISSN: 2455-2976

Introduction
Cardiovascular disease is a major cause of mortality throughout 

the world. The history of cardiovascular research is rich and 
although this study is not intended to be a review of the subject, a 
short summary related to the present work is necessary. Interested 
readers are invited to review articles such as [1-4]. These studies are 
representative of the literature which deal with the complexities of 
hemodynamics. Among the important subtopics are the relationship 
between the wall and the fluid. The fluid exerts a shear stress on the 
wall which is believed to be a causing of thickening of the wall and the 
initiation of cardiovascaular disease. The flow also has an impact on 
transport through the arterial wall [5-20]. 

In addition to these hemodynamic-focused studies, it has been 
found that arterial compliance (the distension of an artery wall during 
the cardiac cycle) is an important indicator of disease progression. 
In particular, for a diseased artery, the stiffened arterial wall or the 
rigid plaque layer reduces the otherwise healthy-artery response to 
pressure fluctuations [21-22]. In addition, the presence of a stenosis 
can affect the blood velocity profile [21-26] which can be measured 
Doppler or ultrasound techniques [27-37].

The above-mentioned fluid-wall interaction is two-way in that 
the fluid affects the wall and the wall in turn affects the flow. This 
interaction is often termed “two way fluid structural interaction (two 
way FSI)”. Incorporating the two-way interaction is currently an 
active area of research [38-59]. 

Among these references, the majority treat the artery as an 
isolated structure with stress-free conditions on the exterior surface 
and upstream and downstream surfaces that are able to move radially 
but not axially. Insofar as the surrounding tissue does exert an 
influence on the artery as it is subjected to cardiac-cycle pressure, it 

may be important to include the tissue in the analysis. To the best 
knowledge of the authors, three studies have investigated this issue. 
In [57], the pressure of the surrounding tissue was incorporated into 
the analysis by means of an exterior non-zero pressure. In [58], the 
surrounding tissue was modeled with a viscoelastic support along the 
artery. Most recently [59], a systematic study was completed to vary 
the thickness of the surrounding artery wall until further changes to 
its thickness no longer impacted the results. It was found that the 
presence of plaque significantly reduces the compliance of the artery 
and that for a healthy artery, a 6.5 mm sheath is required. Omission 
of the surrounding tissue resulted in a significant over prediction of 
the compliance.

The present study is aimed at determining how removal of plaque 
changes the artery compliance. There has been a recent advance in 
atherectomy procedures and techniques [15,60-66]. The procedures 
have been shown to remove plaque, open clogged arteries, and 
increase flow rate. What is less known is the impact of plaque removal 
on the artery-wall compliance. If the effect of these treatments on 
compliance can be quantified, it can greatly add in the determination 
of treatment for patients.

Mathematical model
In the present analysis, the finite element technique will be 

combined with experimental data obtained from patients (pre- and 
post-treatment arterial and plaque dimensions). The targeted artery is 
the popliteal. The experiments provided pre- and post-operative flow 
and pressure information upstream and downstream of a superficial 
femoral artery lesion. In addition, the diameter and cross sectional 
areas upstream, downstream, and within the lesion were found. 

Standard lower extremity angiography of the entire vascular 
tree was performed. The Combo Wire® (Volcano Corporation) was 
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normalized at the level of common femoral artery, and then placed in 
the distal popliteal artery, just proximal to the take-off of the anterior 
tibial artery.

The resting gradient was recorded. A blood pressure cuff was 
positioned at the calf level and inflated for 1 minute at 10 mmHg 
above the systolic blood pressure. After cuff deflation, the hyperemic 
gradient was recorded. At that time, an IVUS catheter (Volcano 
Corporation) was passed across the lesion. The reference vessel 
diameter was measured in the normal arterial segment just proximal 
to the lesion. The minimal luminal area was measured at the narrowest 
point inside the lesion. Once the procedure was completed, the 
pressure wire was repositioned in the same segment of the popliteal 
artery, and measurements were repeated. Case files were collected and 
archived on the ComboMap® console from Volcano Corporation.

The simulated geometry is shown in Figure 1. The figure shows a 
three-part solution domain that includes calcified plaque, artery wall 
tissue, and surrounding tissue. The thicknesses of the artery wall and 
the surrounding tissue and the material properties are from [59]. They 
are listed here in Table 1. Linear elastic properties have been shown to 
suitably calculate artery deformation [50]. In [59], it was shown that 
the results are not sensitive to the value of the Poisson ratio. There, it 
was also shown that the required thickness of the surrounding sheet 
was 6.5 mm and that value is used through this study. The mechanical 
properties are listed in Table 1.

The plaque was assumed to be uniformly presented around the 
lumen so that axisymmetry could be used. To reduce solution time 
and increase spatial resolution, an angle of 10 degrees was used. This 
assumption of axisymmetry is not a limitation of the modeling; if 
the tangential deployment of the plaque deposit is known, it can be 
incorporated into the analysis.

Boundary conditions
At the upstream and downstream ends of the artery and tissue, 

radial motion was allowed but axial motion was prohibited. The 

external conditions are less obvious; it is not clear what the value of the 
external pressure should be since in some cases, the artery is internal 
to the organisms and therefore the far-field pressure is non-zero. In 
other cases, the vessels are near the skin surface so not only would 
there be a non-axisymmetric pressure but over part of the exterior the 
pressure would be zero. It is recognized that the superficial femoral 
artery is deep within tissue and an external pressure approximately 
equal to the diastolic pressure would be most suitable. In an effort to 
provide results which are of more general value, we will define the 
external pressure systematically with values that vary from zero to 
the diastolic pressure. The pressure within the lumen is taken from 
measurements. To simplify the mathematics, the software will require 
the translumen pressure and not the separate pressures at the two 
surfaces. Here we define four cases which are listed in Table 2. In the 
Table, Pineternal refers to the pressure inside the artery.

The numerical model
Time discretization: The solutions were initialized to a zero 

stress state and five cardiac cycles (Figures 2,3) were input. The time 
stepping was performed with different values to ensure time-step 
independence. Time step values of .01, .05, and .1 seconds were used 
and deformation of the artery wall was found to differ by less than 1 
% throughout the cycle. For the remaining solutions to be reported, 
time steps of .1 seconds were employed.

Spatial discretization: The finite element solution requires 
a spatial discretization of the solution domain. A sequence of 
meshes were used that were increasingly refined. The refinements 
incorporated a 20-fold increase in the numbers of elements. The 
solutions from these various levels of refinement differed by less than 
2 % so that a mesh independence was obtained. The results to be 
presented correspond to approximately 1700 number of elements for 
a 10 degree wedge (approximately 62,000 for a fully circular domain). 
The exact number of elements varied slightly among the simulations 
because the size of the lesion varied. Figure 3 has been prepared to 
show a view of the mesh with annotations calling out the regions.

Figure 1: Schematic of the solution domain. 
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Table 1: Material properties.

Material Young’s Modulus (MPa) Poisson Ratio Density

Plaque 12.6 0.3 1000

Artery Wall 1 0.3 1000

Surrounding Tissue 1 0.3 1000

Table 2: Definition of the translumen pressure differences used in the 
simulations.

Case External Pressure (torr) Internal Translumen pressure

1 0 From measurement Pinternal – 0 torr

2 20 From measurement Pinternal – 20 torr

3 40 From measurement Pinternal – 40 torr

4 diastolic From measurement Pinternal – Pdiasolic

Figure 3: Translumen pressure difference for the cases of Table 2 after plaque removal treatment.

Figure 2: Translumen pressure difference for the cases of Table 2 prior to plaque removal treatment.

Solution domain size: One issue which needs to be addressed 
is the size of the solution domain which is required to ensure that 
boundary conditions there do not influence the results. With respect 
to the radial extent, it was previously shown that a 6.5 mm thick 
surrounding tissue zone was sufficient to ensure accuracy [59]. The 
axial extent (annotated in Figure 1) was determined by systematically 
enlarging the domain and repeating compliance calculations until 
further enlargements did not influence results. All the results to be 
provided in the following section correspond to a sufficiently large 
axial extent. It should be noted however that in reality, arteries are 
not straight. There is a tortuosity that varies from patient to patient. 
In addition, the axisymmetric lesion is also idealized; in reality, the 
lesion may vary in thickness along its length and is often deployed 
non-symmetric within the artery. The results obtained here are 
consequently idealized. 

Results and Discussion
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The primary result to be presented is the compliance of the artery 
wall for the various pressure and plaque thickness situations. The 
compliance is calculated by the radial deformation of the inner plaque 
surface. The definition of area compliance, from [66], is

  AreaAreaCompliance
Pressure
∆

=
∆               (1)

Where ∆Area is the increase of area during the cardiac cycle and 
∆Pressure is the transmural pressure difference. Another commonly 
used measure of compliance is the diametrical compliance which is 
defined as 

/ 10,000  D DDiametrical Compliance
Pressure
∆

= •
∆                              (2)

The Diamond Back 360° Peripheral Orbital Atherectomy System 
(OAS; Cardiovascular Systems, Inc) was used to modify the surface 
of calcified plaque while preserving the more elastic arterial wall. 
The differential sanding property results in plaque fracture, luminal 
enlargement, and very low balloon inflation pressure, minimizing 
injury to the vessel wall. Lesion pretreatment with the OAS has 
translated into a decreased need for bail-out stenting, which preserves 
the opportunity for future revascularization treatments. For more 
detailed information on the peripheral orbital atherectomy device 
and clinical data [66].

In this case, we used a 2.0mm crown which was initially activated 
at 60,000 rotation / min. After 2 passes, the orbital speed was 
increased to 90,000 rotations/min. The plaque removal procedure 
was terminated after the final 2 passes at 120,000 rotations/min. 
The activation time was 30 seconds per pass (180 seconds for the 
entire treatment), with a pause of 30 seconds in between passes. The 
atherectomy result was checked via angiogram, and the residual 
stenosis was measured with the IVUS.

To aid in the discussion, tables have been created to categorize 
the many individual calculations. The first table (Table 3) presents 
results for translumen pressure variation Case 1. There it is seen that 
the presence of plaque has a significant impact on the deformation 
(plaque reduces compliance). It is also seen that the length of the 
lesion is not important except for very short lengths (3 mm). The 
results for 7, 12, and 18 mm lesions are indistinguishable.

With respect to improvements achieved by plaque removal, it is 

seen that for the pre-operative plaque thickness, the area compliance 
is approximately 0.1% however the post-operative case (plaque 
thickness of 0.825 mm, the compliance has tripled (increased by 
200%). Only a modest reductions in plaque thickness with orbital 
atherectomy resulted in large changes in the compliance. 

If attention is turned to the subsequent tables, the same 
conclusions can be drawn. Reductions in plaque thickness markedly 
alter the compliance. Furthermore, with the exception of very short 
lesions, the length of the lesion does not influence the results. It is 
also seen that the magnitude of the transmural pressure difference is 
positively related to the deformation with larger values of transmural 
pressure giving rise to larger deformation. This result is expected.

The compliance is weakly dependent on the transmural pressure 
at these pressure levels because of the appearance of the pressure 
difference in the denominator. There is a slight increase in compliance 
for the smallest transmural pressure differences, this finding is 
confirmed by literature [67].

Insofar as the popliteal artery is deep within perfused tissue, the 
most appropriate external pressure value is diastolic (corresponds to 
Case 4). The other cases correspond to arteries which would be close 
to the skin surface.

In these tables, the symbols ∆A, ∆P, and ∆D refer to changes of 
artery cross section area, change in pressure, and change in diameter 
during a cardiac cycle.

A graphical display of a subset of the results is provided in Figure 
5. There, the results correspond to pressure Case 4 which typifies a 
deep-tissue artery such as the superficial femoral. There, two curves 
are shown that reveal the decrease of compliance with increase in 
calcified plaque thickness. The curves are annotated for plaque lesions 
7 mm and longer and for a plaque lesion of 3 mm. It is seen that there 
is a very slight dependence of the results on plaque lesion length but a 
much more substantive dependence on plaque thickness.

Comparison of present calculations with 
measurements

It is important to compare these results with expectations from 
the literature. While there it is difficult to find a perfect comparison 
because of the differences from patient to patient and the paucity of 
high-quality quantifiable results, it was possible to find a reasonable 
comparison candidate [67]. A comparison of these results with 

Figure 4: Solution domain and discretization mesh.
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Table 3: Results for transluminal pressure Case 1.

Case Plaque Thickness (mm) Plaque Length (mm) Inner Diameter
(mm) Area Compliance (∆A/∆P) (mm2/torr) % Diameter Compliance

∆D/D/∆P) X104

1 1.66 3 3.38 0.10 2.22

2 1.66 7 3.38 0.08 1.69

3 1.66 12 3.38 0.08 1.68

4 1.66 18 3.38 0.08 1.74

5 1.39 3 3.92 0.15 2.47

6 1.39 7 3.92 0.12 1.90

7 1.39 12 3.92 0.11 1.87

8 1.39 18 3.92 0.12 1.90

9 0.825 3 5.05 0.33 3.25

10 0.825 7 5.05 0.27 2.72

11 0.825 12 5.05 0.27 2.65

12 0.825 18 5.05 0.27 2.68

13 0.413 3 5.87 0.63 4.61

14 0.413 7 5.87 0.56 4.12

15 0.413 12 5.87 0.55 4.04

16 0.413 18 5.87 0.55 4.06

17 0 3 6.70 1.17 6.56

18 0 7 6.70 1.17 6.56

19 0 12 6.70 1.17 6.56

20 0 18 6.70 1.17 6.56

Figure 5: Dependence of area compliance on plaque thickness for pressure variation Case 4.

[67], shows very good agreement, lending support to the present 
calculations.

A further comparison is made with [68]. They find a health 
population proximal superficial femoral artery compliance of 3.1 – 
9.1% which compares well to the results of Table 6 without plaque. 
While it is difficult to compare the diseased population of [69], 
with the diseased results of this study because little information was 
given about the thickness, type, and length of plaque regions in [67], 
nevertheless, the lower range of their diametrical compliance values 

(3.1%) agree well with moderate diseased case (Cases 9-16 of Table 6) 
that were provided here.

Study limitations
While the results presented in this paper give clear guidance 

connecting the thickness of calcified plaque and arterial compliance, 
the plaque model was simplified as both axisymmetric and with a flat 
profile. While the internal dimensions matched those from patient 
measurements, in truth the non-uniform distribution is expected to 
lead to results that may differ from this generalized simplified case. 
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Table 4: Results for transluminal pressure Case 2.

Case Plaque Thickness (mm) Plaque Length (mm) Inner Diameter
(mm) Area Compliance (∆A/∆P) (mm2/torr) % Diameter Compliance

(∆D/D/∆P) X104

1 1.66 3 3.38 0.10 1.86
2 1.66 7 3.38 0.08 1.42
3 1.66 12 3.38 0.08 1.41
4 1.66 18 3.38 0.08 1.45
5 1.39 3 3.92 0.15 2.06
6 1.39 7 3.92 0.12 1.59
7 1.39 12 3.92 0.11 1.57
8 1.39 18 3.92 0.12 1.60
9 0.825 3 5.05 0.33 2.72

10 0.825 7 5.05 0.27 2.28
11 0.825 12 5.05 0.27 2.23
12 0.825 18 5.05 0.27 2.24
13 0.413 3 5.87 0.63 3.86
14 0.413 7 5.87 0.56 3.45
15 0.413 12 5.87 0.55 3.38
16 0.413 18 5.87 0.55 3.40
17 0 3 6.70 1.17 5.49
18 0 7 6.70 1.17 5.49
19 0 12 6.70 1.17 5.49
20 0 18 6.70 1.17 5.49

Table 5: Results for transluminal pressure Case 3.

Case Plaque Thickness (mm) Plaque Length (mm) Inner Diameter
(mm) Area Compliance (∆A/∆P) (mm2/torr) % Diameter Compliance

(DD/D/DP) X104

1 1.66 3 3.38 0.10 1.50
2 1.66 7 3.38 0.08 1.14
3 1.66 12 3.38 0.08 1.14
4 1.66 18 3.38 0..08 1.17
5 1.39 3 3.92 0.15 1.66
6 1.39 7 3.92 0.12 1.28
7 1.39 12 3.92 1.17 1.27
8 1.39 18 3.92 1.19 1.29
9 0.825 3 5.05 0.33 2.19
10 0.825 7 5.05 0.28 1.83
11 0.825 12 5.05 0.27 1.80
12 0.825 18 5.05 0.27 1.81
13 0.413 3 5.87 0.64 3.12
14 0.413 7 5.87 0.57 2.79
15 0.413 12 5.87 0.56 2.74
16 0.413 18 5.87 0.56 2.75
17 0 3 6.70 1.18 4.44
18 0 7 6.70 1.18 4.44
19 0 12 6.70 1.18 4.44
20 0 18 6.70 1.18 4.44

Future stages of the work will involve the reproduction of these 
results with patient-specific plaque measurements and extension 
from the general to the specific case will be made.

Regardless of the limitations, the results from the simplified 
plaque model are useful to quantify the degree of compliance change 
which is achieved for plaque removal. In fact, if compliance targets 
are available, they can be directly related to plaque removal so that 

procedures can be tailored to specific patient compliance objectives.

Concluding Remarks
A numerical study was completed to quantify the effect of calcified 

plaque removal on artery compliance. The modeled artery segment 
was the proximal superficial femoral artery. Flow, pressure and 
geometry information was obtained from a patient before and after 
an orbital atherectomy procedure. The calculations were extended to 
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Table 6: Results for transluminal pressure Case 4.

Case Plaque Thickness (mm) Plaque Length (mm) Inner Diameter
(mm) Area Compliance (∆A/∆P) (mm2/torr) % Diameter Compliance

(DD/D/DP) X104

1 1.66 3 3.38 0.11 1.20
2 1.66 7 3.38 0.08 0.92
3 1.66 12 3.38 0.08 0.91
4 1.66 18 3.38 0.08 0.94
5 1.39 3 3.92 0.16 1.34
6 1.39 7 3.92 0.12 1.03
7 1.39 12 3.92 0.12 1.02
8 1.39 18 3.92 0.12 1.03
9 0.825 3 5.05 0.35 1.76
10 0.825 7 5.05 0.30 1.48
11 0.825 12 5.05 0.29 1.44
12 0.825 18 5.05 0.29 1.45
13 0.413 3 5.87 0.68 2.50
14 0.413 7 5.87 0.61 2.24
15 0.413 12 5.87 0.60 2.19
16 0.413 18 5.87 0.60 2.20
17 0 3 6.70 1.26 3.56
18 0 7 6.70 1.26 3.56
19 0 12 6.70 1.26 3.56
20 0 18 6.70 1.23 3.48

a variety of plaque lengths and for a wide range of eternal pressure 
conditions which represent the surrounding tissue. The simulations 
included a sheath of supporting tissue as well.

It was found that progressive removal of plaque led to a large 
change in the compliance. It was also found that the changes were 
largely independence of the lesion length, however very short lesions 
(3 mm) exhibited a slight difference compared to longer lesions 
(7 mm and longer). These calculations allow clinicians to target 
atherectomy procedures to meet a compliance goal. For instance, 
for individual patients with non-compliant arteries, it is possible to 
create a compliance goal and to then tailor the amount of calcified 
plaque which must be removed to achieve that goal.

The calculations were compared with literature measurements 
of compliance and were found to be in agreement. To the authors’ 
best knowledge, this is the first numerical compliance study which 
includes surrounding tissue and progressive changes in plaque. 

The results presented here are also useful in interpreting other 
prior results such as [69], which use novel sensing techniques to 
measure intima-media thickness, diameter, strain and distensibility 
in arteries with a focus on potential plaque rupture.
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